

© 2009 by Taylor & Francis Group, LLC

A N A U E R B A C H B O O K

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

© 2009 by Taylor & Francis Group, LLC

Auerbach Publications
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487‑2742

© 2009 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid‑free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑4200‑8073‑5 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can‑
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy‑
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that pro‑
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Lewis, William E.
Software testing and continuous quality improvement / William E.
Lewis. ‑‑ 3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978‑1‑4200‑8073‑5 (alk. paper)
1. Computer software‑‑Testing. 2. Computer software‑‑Quality control. I.

Title.

QA76.76.T48L495 2008
005.1’4‑‑dc22 2008046201

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach‑publications.com

© 2009 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.auerbach-publications.com

v

Contents

Acknowledgments ..xxi
Introduction .. xxiii
About the Author .. xxv

1SeCtion Software Quality in PerSPeCtive

1 A Brief History of Software Testing ...3
Historical Software Testing and Development Parallels6
Extreme Programming...8
Evolution of Automated Testing Tools ...8

Static Capture/Replay Tools (without Scripting Language)10
Static Capture/Replay Tools (with Scripting Language)....................10
Variable Capture/Replay Tools ...10

2 Quality Assurance Framework ...13
What Is Quality? ...13
Prevention versus Detection ...14
Verification versus Validation ...15
Software Quality Assurance ...16
Components of Quality Assurance ..17

Software Testing ...17
Quality Control ...18

Software Configuration Management ..19
Elements of Software Configuration Management20

Software Quality Assurance Plan ...23
Steps to Develop and Implement a Software Quality Assurance
Plan ..23

Step 1: Document the Plan ..23
Step 2: Obtain Management Acceptance25
Step 3: Obtain Development Acceptance25

© 2009 by Taylor & Francis Group, LLC

vi ◾ Contents

Step 4: Plan for Implementation of the SQA Plan....................26
Step 5: Execute the SQA Plan ..26

Quality Standards ..26
Sarbanes–Oxley ..26
ISO9000...29
Capability Maturity Model (CMM) ...29

Level 1: Initial ...30
Level 2: Repeatable ..31
Level 3: Defined ..31
Level 4: Managed ..32
Level 5: Optimized ..32

People CMM ..33
CMMI ..33
Malcolm Baldrige National Quality Award 34

Notes ...37

3 Overview of Testing Techniques...39
Black-Box Testing (Functional)..39
White-Box Testing (Structural) .. 40
Gray-Box Testing (Functional and Structural) ...41
Manual versus Automated Testing ...41
Static versus Dynamic Testing ...41
Taxonomy of Software Testing Techniques ... 42

4 Transforming Requirements to Testable Test Cases51
Introduction ..51
Software Requirements as the Basis of Testing ...51
Requirement Quality Factors ...52

Understandable ...52
Necessary ..53
Modifiable ..53
Nonredundant ..53
Terse ...54
Testable ...54
Traceable ..54
Within Scope ..54

Numerical Method for Evaluating Requirement Quality54
Process for Creating Test Cases from Good Requirements55

Step 1: Review the Requirements ..55
Step 2: Write a Test Plan ...58
Step 3: Identify the Test Suite ...58
Step 4: Name the Test Cases ...59
Step 5: Write Test Case Descriptions and Objectives62

© 2009 by Taylor & Francis Group, LLC

Contents ◾ vii

Step 6: Create the Test Cases ..62
Step 7: Review the Test Cases ...63

Transforming Use Cases to Test Cases .. 64
Step 1: Draw a Use Case Diagram ... 64
Step 2: Write the Detailed Use Case Text .. 64
Step 3: Identify Use Case Scenarios ... 66
Step 4: Generating the Test Cases .. 66
Step 5: Generating Test Data ..68
Summary ..68

What to Do When Requirements Are Nonexistent or Poor?68
Ad Hoc Testing ..68

The Art of Ad Hoc Testing ..68
Advantages and Disadvantages of Ad Hoc Testing71

Exploratory Testing ..72
The Art of Exploratory Testing ..72
Exploratory Testing Process ...72
Advantages and Disadvantages of Exploratory Testing73

5 Quality through Continuous Improvement Process75
Contribution of Edward Deming...75
Role of Statistical Methods ..76

Cause-and-Effect Diagram ...76
Flowchart..76
Pareto Chart ...76
Run Chart ... 77
Histogram ... 77
Scatter Diagram ... 77
Control Chart .. 77

Deming’s 14 Quality Principles .. 77
Point 1: Create Constancy of Purpose.. 77
Point 2: Adopt the New Philosophy ..78
Point 3: Cease Dependence on Mass Inspection78
Point 4: End the Practice of Awarding Business on Price
Tag Alone ...79
Point 5: Improve Constantly and Ceaselessly the System of
Production and Service ...79
Point 6: Institute Training and Retraining79
Point 7: Institute Leadership ...80
Point 8: Drive Out Fear ..80
Point 9: Break Down Barriers between Staff Areas81
Point 10: Eliminate Slogans, Exhortations, and Targets for the
Workforce ...81
Point 11: Eliminate Numerical Goals ...81

© 2009 by Taylor & Francis Group, LLC

viii ◾ Contents

Point 12: Remove Barriers to Pride of Workmanship82
Point 13: Institute a Vigorous Program of Education and
Retraining ..82
Point 14: Take Action to Accomplish the Transformation82

Continuous Improvement through the Plan, Do, Check, Act Process83
Going around the PDCA Circle ... 84

2SeCtion waterfall teSting review

6 Overview ..87
Waterfall Development Methodology ..87
Continuous Improvement “Phased” Approach ..88
Psychology of Life-Cycle Testing ...89
Software Testing as a Continuous Improvement Process............................89
The Testing Bible: Software Test Plan ..92
Major Steps in Developing a Test Plan ...93

Step 1: Define the Test Objectives ..93
Step 2: Develop the Test Approach ...93
Step 3: Define the Test Environment ..95
Step 4: Develop the Test Specifications ...95
Step 5: Schedule the Test ..95
Step 6: Review and Approve the Test Plan ..95

Components of a Test Plan ..95
Technical Reviews as a Continuous Improvement Process96
Motivation for Technical Reviews ..101
Types of Reviews ...101

Structured Walkthroughs ...101
Inspections ...102

Participant Roles ..103
Steps for an Effective Review ...105

Step 1: Plan for the Review Process ...105
Step 2: Schedule the Review ...105
Step 3: Develop the Review Agenda ...106
Step 4: Create a Review Report...106

7 Static Testing the Requirements ...107
Testing the Requirements with Ambiguity Reviews108
Testing the Requirements with Technical Reviews109
Inspections and Walkthroughs ..109
Checklists ..109

Methodology Checklist ..109
Requirements Traceability Matrix ... 110
Building the System/Acceptance Test Plan .. 111

© 2009 by Taylor & Francis Group, LLC

Contents ◾ ix

8 Static Testing the Logical Design ...115
Data Model, Process Model, and the Linkage .. 115
Testing the Logical Design with Technical Reviews 117
Refining the System/Acceptance Test Plan... 118

9 Static Testing the Physical Design..121
Testing the Physical Design with Technical Reviews121
Creating Integration Test Cases ...122
Methodology for Integration Testing ...123

Step 1: Identify Unit Interfaces ...123
Step 2: Reconcile Interfaces for Completeness124
Step 3: Create Integration Test Conditions124
Step 4: Evaluate the Completeness of Integration Test
Conditions ..124

10 Static Testing the Program Unit Design ...127
Testing the Program Unit Design with Technical Reviews127

Sequence ...127
Selection ...128
Iteration ..128

Creating Unit Test Cases ...128

11 Static Testing and Dynamic Testing the Code131
Testing Coding with Technical Reviews ..131
Executing the Test Plan ...132
Unit Testing ...133
Integration Testing ..134
System Testing ...134
Acceptance Testing ..134
Defect Recording ...135

3SeCtion SPiral (agile) Software teSting
Methodology: Plan, do, CheCk, aCt

12 Development Methodology Overview ..139
Limitations of Life-Cycle Development ...139
The Client/Server Challenge ..140
Psychology of Client/Server Spiral Testing ...141

The New School of Thought ...141
Tester/Developer Perceptions ..142
Project Goal: Integrate QA and Development.................................143
Iterative/Spiral Development Methodology144

Role of JADs ..146
Role of Prototyping ..146

© 2009 by Taylor & Francis Group, LLC

x ◾ Contents

Methodology for Developing Prototypes ...148
Step 1: Develop the Prototype ..148
Step 2: Demonstrate Prototypes to Management149
Step 3: Demonstrate Prototype to Users ...150
Step 4: Revise and Finalize Specifications150
Step 5: Develop the Production System .. 151

Continuous Improvement “Spiral” Testing Approach 151

13 Information Gathering (Plan) ..155
Step 1: Prepare for the Interview ..156

Task 1: Identify the Participants ...156
Task 2: Define the Agenda ..156

Step 2: Conduct the Interview ...156
Task 1: Understand the Project ...158
Task 2: Understand the Project Objectives 159
Task 3: Understand the Project Status ..160
Task 4: Understand the Project Plans ...160
Task 5: Understand the Project Development Methodology 161
Task 6: Identify the High-Level Business Requirements 161
Task 7: Perform Risk Analysis...162

Computer Risk Analysis ..163
Method 1: Judgment and Instinct ...163
Method 2: Dollar Estimation ..163
Method 3: Identifying and Weighting Risk Attributes164

Step 3: Summarize the Findings ..165
Task 1: Summarize the Interview ..165
Task 2: Confirm the Interview Findings ...165

14 Test Planning (Plan) ...167
Step 1: Build a Test Plan ..168

Task 1: Prepare an Introduction ..168
Task 2: Define the High-Level Functional Requirements (in
Scope) ...170
Task 3: Identify Manual/Automated Test Types171
Task 4: Identify the Test Exit Criteria ...171
Task 5: Establish Regression Test Strategy172
Task 6: Define the Test Deliverables ... 174
Task 7: Organize the Test Team ...175
Task 8: Establish a Test Environment ...177
Task 9: Define the Dependencies ..177
Task 10: Create a Test Schedule ..178
Task 11: Select the Test Tools ...178
Task 12: Establish Defect Recording/Tracking Procedures182

© 2009 by Taylor & Francis Group, LLC

Contents ◾ xi

Task 13: Establish Change Request Procedures184
Task 14: Establish Version Control Procedures185
Task 15: Define Configuration Build Procedures186
Task 16: Define Project Issue Resolution Procedures186
Task 17: Establish Reporting Procedures ..187
Task 18: Define Approval Procedures ...187

Step 2: Define the Metric Objectives ...188
Task 1: Define the Metrics ..188
Task 2: Define the Metric Points ..189

Step 3: Review/Approve the Plan ...194
Task 1: Schedule/Conduct the Review ..194
Task 2: Obtain Approvals ...194

15 Test Case Design (Do) ..195
Step 1: Design Function Tests ..195

Task 1: Refine the Functional Test Requirements195
Task 2: Build a Function/Test Matrix .. 200

Step 2: Design GUI Tests ... 200
Ten Guidelines for Good GUI Design ... 200
Task 1: Identify the Application GUI Components202
Task 2: Define the GUI Tests ...202

Step 3: Define the System/Acceptance Tests ..203
Task 1: Identify Potential System Tests ...203
Task 2: Design System Fragment Tests ...205
Task 3: Identify Potential Acceptance Tests 206

Step 4: Review/Approve Design .. 206
Task 1: Schedule/Prepare for Review ... 206
Task 2: Obtain Approvals .. 206

16 Test Development (Do)...209
Step 1: Develop Test Scripts ...209

Task 1: Script the Manual/Automated GUI/Function Tests209
Task 2: Script the Manual/Automated System Fragment Tests210

Step 2: Review/Approve Test Development ..210
Task 1: Schedule/Prepare for Review ..210
Task 2: Obtain Approvals ...212

17 Test Coverage through Traceability ...213
Use Cases and Traceability ..214
Summary ...216

18 Test Execution/Evaluation (Do/Check)..217
Step 1: Setup and Testing ..217

Task 1: Regression Test the Manual/Automated Spiral Fixes217

© 2009 by Taylor & Francis Group, LLC

xii ◾ Contents

Task 2: Execute the Manual/Automated New Spiral Tests219
Task 3: Document the Spiral Test Defects219

Step 2: Evaluation ..219
Task 1: Analyze the Metrics ..219

Step 3: Publish Interim Report ... 220
Task 1: Refine the Test Schedule .. 220
Task 2: Identify Requirement Changes ...221

19 Prepare for the Next Spiral (Act) ..223
Step 1: Refine the Tests ..223

Task 1: Update the Function/GUI Tests ...223
Task 2: Update the System Fragment Tests225
Task 3: Update the Acceptance Tests ..225

Step 2: Reassess the Team, Procedures, and Test Environment225
Task 1: Evaluate the Test Team ...225
Task 2: Review the Test Control Procedures 226
Task 3: Update the Test Environment ..227

Step 3: Publish Interim Test Report ...227
Task 1: Publish the Metric Graphics ...227

Test Case Execution Status ..227
Defect Gap Analysis ... 228
Defect Severity Status ... 228
Test Burnout Tracking ... 228

20 Conduct the System Test (Act) ...233
Step 1: Complete System Test Plan ..233

Task 1: Finalize the System Test Types ...233
Task 2: Finalize System Test Schedule ..235
Task 3: Organize the System Test Team ...235
Task 4: Establish the System Test Environment238
Task 5: Install the System Test Tools ..239

Step 2: Complete System Test Cases ..239
Task 1: Design/Script the Performance Tests239
Monitoring Approach ...240
Probe Approach ..241
Test Drivers ..241
Task 2: Design/Script the Security Tests ...242

A Security Design Strategy ..242
Task 3: Design/Script the Volume Tests ..243
Task 4: Design/Script the Stress Tests ...243
Task 5: Design/Script the Compatibility Tests 244
Task 6: Design/Script the Conversion Tests245
Task 7: Design/Script the Usability Tests 246

© 2009 by Taylor & Francis Group, LLC

Contents ◾ xiii

Task 8: Design/Script the Documentation Tests 246
Task 9: Design/Script the Backup Tests ..247
Task 10: Design/Script the Recovery Tests248
Task 11: Design/Script the Installation Tests248
Task 12: Design/Script Other System Test Types............................249

Step 3: Review/Approve System Tests ..250
Task 1: Schedule/Conduct the Review ..250
Task 2: Obtain Approvals ...250

Step 4: Execute the System Tests ..251
Task 1: Regression Test the System Fixes ..251
Task 2: Execute the New System Tests ..251
Task 3: Document the System Defects ...251

21 Conduct Acceptance Testing ..253
Step 1: Complete Acceptance Test Planning ..253

Task 1: Finalize the Acceptance Test Types253
Task 2: Finalize the Acceptance Test Schedule255
Task 3: Organize the Acceptance Test Team255
Task 4: Establish the Acceptance Test Environment256
Task 5: Install Acceptance Test Tools ...256

Step 2: Complete Acceptance Test Cases ...256
Task 1: Identify the System-Level Test Cases257
Task 2: Design/Script Additional Acceptance Tests257

Step 3: Review/Approve Acceptance Test Plan ...257
Task 1: Schedule/Conduct the Review ..257
Task 2: Obtain Approvals ...258

Step 4: Execute the Acceptance Tests ...258
Task 1: Regression Test the Acceptance Fixes258
Task 2: Execute the New Acceptance Tests259
Task 3: Document the Acceptance Defects259

22 Summarize/Report Test Results ...261
Step 1: Perform Data Reduction ..261

Task 1: Ensure All Tests Were Executed/Resolved261
Task 2: Consolidate Test Defects by Test Number261
Task 3: Post Remaining Defects to a Matrix262

Step 2: Prepare Final Test Report ...263
Task 1: Prepare the Project Overview ...263
Task 2: Summarize the Test Activities ..263
Task 3: Analyze/Create Metric Graphics ..263

Defects by Function ... 264
Defects by Tester .. 264
Defect Gap Analysis ... 264

© 2009 by Taylor & Francis Group, LLC

xiv ◾ Contents

Defect Severity Status ... 264
Test Burnout Tracking ... 264
Root Cause Analysis ... 266
Defects by How Found ... 266
Defects by Who Found ...267
Functions Tested and Not Tested ..267
System Testing Defect Types .. 268
Acceptance Testing Defect Types ... 268

Task 4: Develop Findings/Recommendations269
Step 3: Review/Approve the Final Test Report ...272

Task 1: Schedule/Conduct the Review ..272
Task 2: Obtain Approvals ...273
Task 3: Publish the Final Test Report ...273

4SeCtion ProjeCt ManageMent Methodology

23 The Project Management Framework ...279
The Project Framework ..279
Product Quality and Project Quality ...279
Components of the Project Framework ... 280
The Project Framework and Continuous Quality Improvement.............. 280
The Project Framework Phases ...281

Initiation Phase ...281
Planning Phase ...282
Executing, Monitoring, and Controlling Phases282
Implement Phase ..283

Scoping the Project to Ensure Product Quality ..283
Product Scope and Project Scope ...283
The Project Charter... 284
The Scope Statement ..285
The Role of the Project Manager in Quality Management285
The Role of the Test Manager in Quality Management 286

Analyze the Requirements ... 286
Perform a Gap Analysis ... 286
Avoid Duplication and Repetition ..287
Define the Test Data ...287
Validate the Test Environment ...287
Analyze the Test Results ...288
Deliver the Quality ...288

Advice for the Test Manager ..288
Request Help from Others ..288
Communicate Issues as They Arise ...288
Always Update Your Business Knowledge289

© 2009 by Taylor & Francis Group, LLC

Contents ◾ xv

Learn the New Testing Technologies and Tools289
Improve the Process ..289
Create a Knowledge Base ..289

The Benefits of the Quality Project Management and the Project
Framework ...290

24 Project Quality Management ...291
Project Quality Management Processes ...291
Quality Planning ...292
Identifying the High-Level Project Activities ...292
Estimating the Test Work Effort ..292
Test Planning ...293
Effort Estimation: Model Project ...294
Quality Standards ..296

25 The Defect Management Process ..301
Quality Control and Defect Management ...301
Defect Discovery and Classification ...301
Defect Priority ...302
Defect Category ...303
Defect Tracking ...303

Defect Reporting ... 304
Defect Summary ... 304
Defect Meetings...305
Defect Metrics ...305
Quality Standards ... 306

26 Integrated Testing and Development ...309
Quality Control and Integrated Testing ...309
Integrated Testing ..309
Step 1: Organize the Test Team ...310
Step 2: Identify the Tasks to Integrate..310
Step 3: Customize Test Steps and Tasks ... 311
Step 4: Select Integration Points ... 311
Step 5: Modify the Development Methodology312
Step 6: Test Methodology Training ...312
Step 7: Incorporate Defect Recording ..313
The Integrated Team ..313

27 Test Management Constraints ..315
Organizational Architecture .. 315
Traits of a Well-Established Quality Organization 315
Division of Responsibilities ..316
Organizational Relationships ... 317

© 2009 by Taylor & Francis Group, LLC

xvi ◾ Contents

Using the Project Framework Where No Quality Infrastructure Exists ... 317
Ad Hoc Testing and the Project Framework .. 318
Using a Traceability/Validation Matrix .. 319
Reporting the Progress ... 319

5SeCtion eMerging SPeCialized areaS in teSting

28 Test Process and Automation Assessment ..323
Test Process Assessment ...323
Process Evaluation Methodology ...324

Step 1: Identify the Key Elements ...324
Step 2: Gather and Analyze the Information325
Step 3: Analyze Test Maturity ..326

The Requirements Definition Maturity326
Test Strategy Maturity ...327
Test Effort Estimation Maturity ..328
Test Design and Execution Maturity328
Regression Testing Maturity ..329
Test Automation Maturity ...329

Step 4: Document and Present Findings ...330
Test Automation Assessment ..330

Identify the Applications to Automate ..332
Identify the Best Test Automation Tool ..332
Test Scripting Approach ...333
Test Execution Approach ..333
Test Script Maintenance ...334

Test Automation Framework..334
Basic Features of an Automation Framework335

Define the Folder Structure ...335
Modularize Scripts/Test Data to Increase Robustness336
Reuse Generic Functions and Application-Specific
Function Libraries ...336
Develop Scripting Guidelines and Review Checklists336
Define Error Handling and Recovery Functions337
Define the Maintenance Process ..337

Standard Automation Frameworks ...337
Data-Driven Framework ..338
Modular Framework ..338

Keyword-Driven Framework ..339
Hybrid Framework ...341

29 Nonfunctional Testing .. 343
Performance Testing ... 343

© 2009 by Taylor & Francis Group, LLC

Contents ◾ xvii

Load Testing ... 344
Stress Testing .. 344
Volume Testing ... 344
Performance Monitoring ... 344
Performance Testing Approach ... 344
Knowledge Acquisition Process ..345
Test Development ... 346
Performance Deliverables ...350
Security Testing ...351

Step 1: Identifying the Scope of Security Testing352
Step 2: Test Case Generation and Execution...................................353

Types of Security Testing ...353
Network Scanning ..353

Purpose ...354
Tools ..354
Approach ...354

Vulnerability Scanning ...354
Purpose ...355
Tools ..355
Approach ...355

Password Cracking ...355
Tools ..356

Log Reviews ...356
Approach ...356

File Integrity Checkers ..356
Purpose ...356
Tools ..357

Virus Detectors ...357
Tools ..357
Approach ...357

Penetration Testing ...357
Purpose ...358
Approach ...358

Usability Testing ..358
Goals of Usability Testing ..359

Approach and Execution .. 360
Guidelines for Usability Testing ...361
Accessibility Testing and Section 508 ...361

Compliance Testing .. 364

30 SOA Testing ..367
Key Steps of SOA Testing ..368

© 2009 by Taylor & Francis Group, LLC

xviii ◾ Contents

31 Agile Testing ...371
Agile User Stories Contrasted to Formal Requirements371
What Is a User Story? ..372
Agile Planning ...372
Types of Agile Testing ..374
Compliance Testing ...375

32 Testing Center of Excellence ..377
Industry Best Processes ..381
Testing Metrics ..381
Operating Model ...381
Test Automation Framework..382
Continuous Competency Development ...382

33 On-Site/Offshore Model ...383
Step 1: Analysis ..384
Step 2: Determine the Economic Trade-Offs ...384
Step 3: Determine the Selection Criteria ..385
Project Management and Monitoring ..385
Outsourcing Methodology ...385

On-Site Activities..386
Offshore Activities ..387

Implementing the On-Site/Offshore Model ...388
Knowledge Transfer ..388
Detailed Design ..388
Milestone-Based Transfer ...388
Steady State ..389
Application Management..389

Prerequisites ...389
Relationship Model ..389
Standards ..391

Benefits of On-Site/Offshore Methodology ..392
On-Site/Offshore Model Challenges ...393

Out of Sight ...393
Establish Transparency ..394
Security Considerations ...394
Project Monitoring ..394
Management Overhead ...394
Cultural Differences ..394
Software Licensing ..394

Future of the Onshore/Offshore Model ...394

© 2009 by Taylor & Francis Group, LLC

Contents ◾ xix

6SeCtion Modern Software teSting toolS

34 Software Testing Trends ...399
Automated Capture/Replay Testing Tools ...399
Test Case Builder Tools .. 400
Necessary and Sufficient Conditions ... 400
Test Data Generation Strategies ...401

Sampling from Production ...401
Starting from Scratch..402
Seeding the Data ..402
Generating Data Based on the Database ...403
A Cutting-Edge Test Case Generator Based on Requirements 404

35 Taxonomy of Software Testing Tools .. 409
Testing Tool Selection Checklist ... 409
Commercial Vendor Tool Descriptions ..410
Open-Source Freeware Vendor Tools ...410
When You Should Consider Test Automation ...410
When You Should NOT Consider Test Automation 428

36 Methodology to Evaluate Automated Testing Tools431
Step 1: Define Your Test Requirements ..431
Step 2: Set Tool Objectives ..432
Step 3a: Conduct Selection Activities for Informal Procurement432

Task 1: Develop the Acquisition Plan ...432
Task 2: Define Selection Criteria ..432
Task 3: Identify Candidate Tools ..433
Task 4: Conduct the Candidate Review ..433
Task 5: Score the Candidates ..433
Task 6: Select the Tool ... 434

Step 3b: Conduct Selection Activities for Formal Procurement 434
Task 1: Develop the Acquisition Plan .. 434
Task 2: Create the Technical Requirements Document 434
Task 3: Review Requirements .. 434
Task 4: Generate the Request for Proposal 434
Task 5: Solicit Proposals ...435
Task 6: Perform the Technical Evaluation435
Task 7: Select a Tool Source ..435

Step 4: Procure the Testing Tool ..436
Step 5: Create the Evaluation Plan ...436
Step 6: Create the Tool Manager’s Plan ...436
Step 7: Create the Training Plan ..437
Step 8: Receive the Tool ...437

© 2009 by Taylor & Francis Group, LLC

xx ◾ Contents

Step 9: Perform the Acceptance Test ..437
Step 10: Conduct Orientation ..437
Step 11: Implement Modifications ...438
Step 12: Train Tool Users ..438
Step 13: Use the Tool in the Operating Environment438
Step 14: Write the Evaluation Report ...439
Step 15: Determine Whether Goals Have Been Met439

7SeCtion aPPendiCeS

Appendix A: Spiral (Agile) Testing Methodology 443

Appendix B: Software Quality Assurance Plan ..453

Appendix C: Requirements Specification ..455

Appendix D: Change Request Form ..457

Appendix E: Test Templates ..459

Appendix F: Checklists ...493

Appendix G: Software Testing Techniques ...557

Bibliography ..629

Glossary...633

© 2009 by Taylor & Francis Group, LLC

xxi

acknowledgments

I would like to express my sincere gratitude to Carol, my wife, who has demon-
strated loving patience in the preparation of this third edition, and my mother and
father, Joyce and Bill Lewis, whom I will never forget for their support.

I thank John Wyzalek, senior acquisitions editor at Auerbach Publications, for
recognizing the importance of developing a third edition of this book. Gunasekaran
Veerapillai was a technical contributor for “Emerging Specialized Areas in Testing”
and David (Rusty) Dobbs was the technical contributor for “Project Management
Methodology.” Both demonstrated an in-depth knowledge of software testing and
project management, respectively.

Finally, I would like to thank the numerous software testing vendors who pro-
vided descriptions of their tools in Section 6, “Modern Software Testing Tools.”

© 2009 by Taylor & Francis Group, LLC

xxiii

introduction

Numerous textbooks address software testing in a structured development envi-
ronment. By “structured” is meant a well-defined development cycle in which dis-
cretely defined steps provide measurable outputs at each step. It is assumed that
software testing activities are based on clearly defined requirements and software
development standards, and that those standards are used to develop and imple-
ment a plan for testing. Unfortunately, this is often not the case. Typically, testing
is performed against changing, or even wrong, requirements.

This text aims to provide a quality framework for the software testing process in
traditional structured as well as unstructured environments. The goal is to provide a
continuous quality improvement approach to promote effective testing methods and
provide tips, techniques, and alternatives from which the user can choose.

The basis of the continuous quality framework stems from Edward Deming’s
quality principles. Deming was the pioneer in quality improvement, which helped
turn Japanese manufacturing around. Deming’s principles are applied to software
testing in the traditional “waterfall” and rapid application “spiral (or agile)” devel-
opment (RAD) environments. The waterfall approach is one in which predefined
sequential steps are followed with clearly defined requirements. In the spiral approach,
these rigid sequential steps may, to varying degrees, be lacking or different.

Section 1, “Software Quality in Perspective,” reviews modern quality assur-
ance principles and best practices. It provides the reader with a historical sketch
of software testing, followed by a description of how to transform requirements to
test cases when there are well-defined or not so well-defined requirements. Basic
software testing techniques are discussed, followed by an introduction to Deming’s
concept of quality through a continuous improvement process. The Plan, Do,
Check, Act (PDCA) quality wheel is applied to the software testing process.

The Plan step of the continuous improvement process starts with a definition of
the test objectives, or what is to be accomplished as a result of testing. The elements
of a test strategy and test plan are described. A test strategy is a concise statement
of how to meet the goals of testing and precedes test plan development. The outline
of a good test plan is provided, including an introduction, the overall plan, testing
requirements, test procedures, and test plan details.

© 2009 by Taylor & Francis Group, LLC

xxiv ◾ Introduction

The Do step addresses how to design or execute the tests included in the test
plan. A cookbook approach describes how to perform component, integration, and
system acceptance testing in a spiral environment.

The Check step emphasizes the importance of metrics and test reporting. A
test team must formally record the results of tests and relate them to the test plan
and system objectives. A sample test report format is provided, along with several
graphic techniques.

The Act step of the continuous improvement process provides guidelines for
updating test cases and test scripts. In preparation for the next spiral, suggestions
for improving the people, process, and technology dimensions are provided.

Section 2, “Waterfall Testing Review,” reviews the waterfall development meth-
odology and describes how continuous quality improvement can be applied to the
phased approach through technical reviews and software testing. The require-
ments, logical design, physical design, program unit design, and coding phases are
reviewed. The roles of technical reviews and software testing are applied to each.
Finally, the psychology of software testing is discussed.

Section 3, “Spiral Software Testing Methodology,” contrasts the waterfall devel-
opment methodology with the rapid application spiral environment from a techni-
cal and psychological point of view. A spiral testing approach is suggested when the
requirements are rapidly changing. A spiral methodology is provided, and broken
down into parts, steps, and tasks, applying Deming’s continuous quality improve-
ment process in the context of the PDCA quality wheel.

Section 4, “Project Management Methodology,” describes the practices and
methods of software testing by describing basic test management processes and
organizational approaches that achieve project quality. A Project Framework is out-
lined to unite quality processes with project phases, and synchronize project quality
management with the system, or software—the development approach.

Section 5, “Emerging Specialized Areas in Testing,” describes how modern
software testing must view the whole target business holistically, assuring that the
pieces of that business process interact according to customers’ expectations. The
focus of this section is to discuss other forms of nonfunctional testing such as per-
formance, usability, interoperability, etc. Also discussed are how to evaluate soft-
ware testing processes, how to set up an automation framework, steps to implement
Service Orientated Architecture (SOA) testing, the building blocks of a Testing
Center of Excellence (COE), how to test in an Agile development environment, and
how to evaluate on-site versus offshore alternatives.

Section 6, “Modern Software Testing Tools,” describes futuristic software test-
ing tools and trends. Next, a list of up-to-date commercial and open-source free
software tools is provided, followed by guidelines on when to consider and when
not to consider a testing tool. Also provided is a checklist for selecting testing tools,
consisting of a series of questions and responses. A detailed methodology for evalu-
ating testing tools is provided, ranging from the initial test goals through training
and implementation.

© 2009 by Taylor & Francis Group, LLC

xxv

about the author

William E. Lewis holds a B.A. in mathematics and an M.S. in oper-
ations research and has 38 years of experience in the computer indus-
try. Currently, he is the founder, president, and CEO of Smartware
Technologies, Inc., a quality assurance consulting firm that special-
izes in software testing. He is the inventor of SmartTestTM, a patent-
pending software testing tool that creates optimized test cases/data
based upon the requirements (see www.smartwaretechnologies.com
for more information about the author).

He is a certified quality analyst (CQA) and certified software test
engineer (CSTE) sponsored by the Quality Assurance Institute (QAI) of Orlando,
Florida. Over the years, he has presented several papers to conferences. In 2004 he
presented a paper to QAI’s Annual International Information Technology Quality
Conference, entitled “Cracking the Requirements/Test Barrier.” He also speaks at
meetings of the American Society for Quality and the Association of Information
Technology Practitioners.

Mr. Lewis was a quality assurance manager for CitiGroup where he managed
the testing group; documented all the software testing, quality assurance processes
and procedures; actively participated in the CitiGroup CMM effort; and designed
numerous WinRunner automation scripts.

Mr. Lewis was a senior technology engineer for Technology Builders, Inc., of
Atlanta, where he trained and consulted in the requirements-based testing area,
focusing on leading-edge testing methods and tools.

He was an assistant director with Ernst & Young, LLP, located in Las Colinas,
Texas. He joined E & Y in 1994, authoring the company’s software configuration
management, software testing, and application evolutionary handbooks, and help-
ing to develop the navigator/fusion methodology application improvement route
maps. He was the quality assurance manager for several application development
projects and has extensive experience in test planning, test design, execution, evalu-
ation, reporting, and automated testing. He was also the director of the ISO initia-
tive, which resulted in ISO9000 international certification for Ernst & Young.

© 2009 by Taylor & Francis Group, LLC

http://www.smartwaretechnologies.com

xxvi ◾ About the Author

Lewis also worked for the Saudi Arabian Oil Company (Aramco) in Jeddah,
Saudi Arabia, on an overseas contract assignment as a quality assurance consultant.
His duties included full integration and system testing, and he served on the auto-
mated tool selection committee and made recommendations to management. He
also created software testing standards and procedures.

In 1998 Lewis retired from IBM after 28 years. His jobs included 12 years as a
curriculum/course developer and instructor, and numerous years as a system pro-
grammer/analyst and performance analyst. An overseas assignment included service
in Seoul, Korea, where he was the software engineering curriculum manager for the
Korean Advanced Institute of Science and Technology (KAIST), which is consid-
ered the MIT of higher education in Korea. Another assignment was in Toronto at
IBM Canada’s headquarters, where he was responsible for upgrading the corporate
education program. In addition, he has traveled throughout the United States and
to Rome, Amsterdam, Southampton, Hong Kong, and Sydney, teaching software
development and quality assurance classes with a specialty in software testing.

After serving in the air force, he worked for Radiation, Inc., a space company in
Melbourne, Florida, on a Nimbus B&D satellite contract as a real-time programmer.

Lewis’s first job was as a real-time programmer for General Electric and the
Kennedy Space Center in Florida. He wrote down-link real-time programs to mon-
itor and feedback Apollo Space Craft telemetry to the up-link computers. His first
professional program was to sample the Apollo hydrogen tanks’ PSIs to trigger the
hydrogen tanks to be emptied during a launch abort.

He has also taught at the university level for 5 years as an adjunct professor,
publishing during that time a five-book series on computer problem solving.

For further information about the training and consulting services provided by
Smartware Technologies, Inc., contact: Blewis@smartwaretechnologies.com.

technical Contributors
Gunasekaran (Guna) Veerapillai is a Certified Software Quality Analyst (CSQA)
and Project Management Professional (PMP) from PMI USA. After 15 years of
retail banking experience in Canara Bank, India, he moved to IT in 1995, and
has managed the EDP Section at Bangalore. He has been working in various roles
in the testing arena and has turned out several testing projects in the banking
domain for various clients around the globe. He specializes in niche areas such
as test process assessment and automation assessment. He has worked for compa-
nies such as Thinksoft, HCL Technologies, and Covansys. He also completed the
Certified Ethical Hacker certification from EC. He headed the testing division at
the Bangalore unit of Covansys before moving to his current assignment.

Guna heads the Test Automation Practice at Wipro Technologies (www.wipro.
com). This practice carries out niche automation activities including the creation
of required automation frameworks, automation assessment, and tools evaluation,

© 2009 by Taylor & Francis Group, LLC

http://www.wipro.com
http://www.wipro.com
mailto:Blewis@smartwaretechnologies.com

About the Author ◾ xxvii

apart from executing end-to-end test automation projects. He has contributed
papers and presentations to international software testing conferences conducted
by QAI, Swiss Testing Conference, ISQT, QSIT, Stickyminds.com. etc.

He dedicates his contribution in this book to his life partner, Manimala, who
always supported and motivated him to reach the position where he is now. Guna
can be reached at Gunasekaran.veerapillai@wipro.com.

David D. Dobbs, a project management professional (PMP) and a ISTQB Certified
Tester–Foundation Level (CTFL), draws on over 25 years of project management
experience and quality management in the construction, software development,
telecommunication, and information technology industries.

David managed construction projects as partner/president of Exterior Designs
Landscape for fourteen years. During that time, his completed projects appeared
in the Dallas Morning News and were featured by Dallas–Ft. Worth Home and
Gardens.

David began his career in technology in 1993 as a software test engineer
for Aldus software products before moving to the telecommunication industry.
During his telecommunication career, he progressed from a senior test engineer
for SONET access and transmission craft tools to the senior manager of network
validation infrastructure for Fujitsu Network Communications.

In 2002, David began teaching applied project management in academic and
corporate settings. In the same year, he started developing the Agile Project Office
approach to project management that integrates quality management methodolo-
gies with Project Office architecture.

Since 2004, David has implemented project management methodologies for
two national retail companies. He currently manages the I.S. Project Office for a
major retailer in Irving, Texas.

© 2009 by Taylor & Francis Group, LLC

mailto:Gunasekaran.veerapillai@wipro.com

1Software
Quality in
PerSPeCtive

The general view of software testing is that it is an activity to “find bugs.” The
author believes the objectives of software testing are to qualify a software program’s
quality by measuring its attributes and capabilities against expectations and appli-
cable standards. Software testing also provides valuable information to the software
development effort.

Software quality is something everyone wants. Managers know that they want
high quality, software developers know they want to produce a quality product,
and users insist that software work consistently and be reliable.

Many software quality groups develop software quality assurance plans, which
are similar to test plans. However, a software quality assurance plan may include
a variety of activities beyond those included in a test plan. Although the quality
assurance plan encompasses the entire quality gamut, the test plan is one of the
quality control tools of the quality assurance plan.

The objectives of this section are to:

Define quality and its cost. N
Differentiate quality prevention from quality detection. N
Differentiate verification from validation. N
Outline the components of quality assurance. N
Outline common testing techniques. N
Describe how the continuous improvement process can be instrumental in N
achieving quality.
Describe a brief history of software testing. N

© 2009 by Taylor & Francis Group, LLC

3

1Chapter

a Brief history of
Software testing

Modern testing tools are becoming more and more advanced and user-friendly. The
following describes how software testing activity has evolved, and is evolving, over
time. This sets the perspective on where automated testing tools are going.

Software testing is the activity of running a series of dynamic executions of
software programs after the software source code has been developed. It is per-
formed to uncover and correct as many potential errors as possible before delivery
to the customer. As pointed out earlier, software testing is still an “art.” It can
be considered a risk management technique; the quality assurance technique, for
example, represents the last defense to correct deviations from errors in the specifi-
cation, design, or code.

Throughout the history of software development, there have been many defi-
nitions and advances in software testing. Figure 1.1 graphically illustrates these
evolutions. In the 1950s, software testing was defined as “what programmers did to
find bugs in their programs.” In the early 1960s the definition of testing underwent
a revision. Consideration was given to exhaustive testing of the software in terms
of the possible paths through the code, or total enumeration of the possible input
data variations. It was noted that it was impossible to completely test an applica-
tion because (1) the domain of program inputs is too large, (2) there are too many
possible input paths, and (3) design and specification issues are difficult to test.
Because of the foregoing points, exhaustive testing was discounted and found to be
theoretically impossible.

As software development matured through the 1960s and 1970s, the activity of
software development was referred to as “computer science.” Software testing was

© 2009 by Taylor & Francis Group, LLC

4 ◾ Software Testing and Continuous Quality Improvement

defined as “what is done to demonstrate correctness of a program” or as “the process
of establishing confidence that a program or system does what it is supposed to do”
in the early 1970s. A short-lived computer science technique that was proposed dur-
ing the specification, design, and implementation of a software system was software
verification through “correctness proof.” Although this concept was theoretically
promising, in practice it was too time consuming and insufficient. For simple tests,
it was easy to show that the software “works” and prove that it will theoretically
work. However, because most of the software was not tested using this approach, a
large number of defects remained to be discovered during actual implementation.
It was soon concluded that “proof of correctness” was an inefficient method of soft-
ware testing. However, even today there is still a need for correctness demonstra-
tions, such as acceptance testing, as described in various sections of this book.

In the late 1970s it was stated that testing is a process of executing a program
with the intent of finding an error, not proving that it works. The new definition
emphasized that a good test case is one that has a high probability of finding an as-
yet-undiscovered error. A successful test is one that uncovers an as-yet-undiscovered
error. This approach was the exact opposite of that followed up to this point.

The foregoing two definitions of testing (prove that it works versus prove that it
does not work) present a “testing paradox” with two underlying and contradictory
objectives:

 1. To give confidence that the product is working well
 2. To uncover errors in the software product before its delivery to the customer

(or the next state of development)

If the first objective is to prove that a program works, it was determined that “we
shall subconsciously be steered toward this goal; that is, we shall tend to select test
data that have a low probability of causing the program to fail.”

1950 1960 1970 1980 1990 2000
Time

Test
Automation

Tools

Advanced
Test

Automation

Automated
Business

Optimization

Internet
(Agile)

Early
Test

Design

Defect
Prevention

& Test
Process

Prove It
Does Not

Work

Prove
It Works

Exhaustive
Testing

Fix Bugs

figure 1.1 history of software testing.

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ◾ 5

If the second objective is to uncover errors in the software product, how can
there be confidence that the product is working well, inasmuch as it was just proved
that it is, in fact, not working! Today it has been widely accepted by good testers
that the second objective is more productive than the first objective, for if one
accepts the first one, the tester will subconsciously ignore defects trying to prove
that a program works.

The following good testing principles were proposed:

A necessary part of a test case is a definition of the expected output or result. N
Programmers should avoid attempting to test their own programs. N
A programming organization should not test its own programs. N
Thoroughly inspect the results of each test. N
Test cases must be written for invalid and unexpected, as well as valid and N
expected, input conditions.
Examining a program to see if it does not do what it is supposed to do is only N
half the battle. The other half is seeing whether the program does what it is
not supposed to do.
Avoid throwaway test cases unless the program is truly a throwaway program. N
Do not plan a testing effort under the tacit assumption that no errors will N
be found.
The probability of the existence of more errors in a section of a program is N
proportional to the number of errors already found in that section.

The 1980s saw the definition of testing extended to include defect prevention.
Designing tests is one of the most effective bug prevention techniques known. It
was suggested that a testing methodology was required, specifically, that testing
must include reviews throughout the entire software development life cycle and that
it should be a managed process. Promoted was the importance of testing not just a
program but the requirements, design, code, tests themselves, and the program.

“Testing” traditionally (up until the early 1980s) referred to what was done to
a system once working code was delivered (now often referred to as system testing);
however, testing today is “greater testing,” in which a tester should be involved in
almost every aspect of the software development life cycle. Once code is delivered
to testing, it can be tested and checked, but if anything is wrong, the previous
development phases have to be investigated. If the error was caused by a design
ambiguity, or a programmer oversight, it is simpler to try to find the problems as
soon as they occur, not wait until an actual working product is produced. Studies
have shown that about 50 percent of bugs are created at the requirements (what do
we want the software to do?) or design stages, and these can have a compounding
effect and create more bugs during coding. The earlier a bug or issue is found in the
life cycle, the cheaper it is to fix (by exponential amounts). Rather than test a pro-
gram and look for bugs in it, requirements or designs can be rigorously reviewed.

© 2009 by Taylor & Francis Group, LLC

6 ◾ Software Testing and Continuous Quality Improvement

Unfortunately, even today, many software development organizations believe that
software testing is a back-end activity.

In the mid-1980s, automated testing tools emerged to automate the manual
testing effort to improve the efficiency and quality of the target application. It
was anticipated that the computer could perform more tests of a program than a
human could perform manually, and more reliably. These tools were initially fairly
primitive and did not have advanced scripting language facilities (see the section,
“Evolution of Automated Testing Tools,” later in this chapter for more details).

In the early 1990s the power of early test design was recognized. Testing was
redefined to be “planning, design, building, maintaining, and executing tests and
test environments.” This was a quality assurance perspective of testing that assumed
that good testing is a managed process, a total life-cycle concern with testability.

Also, in the early 1990s, more advanced capture/replay testing tools offered rich
scripting languages and reporting facilities. Test management tools helped manage
all the artifacts from requirements and test design, to test scripts and test defects.
Also, commercially available performance tools arrived to test system performance.
These tools tested stress and load-tested the target system to determine their break-
ing points. This was facilitated by capacity planning.

Although the concept of a test as a process throughout the entire software
development life cycle has persisted, in the mid-1990s, with the popularity of the
Internet, software was often developed without a specific testing standard model,
making it much more difficult to test. Just as documents could be reviewed without
specifically defining each expected result of each step of the review, so could tests be
performed without explicitly defining everything that had to be tested in advance.
Testing approaches to this problem are known as “agile testing.” The testing tech-
niques include exploratory testing, rapid testing, and risk-based testing.

In the early 2000s Mercury Interactive (now owned by Hewlett-Packard [HP])
introduced an even broader definition of testing when they introduced the con-
cept of business technology optimization (BTO). BTO aligns the IT strategy and
execution with business goals. It helps govern the priorities, people, and processes
of IT. The basic approach is to measure and maximize value across the IT service
delivery life cycle to ensure applications meet quality, performance, and availability
goals. Interactive digital cockpit revealed vital business availability information in
real-time to help IT and business executives prioritize IT operations and maximize
business results. It provided end-to-end visibility into business availability by pre-
senting key business process indicators in real-time, as well as their mapping to the
underlying IT infrastructure.

historical Software testing and development Parallels
In some ways, software testing and automated testing tools are following similar
paths as traditional development. The following is a brief evolution of software

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ◾ 7

development and shows how deviations from prior best practices are also being
observed in the software testing process.

The first computers were developed in the 1950s, and FORTRAN was the first
1GL programming language. In the late 1960s, the concept of “structured pro-
gramming” stated that any program can be written using three simple constructs:
simple sequence, if-then-else, and do while statements. There were other prerequi-
sites such as the program being a “proper program” whereby there must exist only
one entry and one exit point. The focus was on the process of creating programs.

In the 1970s the development community focused on design techniques. They
realized that structured programming was not enough to ensure quality—a program
must be designed before it can be coded. Techniques such as Yourdon’s, Myers’, and
Constantine’s structured design and composite design techniques flourished and
were accepted as best practice. The focus still had a process orientation.

The philosophy of structured design was partitioning and organizing the pieces
of a system. By partitioning is meant the division of the problem into smaller sub-
problems, so that each subproblem will eventually correspond to a piece of the
system. Highly interrelated parts of the problem should be in the same piece of the
system; that is, things that belong together should go together. Unrelated parts of
the problem should reside in unrelated pieces of the system; for example, things
that have nothing to do with one another do not belong together.

In the 1980s, it was determined that structured programming and software
design techniques were still not enough: the requirements for the programs must
first be established for the right system to be delivered to the customer. The focus
was on quality that occurs when the customer receives exactly what he or she
wanted in the first place.

Many requirement techniques emerged, such as data flow diagrams (DFDs). An
important part of a DFD is a store, a representation of where the application data will
be stored. The concept of a store motivated practitioners to develop a logical-view rep-
resentation of the data. Previously the focus was on the physical view of data in terms
of the database. The concept of a data model was then created: a simplified descrip-
tion of a real-world system in terms of data, for example, a logical view of data. The
components of this approach included entities, relationships, cardinality, referential
integrity, and normalization. These also created a controversy as to which came first:
the process or data, a chicken-and-egg argument. Prior to the logical representation
of data, the focus was on the processes that interfaced to databases. Proponents of
the logical view of data initially insisted that the data was the first analysis focus
point and then the process. With time, it was agreed that both the process and data
must be considered jointly in defining the requirements of a system.

In the mid-1980s, the concept of information engineering was introduced. It was a
new discipline that led the world into the information age. With this approach, there
is more interest in understanding how information can be stored and represented,
how information can be transmitted through networks in multimedia forms, and
how information can be processed for various services and applications. Analytical

© 2009 by Taylor & Francis Group, LLC

8 ◾ Software Testing and Continuous Quality Improvement

problem-solving techniques, with the help of mathematics and other related theories,
were applied to the engineering design problems. Information engineering stressed
the importance of taking an enterprise view of application development rather than
a specific application. By modeling the entire enterprise in terms of processes, data,
risks, critical success factors, and other dimensions, it was proposed that manage-
ment would be able to manage the enterprise in a more efficient manner.

During this same time frame, fourth-generation computers embraced micro-
processor chip technology and advanced secondary storage at fantastic rates, with
storage devices holding tremendous amounts of data. Software development tech-
niques had vastly improved, and 4GLs made the development process much easier
and faster. Unfortunately, the emphasis on quick turnaround of applications led to
a backward trend of fundamental development techniques to “get the code out” as
quickly as possible. This led to reducing the emphasis on requirement and design
and still persists today in many software development organizations.

extreme Programming
Extreme programming (XP) is an example of such a trend. XP is an unorthodox
approach to software development, and it has been argued that it has no design
aspects. The extreme programming methodology proposes a radical departure
from commonly accepted software development processes. There are really two XP
rules: (1) Do a Little Design and (2) No Requirements, Just User Stories. Extreme
programming disciples insist that “there really are no rules, just suggestions. XP
methodology calls for small units of design, from ten minutes to half an hour,
done periodically from one day between sessions to a full week between sessions.
Effectively, nothing gets designed until it is time to program it.”

Although most people in the software development business understandably
consider requirements documentation to be vital, XP recommends the creation of
as little documentation as possible. No up-front requirement documentation is cre-
ated in XP, and very little is created in the software development process.

With XP, the developer comes up with test scenarios before she does anything else.
The basic premise behind test-first design is that the test class is written before the real
class; thus, the end purpose of the real class is not simply to fulfill a requirement, but
simply to pass all the tests that are in the test class. The problem with this approach is
that independent testing is needed to find out things about the product the developer
did not think about or was not able to discover during her own testing.

evolution of automated testing tools
Test automation started in the mid-1980s with the emergence of automated capture/
replay tools. A capture/replay tool enables testers to record interaction scenarios.

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ◾ 9

Such tools record every keystroke, mouse movement, and response that was sent
to the screen during the scenario. Later, the tester may replay the recorded scenar-
ios. The capture/replay tool automatically notes any discrepancies in the expected
results. Such tools improved testing efficiency and productivity by reducing manual
testing efforts.

The cost justification for test automation is simple and can be expressed in a
single figure (Figure 1.2). As this figure suggests, over time the number of func-
tional features for a particular application increases owing to changes and improve-
ments to the business operations that use the software. Unfortunately, the number
of people and the amount of time invested in testing each new release either remain
flat or may even decline. As a result, the test functional coverage steadily decreases,
which increases the risk of failure, translating to potential business losses.

For example, if the development organization adds application enhancements
equal to 10 percent of the existing code, this means that the test effort is now 110
percent as great as it was before. Because no organization budgets more time and
resources for testing than they do for development, it is literally impossible for
testers to keep up.

This is why applications that have been in production for years often experience
failures. When test resources and time cannot keep pace, decisions must be made to
omit the testing of some functional features. Typically, the newest features are tar-
geted because the oldest ones are assumed to still work. However, because changes
in one area often have an unintended impact on other areas, this assumption may
not be true. Ironically, the greatest risk is in the existing features, not the new ones,
for the simple reason that they are already being used.

Test automation is the only way to resolve this dilemma. By continually adding
new tests for new features to a library of automated tests for existing features, the
test library can track the application functionality.

The cost of failure is also on the rise. Whereas in past decades software was
primarily found in back-office applications, today software is a competitive
weapon that differentiates many companies from their competitors and forms the

Features Gap

Tests

Time

figure 1.2 Motivation for test automation. (from “why automate,” linda hayes,
worksoft, inc. white paper, 2002, www.worksoft.com. with permission.)

© 2009 by Taylor & Francis Group, LLC

http://www.worksoft.com

10 ◾ Software Testing and Continuous Quality Improvement

backbone of critical operations. Examples abound of errors in the tens or hun-
dreds of millions—even billions—of dollars in losses due to undetected software
errors. Exacerbating the increasing risk is the decreasing cycle times. Product cycles
have compressed from years into months, weeks, or even days. In these tight time
frames, it is virtually impossible to achieve acceptable functional test coverage with
manual testing.

Capture/replay automated tools have undergone a series of staged improve-
ments. The evolutionary improvements are described in the following sections.

Static Capture/Replay Tools (without Scripting Language)
With these early tools, tests were performed manually and the inputs and outputs
were captured in the background. During subsequent automated playback, the
script repeated the same sequence of actions to apply the inputs and compare the
actual responses to the captured results. Differences were reported as errors. The
GUI menus, radio buttons, list boxes, and text were stored in the script. With this
approach the flexibility of changes to the GUI was limited. The scripts resulting
from this method contained hard-coded values that had to change if anything at all
changed in the application. The costs associated with maintaining such scripts were
astronomical, and unacceptable. These scripts were not reliable even if the applica-
tion had not changed, and often failed on replay (pop-up windows, messages, and
other “surprises” that did not happen when the test was recorded could occur). If
the tester made an error entering data, the test had to be rerecorded. If the applica-
tion changed, the test had to be rerecorded.

Static Capture/Replay Tools (with Scripting Language)
The next generation of automated testing tools introduced scripting languages.
Now the test script was a program. Scripting languages were needed to handle
conditions, exceptions, and the increased complexity of software. Automated script
development, to be effective, had to be subject to the same rules and standards that
were applied to software development. Making effective use of any automated test
tool required at least one trained, technical person—in other words, a programmer.

Variable Capture/Replay Tools
The next generation of automated testing tools introduced added variable test data
to be used in conjunction with the capture/replay features. The difference between
static capture/replay and variable is that in the former case the inputs and outputs
are fixed, whereas in the latter the inputs and outputs are variable. This is accom-
plished by performing the testing manually, and then replacing the captured inputs
and expected outputs with variables whose corresponding values are stored in data
files external to the script. Variable capture/replay is available from most testing

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ◾ 11

tools that use a script language with variable data capability. Variable capture/replay
and extended methodologies reduce the risk of not performing regression testing on
existing features, improving the productivity of the testing process.

However, the problem with variable capture/replay tools is that they still require
a scripting language that needs to be programmed. However, just as development
programming techniques improved, new scripting techniques emerged.

The following are four popular techniques:

Data-driven: The data-driven approach uses input and output values that are N
read from data files (such CVS files, Excel files, text files, etc.) to drive the tests.

 This approach to testing with variable data re-emphasizes the criticality of
addressing both process and data as discussed in the “Historical Software Testing
and Development Parallels” section. It is necessary to focus on the test scripts
AND test automation data, i.e., development data modeling. Unfortunately,
the creation of test automated data is often a challenge. The creation of test data
from the requirements (if they exist) is a manual and “intuitive” process. In the
future, futuristic tools such as Smartwave Technologies’ “Smart Test,” a test data
generator tool, solves the problem by scientifically generating intelligent test data
that can be imported into automated testing tools as variable data (see Chapter
34, “Software Testing Trends,” for more details).
Modular: The modular approach requires the creation of small, independent N
automation scripts and functions that represent modules, sections, and func-
tions of the application under test.
Keyword: The keyword-driven approach is one in which the different screens, N
functions, and business components are specified as keywords in a data table.
The test data and the actions to be performed are scripted with the test auto-
mation tool.
Hybrid: The hybrid is a combination of all of the foregoing techniques, inte- N
grating from their strengths and trying to mitigate their weaknesses. It is
defined by the core data engine, the generic component functions, and the
function libraries. Whereas the function libraries provide generic routines
useful even outside the context of a keyword-driven framework, the core
engine and component functions are highly dependent on the existence of
all three elements.

(See the section, “Test Automation Framework,” in Chapter 28 for more details of
each technique.)

© 2009 by Taylor & Francis Group, LLC

13

2Chapter

Quality assurance
framework

what is Quality?
In Webster’s dictionary, quality is defined as “the essential character of something,
an inherent or distinguishing character, degree, or grade of excellence.” If you look
at the computer literature, you will see that there are two generally accepted mean-
ings of quality. The first is that quality means “meeting requirements.” With this
definition, to have a quality product, the requirements must be measurable, and the
product’s requirements will either be met or not met. With this meaning, quality is
a binary state; that is, a product is either a quality product or it is not. The require-
ments may be complete or they may be simple, but as long as they are measurable, it
can be determined whether quality requirements have or have not been met. This is
the producer’s view of quality as meeting the producer’s requirements or specifica-
tions. Meeting the specifications becomes an end in itself.

Another definition of quality, the customer’s, is the one we use. With this defi-
nition, the customer defines quality as to whether the product or service does what
the customer needs. Another way of wording it is “fit for use.” There should also be
a description of the purpose of the product, typically documented in a customer’s
“requirements specification” (see Appendix C, “Requirements Specification,” for
more details). The requirements are the most important document, and the qual-
ity system revolves around it. In addition, quality attributes are described in the
customer’s requirements specification. Examples include usability, the relative ease
with which a user communicates with the application; portability, the capability

© 2009 by Taylor & Francis Group, LLC

14 ◾ Software Testing and Continuous Quality Improvement

of the system to be executed across a diverse range of hardware architectures; and
reusability, the ability to transfer software components constructed in one software
system into another.

Everyone is committed to quality; however, the following show some of the confus-
ing ideas shared by many individuals that inhibit achieving a quality commitment:

Quality requires a commitment, particularly from top management. Close N
cooperation between management and staff is required to make it happen.
Many individuals believe that defect-free products and services are impos- N
sible, and accept certain levels of defects as normal and acceptable.
Quality is frequently associated with cost, meaning that high quality equals high N
cost. This is a confusion between quality of design and quality of conformance.
Quality demands requirement specifications in sufficient detail that the N
products can be quantitatively measured against those specifications. Many
organizations are not capable or willing to expend the effort to produce speci-
fications at the level of detail required.
Technical personnel often believe that standards stifle their creativity, and N
thus do not abide by standards compliance. However, to ensure quality, well-
defined standards and procedures must be followed.

Prevention versus detection
Quality cannot be achieved by assessing an already completed product. The aim,
therefore, is to prevent quality defects or deficiencies in the first place, and to make
the products assessable by quality assurance measures. Some quality assurance
measures include structuring the development process with a software development
standard and supporting the development process with methods, techniques, and
tools. The undetected bugs in the software that caused millions of losses to busi-
ness have necessitated the growth of independent testing, which is performed by a
company other than the developers of the system.

In addition to product assessments, process assessments are essential to a qual-
ity management program. Examples include documentation of coding standards,
prescription and use of standards, methods, and tools, procedures for data backup,
test methodology, change management, defect documentation, and reconciliation.

Quality management decreases production costs because the sooner a defect
is located and corrected, the less costly it will be in the long run. With the advent
of automated testing tools, although the initial investment can be substantial, the
long-term result will be higher-quality products and reduced maintenance costs.

The total cost of effective quality management is the sum of four component
costs: prevention, inspection, internal failure, and external failure. Prevention
costs consist of actions taken to prevent defects from occurring in the first place.
Inspection costs consist of measuring, evaluating, and auditing products or services

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 15

for conformance to standards and specifications. Internal failure costs are those
incurred in fixing defective products before they are delivered. External failure
costs consist of the costs of defects discovered after the product has been released.
The latter can be devastating because they may damage the organization’s reputa-
tion or result in the loss of future sales.

The greatest payback is with prevention. Increasing the emphasis on prevention
costs reduces the number of defects that go to the customer undetected, improves
product quality, and reduces the cost of production and maintenance.

verification versus validation
Verification is proving that a product meets the requirements specified during
previous activities carried out correctly throughout the development life cycle.
Validation confirms that the system meets the customer’s requirements at the end
of the life cycle. It is a proof that the product meets the expectations of the users,
and it ensures that the executable system performs as specified. The creation of
the test product is much more closely related to validation than to verification.
Traditionally, software testing has been considered a validation process, that is, a
life-cycle phase. After programming is completed, the system is validated or tested
to determine its functional and operational performance.

When verification is incorporated into testing, testing occurs throughout the
development life cycle. For best results, it is good practice to combine verification with
validation in the testing process. Verification includes systematic procedures of review,
analysis, and testing, employed throughout the software development life cycle, begin-
ning with the software requirements phase and continuing through the coding phase.
Verification ensures the quality of software production and maintenance. In addi-
tion, verification imposes such an organized, systematic development practice that the
resulting program can be easily understood and evaluated by an independent party.

Verification emerged about 20 years ago as a result of the aerospace industry’s
need for extremely reliable software in systems in which an error in a program
could cause mission failure and result in enormous time and financial setbacks, or
even life-threatening situations. The concept of verification includes two funda-
mental criteria: the software must adequately and correctly perform all intended
functions, and the software must not perform any function that either by itself or
in combination with other functions can degrade the performance of the entire
system. The overall goal of verification is to ensure that each software product
developed throughout the software life cycle meets the customer’s needs and objec-
tives as specified in the software requirements document.

Verification also establishes tractability between the various sections of the soft-
ware documentation and the associated parts of the requirements specification. A
comprehensive verification effort ensures that all software performance and quality
requirements in the specification are adequately tested and that the test results can

© 2009 by Taylor & Francis Group, LLC

16 ◾ Software Testing and Continuous Quality Improvement

be repeated after changes are installed. Verification is a “continuous improvement
process” and has no definite termination. It should be used throughout the system
life cycle to maintain configuration and operational integrity.

Verification ensures that the software functions as intended and has the required
attributes (e.g., portability), and increases the chances that the software will contain
few errors (i.e., an acceptable number in the final product). It provides a method
for closely monitoring the software development project and provides management
with a detailed status of the project at any point in time. When verification pro-
cedures are used, management can be assured that the developers have followed a
formal, sequential, traceable software development process, with a minimum set of
activities to enhance the quality of the system.

One criticism of verification is that it increases software development costs con-
siderably. When the cost of software throughout the total life cycle from inception
to the final abandonment of the system is considered, however, verification actually
reduces the overall cost of the software. With an effective verification program,
there is typically a four-to-one reduction in defects in the installed system. Because
error corrections can cost 20 to 100 times more during operations and maintenance
than during design, overall savings far outweigh the initial extra expense.

Software Quality assurance
A formal definition of software quality assurance is that it is the systematic activi-
ties providing evidence of the fitness for use of the total software product. Software
quality assurance is achieved through the use of established guidelines for quality
control to ensure the integrity and long life of software. The relationships between
quality assurance, quality control, the auditing function, and software testing are
often confused.

Quality assurance is the set of support activities needed to provide adequate
confidence that processes are established and continuously improved to ensure
products that meet specifications and are fit for use. Quality control is the process
by which product quality is compared with applicable standards and action taken
when nonconformance is detected. Auditing is the inspection/assessment activity
that verifies compliance with plans, policies, and procedures.

Software quality assurance is a planned effort to ensure that a software product
fulfills these criteria and has additional attributes specific to the project, for exam-
ple, portability, efficiency, reusability, and flexibility. It is the collection of activities
and functions used to monitor and control a software project so that specific objec-
tives are achieved with the desired level of confidence. It is not the sole responsibil-
ity of the software quality assurance group, but is determined by the consensus of
the project manager, project leader, project personnel, and users.

Quality assurance is the function responsible for managing quality. The word
assurance means that if the processes are followed, management can be assured of

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 17

product quality. Quality assurance is a catalytic function that should encourage
quality attitudes and discipline on the part of management and workers. Successful
quality assurance managers know how to make people quality conscious and to make
them recognize the benefits of quality to themselves and to the organization.

The objectives of software quality are typically achieved by following a software
quality assurance plan that states the methods the project will employ to ensure that
the documents or products produced and reviewed at each milestone are of high
quality. Such an explicit approach ensures that all steps have been taken to achieve
software quality and provides management with documentation of those actions. The
plan states the criteria by which quality activities can be monitored rather than setting
impossible goals, such as no software defects or 100 percent reliable software.

Software quality assurance is a strategy for risk management. It exists because soft-
ware quality is typically costly and should be incorporated into the formal risk man-
agement of a project. Some examples of poor software quality include the following:

Delivered software frequently fails. N
Consequences of system failure are unacceptable, from financial to life- N
threatening scenarios.
Systems are often not available for their intended purpose. N
System enhancements are often very costly. N
Costs of detecting and removing defects are excessive. N

Although most quality risks are related to defects, this only tells part of the story. A
defect is a failure to comply with a requirement. If the requirements are inadequate
or even incorrect, the risks of defects are more pervasive. The result is too many
built-in defects and products that are not verifiable. Some risk management strate-
gies and techniques include software testing, technical reviews, peer reviews, and
compliance verification.

Components of Quality assurance
Most software quality assurance activities can be categorized into software test-
ing (that is, verification and validation), software configuration management, and
quality control. However, the success of a software quality assurance program also
depends on a coherent collection of standards, practices, conventions, and specifi-
cations, as shown in Figure 2.1.

Software Testing
Software testing is a popular risk management strategy. It is used to verify that
functional requirements were met. The limitation of this approach, however, is that
by the time testing occurs, it is too late to build quality into the product. Tests

© 2009 by Taylor & Francis Group, LLC

18 ◾ Software Testing and Continuous Quality Improvement

are only as good as the test cases, but they can be inspected to ensure that all the
requirements are tested across all possible combinations of inputs and system states.
However, not all defects are discovered during testing. Software testing includes
the activities outlined in this text, including verification and validation activities.
In many organizations, these activities, or their supervision, are included within the
charter for the software quality assurance function. The extent to which personnel
independent of design and coding should participate in software quality assurance
activities is a matter of institutional, organizational, and project policy.

The major purpose of verification and validation activities is to ensure that soft-
ware design, code, and documentation meet all the requirements imposed on them.
Examples of requirements include user requirements; specifications derived from
and designed to meet user requirements; code review and inspection criteria; test
requirements at the modular, subsystem, and integrated software levels; and accep-
tance testing of the code after it has been fully integrated with hardware.

During software design and implementation, verification helps determine
whether the products of one phase of the software development life cycle fulfill the
requirements established during the previous phase. The verification effort takes less
time and is less complex when conducted throughout the development process.

Quality Control
Quality control is defined as the processes and methods used to monitor work and
observe whether requirements are met. It focuses on reviews and removal of defects
before shipment of products. Quality control should be the responsibility of the orga-
nizational unit producing the product. It is possible to have the same group that
builds the product perform the quality control function, or to establish a quality con-
trol group or department within the organizational unit that develops the product.

Software Quality Assurance

Software
Testing

Quality
Control

Standards Procedures

Software
Configuration
Management

Conventions Specifications

figure 2.1 Quality assurance components.

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 19

Quality control consists of well-defined checks on a product that are specified in
the product quality assurance plan. For software products, quality control typically
includes specification reviews, inspections of code and documents, and checks for
user deliverables. Usually, document and product inspections are conducted at each
life-cycle milestone to demonstrate that the items produced satisfy the criteria spec-
ified by the software quality assurance plan. These criteria are normally provided
in the requirements specifications, conceptual and detailed design documents, and
test plans. The documents given to users are the requirement specifications, design
documentation, results from the user acceptance test, the software code, user guide,
and the operations and maintenance guide. Additional documents are specified in
the software quality assurance plan.

Quality control can be provided by various sources. For small projects, the project
personnel’s peer group or the department’s software quality coordinator can inspect
the documents. On large projects, a configuration control board may be responsible
for quality control. The board may include the users or a user representative, a mem-
ber of the software quality assurance department, and the project leader.

Inspections are traditional functions of quality control, that is, independent
examinations to assess compliance with some stated criteria. Peers and subject matter
experts review specifications and engineering work products to identify defects and
suggest improvements. They are used to examine the software project for adherence
to the written project rules at a project’s milestones and at other times during the
project’s life cycle as deemed necessary by the project leader or the software quality
assurance personnel. An inspection may be a detailed checklist for assessing compli-
ance or a brief checklist to determine the existence of such deliverables as documen-
tation. A report stating the purpose of the inspection and the deficiencies found goes
to the project supervisor, project leader, and project personnel for action.

Responsibility for inspections is stated in the software quality assurance plan.
For small projects, the project leader or the department’s quality coordinator can
perform the inspections. For large projects, a member of the software quality assur-
ance group may lead an inspection performed by an audit team, which is similar
to the configuration control board mentioned previously. Following the inspection,
project personnel are assigned to correct the problems on a specific schedule.

Quality control is designed to detect and correct defects, whereas quality assur-
ance is oriented toward preventing them. Detection implies flaws in the processes
that are supposed to produce defect-free products and services. Quality assurance is
a managerial function that prevents problems by heading them off, and by advising
restraint and redirection.

Software Configuration Management
Software configuration management is concerned with labeling, tracking, and control-
ling changes in the software elements of a system. It controls the evolution of a software
system by managing versions of its software components and their relationships.

© 2009 by Taylor & Francis Group, LLC

20 ◾ Software Testing and Continuous Quality Improvement

The purpose of software configuration management is to identify all the inter-
related components of software and to control their evolution throughout the vari-
ous life-cycle phases. Software configuration management is a discipline that can
be applied to activities including software development, document control, prob-
lem tracking, change control, and maintenance. It can provide high cost savings in
software reusability because each software component and its relationship to other
software components have been defined.

Software configuration management consists of activities that ensure that
design and code are defined and cannot be changed without a review of the effect
of the change itself and its documentation. The purpose of configuration manage-
ment is to control code and its associated documentation so that final code and its
description are consistent and represent those items that were actually reviewed and
tested. Thus, spurious, last-minute software changes are eliminated.

For concurrent software development projects, software configuration manage-
ment can have considerable benefits. It can organize the software under develop-
ment and minimize the probability of inadvertent changes. Software configuration
management has a stabilizing effect on all software when there is a great deal of
change activity or a considerable risk of selecting the wrong software components.

Elements of Software Configuration Management

Software configuration management identifies a system configuration to systemati-
cally control changes, maintain integrity, and enforce tractability of the configu-
ration throughout its life cycle. Components to be controlled include planning,
analysis, and design documents, source code, executable code, utilities, job control
language (JCL), test plans, test scripts, test cases, and development reports. The
software configuration process typically consists of four elements: software compo-
nent identification, software version control, configuration building, and software
change control, as shown in Figure 2.2.

Component Identification

A basic software configuration management activity is the identification of the
software components that make up a deliverable at each point of its development.
Software configuration management provides guidelines to identify and name soft-
ware baselines, software components, and software configurations.

Software components go through a series of changes. To manage the develop-
ment process, one must establish methods and name standards for uniquely iden-
tifying each revision. A simple way to name component revisions is to use a series
of discrete digits. The first integer could refer to a software component’s external
release number. The second integer could represent the internal software develop-
ment release number. The transition from version number 2.9 to 3.1 would indi-
cate that a new external release, 3, has occurred. The software component version

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 21

number is automatically incremented when the component is checked into the soft-
ware library. Further levels of qualifiers could also be used as necessary, such as the
date of a new version.

A software configuration is a collection of software elements that comprise a
major business function. An example of a configuration is the set of program mod-
ules for an order system. Identifying a configuration is quite similar to identifying
individual software components. Configurations can have a sequence of versions.
Each configuration must be named in a way that distinguishes it from others. Each
configuration version must be differentiated from other versions. The identification
of a configuration must also include its approval status and a description of how the
configuration was built.

A simple technique for identifying a configuration is to store all its software
components in a single library or repository. The listing of all the components can
also be documented.

Version Control

As an application evolves over time, many different versions of its software compo-
nents are created, and there needs to be an organized process to manage changes
in the software components and their relationships. In addition, there is usually a
requirement to support parallel component development and maintenance.

Software is frequently changed as it evolves through a succession of temporary
states called versions. A software configuration management facility for control-
ling versions is a software configuration management repository or library. Version
control provides the tractability or history of each software change, including who
did what, why, and when.

Within the software life cycle, software components evolve, and at a certain point
each reaches a relatively stable state. However, as defects are corrected and enhance-
ment features are implemented, the changes result in new versions of the components.
Maintaining control of these software component versions is called versioning.

A component is identified and labeled to differentiate it from all other software
versions of the component. When a software component is modified, both the old
and new versions should be separately identifiable. Therefore, each version, except

Software
Configuration
Management

Component
Identification

Version
Control

Configuration
Building

Change
Control

figure 2.2 Software configuration management.

© 2009 by Taylor & Francis Group, LLC

22 ◾ Software Testing and Continuous Quality Improvement

the initial one, has a predecessor. The succession of component versions is the com-
ponent’s history and tractability. Different versions also act as backups so that one
can return to previous versions of the software.

Configuration Building

To build a software configuration, one needs to identify the correct component
versions and execute the component build procedures. This is often called configu-
ration building.

A software configuration consists of a set of derived software components. An
example is executable object programs derived from source programs. Derived soft-
ware components are correctly associated with each source component to obtain an
accurate derivation. The configuration build model defines how to control the way
derived software components are put together.

The inputs and outputs required for a configuration build model include the pri-
mary inputs such as the source components, the version selection procedures, and
the system model, which describes how the software components are related. The
outputs are the target configuration and respectively derived software components.

Software configuration management environments use different approaches
to select versions. The simplest approach to version selection is to maintain a list
of component versions. Other approaches entail selecting the most recently tested
component versions, or those modified on a particular date.

Change Control

Change control is the process by which a modification to a software component is
proposed, evaluated, approved or rejected, scheduled, and tracked. Its basic foun-
dation is a change control process, a component status reporting process, and an
auditing process.

Software change control is a decision process used in controlling the changes
made to software. Some proposed changes are accepted and implemented during
this process. Others are rejected or postponed, and are not implemented. Change
control also provides for impact analysis to determine the dependencies.

Modification of a configuration has at least four elements: a change request,
an impact analysis of the change, a set of modifications and additions of new
components, and a method for reliably installing the modifications as a new base-
line (see Appendix D, “Change Request Form,” for more details).

A change often involves modifications to multiple software components.
Therefore, a storage system that provides for multiple versions of a single file is usu-
ally not sufficient. A technique is required to identify the set of modifications as a
single change. This is often called delta storage.

Every software component has a development life cycle. A life cycle consists of
states and allowable transitions between those states. When a software component

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 23

is changed, it should always be reviewed and further modifications should be dis-
allowed (i.e., it should be frozen) until a new version is created. The reviewing
authority must approve or reject the modified software component. A software
library holds all software components as soon as they are frozen and also acts as a
repository for approved components.

A derived component is linked to its source and has the same status as its source.
In addition, a configuration cannot have a more complete status than any of its
components, because it is meaningless to review a configuration when some of the
associated components are not frozen.

All components controlled by software configuration management are stored in
a software configuration library, including work products such as business data and
process models, architecture groups, design units, tested application software, reusable
software, and special test software. When a software component is to be modified, it is
checked out of the repository into a private workspace. It evolves through many states,
which are temporarily beyond the scope of configuration management control.

When a change is completed, the component is checked into the library and
becomes a new software component version. The previous component version is
also retained.

Software Quality assurance Plan
The software quality assurance (SQA) plan is an outline of quality measures to
ensure quality levels within a software development effort. The plan is used as
a baseline to compare the actual levels of quality during development with the
planned levels of quality. If the levels of quality are not within the planned quality
levels, management will respond appropriately as documented within the plan.

The plan provides the framework and guidelines for development of under-
standable and maintainable code. These ingredients help ensure the quality sought
in a software project. An SQA plan also provides the procedures for ensuring that
quality software will be produced or maintained in-house or under contract. These
procedures affect planning, designing, writing, testing, documenting, storing, and
maintaining computer software. It should be organized in this way because the
plan ensures the quality of the software rather than describing specific procedures
for developing and maintaining it.

Steps to Develop and Implement a
Software Quality Assurance Plan

Step 1: Document the Plan

The software quality assurance plan should include the following sections (see Appendix
B, “Software Quality Assurance Plan,” which contains a template for the plan):

© 2009 by Taylor & Francis Group, LLC

24 ◾ Software Testing and Continuous Quality Improvement

Purpose Section— N This section delineates the specific purpose and scope of the
particular SQA plan. It should list the names of the software items covered by
the SQA plan and the intended use of the software. It states the portion of the
software life cycle covered by the SQA plan for each software item specified.
Reference Document Section N —This section provides a complete list of docu-
ments referenced elsewhere in the text of the SQA plan.
Management Section N —This section describes the project’s organizational
structure, tasks, and responsibilities.
Documentation Section N —This section identifies the documentation governing
the development, verification and validation, use, and maintenance of the
software. It also states how the documents are to be checked for adequacy.
This includes the criteria and the identification of the review or audit by
which the adequacy of each document will be confirmed.
Standards, Practices, Conventions, and Metrics Section N —This section identi-
fies the standards, practices, conventions, and metrics to be applied, and also
states how compliance with these items is to be monitored and assured.
Reviews and Inspections Section N —This section defines the technical and mana-
gerial reviews, walkthroughs, and inspections to be conducted. It also states
how the reviews, walkthroughs, and inspections are to be accomplished,
including follow-up activities and approvals.
Software Configuration Management Section N —This section is addressed in
detail in the project’s software configuration management plan.
Problem Reporting and Corrective Action Section N —This section is addressed in
detail in the project’s software configuration management plan.
Tools, Techniques, and Methodologies Section N —This section identifies the spe-
cial software tools, techniques, and methodologies that support SQA, states
their purposes, and describes their use.
Code Control Section N —This section defines the methods and facilities used to
maintain, store, secure, and document the controlled versions of the identi-
fied software during all phases of development. This may be implemented in
conjunction with a computer program library or may be provided as a part of
the software configuration management plan.
Media Control Section N —This section describes the methods and facilities to
be used to identify the media for each computer product and the documenta-
tion required to store the media, including the copy and restore process, and
protects the computer program physical media from unauthorized access or
inadvertent damage or degradation during all phases of development. This
may be provided by the software configuration management plan.
Supplier Control Section N —This section states the provisions for ensuring that
software provided by suppliers meets established requirements. In addition,
it should specify the methods that will be used to ensure that the software
supplier receives adequate and complete requirements. For previously devel-
oped software, this section describes the methods to be used to ensure the

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 25

suitability of the product for use with the software items covered by the SQA
plan. For software to be developed, the supplier will be required to prepare
and implement an SQA plan in accordance with this standard. This section
will also state the methods to be employed to ensure that the developers com-
ply with the requirements of this standard.
Records Collection, Maintenance, and Retention Section N —This section identi-
fies the SQA documentation to be retained. It states the methods and facilities
to assemble, safeguard, and maintain this documentation, and will designate
the retention period. The implementation of the SQA plan involves the nec-
essary approvals for the plan as well as development of a plan for execution.
The subsequent evaluation of the SQA plan will be performed as a result of
its execution.
Testing Methodology N —This section defines the testing approach, techniques,
and automated tools that will be used.

Step 2: Obtain Management Acceptance

Management participation is necessary for the successful implementation of an
SQA plan. Management is responsible for both ensuring the quality of a software
project and for providing the resources needed for software development.

The level of management commitment required for implementing an SQA plan
depends on the scope of the project. If a project spans organizational boundar-
ies, approval should be obtained from all affected departments. Once approval has
been obtained, the SQA plan is placed under configuration control.

In the management approval process, management relinquishes tight control
over software quality to the SQA plan administrator in exchange for improved soft-
ware quality. Software quality is often left to software developers. Quality is desir-
able, but management may express concern as to the cost of a formal SQA plan.
Staff should be aware that management views the program as a means of ensuring
software quality, and not as an end in itself.

To address management concerns, software life-cycle costs should be formally
estimated for projects implemented both with and without a formal SQA plan. In
general, implementing a formal SQA plan makes economic and management sense.

Step 3: Obtain Development Acceptance

Because the software development and maintenance personnel are the primary
users of an SQA plan, their approval and cooperation in implementing the plan are
essential. The software project team members must adhere to the project SQA plan;
everyone must accept it and follow it.

No SQA plan is successfully implemented without the involvement of the soft-
ware team members and their managers in the development of the plan. Because
project teams generally have only a few members, all team members should actively

© 2009 by Taylor & Francis Group, LLC

26 ◾ Software Testing and Continuous Quality Improvement

participate in writing the SQA plan. When projects become much larger (i.e.,
encompassing entire divisions or departments), representatives of project subgroups
should provide input. Constant feedback from representatives to team members
helps gain acceptance of the plan.

Step 4: Plan for Implementation of the SQA Plan

The process of planning, formulating, and drafting an SQA plan requires staff
and word-processing resources. The individual responsible for implementing an
SQA plan must have access to these resources. In addition, the commitment of
resources requires management approval and, consequently, management support.
To facilitate resource allocation, management should be made aware of any project
risks that may impede the implementation process (e.g., limited availability of staff
or equipment). A schedule for drafting, reviewing, and approving the SQA plan
should be developed.

Step 5: Execute the SQA Plan

The actual process of executing an SQA plan by the software development and main-
tenance team involves determining necessary audit points for monitoring it. The
auditing function must be scheduled during the implementation phase of the software
product so that improper monitoring of the software project will not hurt the SQA
plan. Audit points should occur either periodically during development or at specific
project milestones (e.g., at major reviews or when part of the project is delivered).

Quality Standards
The following section describes the leading quality standards for IT.

Sarbanes–Oxley
The Sarbanes–Oxley Act of 2002, also known as the Public Company Accounting
Reform and Investor Protection Act of 2002 and commonly called SOx or Sarbox,
is a U.S. federal law enacted on July 30, 2002, in response to a number of major
corporate and accounting scandals: Enron, Tyco Internation, Adelphia, Peregrine
Systems, and WorldCom.

The Sarbanes–Oxley Act is designed to ensure the following within a business:

There are sufficient controls to prevent fraud, misuse, or loss of financial data/ N
transactions. In many companies, most of these controls are IT-based.
There are controls to enable speedy detection if and when such problems occur. N
Effective action is taken to limit the effects of such problems. N

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 27

Not only must controls be in place; they must be effective, and it must be possible
to note exceptions caught by the controls and follow audit trails to take appropriate
action in response to those exceptions. This requirement puts new pressure on IT
that until now few IT departments have faced.

The ISACA subset of COBIT ensures that the key IT aspects related to
Sarbanes–Oxley are being tested. The top COBIT controls, as recommended in
the ISACA study, are in Table 2.1, along with a list of tactical solutions that satisfy
those controls.

The COBIT objectives are specifically designed to aid the effective management
of information and IT, with particular emphasis on IT governance. They provide
management with a framework for implementing internal control systems that sup-
port core business processes. They clarify areas of responsibility and due diligence
by all individuals engaged in the management, use, design, development, mainte-
nance, and operation of a company’s information systems.

table 2.1 top CoBit Controls

Rank Control Objective What to Implement

 1 Network security Updated firewall, secure wireless
transmissions

 2 Virus protection Updated anti-virus, anti-spyware
applications

 3 Backups Regular and tested backup procedures

 4 File access privilege controls Role-based access control, least
privilege

 5 IT as part of strategic plans Technologies that support business
goals

 6 IT continuity and recovery
plans

Basic disaster recovery plan (DRP)
procedures

 7 ID and authorization
procedures

Complex passwords, password change
policies

 8 Management support/buy-in Leadership from CEO for IT control
projects

 9 Risk evaluation program

10 Basic risk assessment and
self-audits

Training for e-mail, Web, and
password use

11 Data input controls Field formats, periodic data range
testing

© 2009 by Taylor & Francis Group, LLC

28 ◾ Software Testing and Continuous Quality Improvement

Table 2.2 attempts to break the 318 COBIT controls down into areas of activ-
ity, to try to make the task more manageable. This helps you to understand the key
areas that will need to be addressed, either through the introduction of internal
controls, through automated solutions, or both.

table 2.2 CoBit Controls by areas of activity

General Activity COBIT Controls Comment

IT Planning and
Management

83 The top-level control elements of
the IT process. Largely concerned
with establishing policy and
responsibility and managing and
reporting on this.

Human Resources 17 The definition of the roles of staff
in the IT process, and the issues of
business continuity and security
during staff movement.

Security 29 The definition of the
responsibilities and tasks
involved in executing a coherent
security plan.

Systems Monitoring
& Utilities

81 Availability and operation of the
system on a day-to-day basis.
The also covers third-party
support.

Change Management 11 You will need to talk to change
management vendors about
developing an effective change
management policy. Original
software solutions integrate with
some of the most established
change management solutions on
the market.

Data Management 27 Covering authority, protocol, error
handling, security, etc.

Testing 70 Covers the establishment and
execution of a formal QA policy.
Original software addresses all of
these areas.

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 29

ISO9000

ISO9000 is a quality series and comprises a set of five documents developed in 1987
by the International Standards Organization (ISO). ISO9000 standards and certifi-
cation are usually associated with non-IS manufacturing processes. However, appli-
cation development organizations can benefit from these standards and position
themselves for certification, if necessary. All the ISO9000 standards are guidelines
and are interpretive because of their lack of stringency and rules. ISO certification
is becoming more and more important throughout Europe and the United States
for the manufacture of hardware. Software suppliers will increasingly be required
to have certification. ISO9000 is a definitive set of quality standards, but it rep-
resents quality standards as part of a total quality management (TQM) program.
It consists of ISO9001, ISO9002, or ISO9003, and it provides the guidelines for
selecting and implementing a quality assurance standard.

ISO9001 is a very comprehensive standard and defines all the quality elements
required to demonstrate the supplier’s ability to design and deliver a quality prod-
uct. ISO9002 covers quality considerations for the supplier to control design and
development activities. ISO9003 demonstrates the supplier’s ability to detect and
control product nonconformity during inspection and testing. ISO9004 describes
the quality standards associated with ISO9001, ISO9002, and ISO9003 and pro-
vides a comprehensive quality checklist.

Table 2.3 shows the ISO9000 and companion international standards.

Capability Maturity Model (CMM)

The Software Engineering Institute–Capability Maturity Model (SEI–CMM) is
a model for judging the maturity of the software processes of an organization and
for identifying the key practices that are required to increase the maturity of these
processes. As organizations enhance their software process capabilities, they prog-
ress through the various levels of maturity. The achievement of each level of matu-
rity signifies a different component in the software process, resulting in an overall

table 2.3 Companion iSo Standards

International United States Europe United Kingdom

ISO9000 ANSI/ASQA EN29000 BS5750 (Part 0.1)

ISO9001 ANSI/ASQC EN29001 BS5750 (Part 1)

ISO9002 ANSI/ASQC EN29002 BS5750 (Part 2)

ISO9003 ANSI/ASQC EN29003 BS5750 (Part 3)

ISO9004 ANSI/ASQC EN29004 BS5750 (Part 4)

© 2009 by Taylor & Francis Group, LLC

30 ◾ Software Testing and Continuous Quality Improvement

increase in the process capability of the organization. The Capability Maturity
Model for Software describes the principles and practices underlying software pro-
cess maturity and is intended to help software organizations improve the maturity
of their software processes in terms of an evolutionary path from ad hoc chaotic
processes to mature, disciplined software processes.

The CMM is organized into five maturity levels (see Figure 2.3):

 1. Initial. The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined, and success depends on individual effort
and heroics.

 2. Repeatable. Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to
repeat earlier successes on projects with similar applications.

 3. Defined. The software process for both management and engineering activities
is documented, standardized, and integrated into a standard software process
for the organization. All projects use an approved, tailored version of the organ-
ization’s standard software process for developing and maintaining software.

 4. Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively under-
stood and controlled.

 5. Optimizing. Continuous process improvement is enabled by quantitative feed-
back from the process and from piloting innovative ideas and technologies.

Level 1: Initial

The organization typically does not provide a stable environment for develop-
ing and maintaining software. This period is chaotic without any procedure and

Optimizing

Managed

Defined

Repeatable

Initial

figure 2.3 Maturity levels.

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 31

process established for software development and testing. When an organization
lacks sound management practices, ineffective planning and reaction-driven com-
mitment systems undermine the benefits of good software engineering practices.

In this phase, projects typically abandon planned procedures and revert to cod-
ing and testing. Success depends entirely on having an exceptional manager and
effective software team. The project performance depends on capable and forceful
project managers. However, when they leave the project, their stabilizing influence
leaves with them. Even a strong engineering process cannot overcome the instabil-
ity created by the absence of sound management practices.

Level 2: Repeatable

During this phase, measures and metrics will be reviewed to include percentage
compliance with various processes, percentage of allocated requirements delivered,
number of changes to requirements, number of changes to project plans, variance
between estimated and actual size of deliverables, and variance between actual
PQA audits performed and planned and number of change requests processed over
a period of time. The following are the key process activities during Level 2:

Software configuration management N
Software quality assurance N
Software subcontract management N
Software project tracking and oversight N
Software project planning N
Requirements management N

Level 3: Defined

During this phase measures and metrics will be reviewed to include percentage of
total project time spent on test activities, testing efficiency, inspection rate for deliv-
erables, inspection efficiency, variance between actual attendance and planned atten-
dance for training programs, and variance between actual and planned management
effort. Level 3 compliance means an organization’s processes for management and
engineering activities have been formally defined, documented, and integrated into
a standard process that is understood and followed by the organization’s staff when
developing and maintaining software. Once an organization has reached this level,
it has a foundation for continuing progress. New processes and tools can be added
with minimal disruption, and new staff members can be easily trained to adapt to
the organization’s practices. The following are the key process areas for Level 3:

Peer reviews N
Intergroup coordination N
Software product engineering N

© 2009 by Taylor & Francis Group, LLC

32 ◾ Software Testing and Continuous Quality Improvement

Integrated software management N
Training program N
Organization process definition N
Organization process focus N

The software process capability of Level 3 organizations can be summarized as
standard and consistent because both software engineering and management activ-
ities are stable and repeatable. Within established product lines, cost, schedule,
and functionality are under control, and software quality is tracked. This process
capability is based on a common organizationwide understanding of the activities,
roles, and responsibilities in a defined software process.

Level 4: Managed

This phase denotes that the processes are well defined and professionally managed.
The quality standards are on an upswing. With sound quality processes in place,
the organization is better equipped to meet customer expectations of high-quality/
high-performance software at reasonable cost and committed deliveries. Delivering
consistency in software work products and consistency throughout the software
development life cycle, including plans, process, requirements, design, code, and
testing, helps create satisfied customers. Projects achieve control over their prod-
ucts and processes by narrowing the variation in their process performance within
acceptable quantitative boundaries. Meaningful variations in process performance
can be distinguished from random variations (noise), particularly within estab-
lished product lines. The risks involved in moving up the learning curve of a new
application domain are known and carefully managed:

Software quality management N
Quantitative process management N

The software process capability of Level 4 organizations can be summarized as
predictable because the process is measured and operates within measurable limits.
The level of process capability allows an organization to predict trends in process
and product quality within the quantitative bounds of these limits. When these
limits are exceeded, action is taken to correct the situation. Software products are
of predictably high quality.

Level 5: Optimized

A continuous emphasis on process improvement and defect reduction avoids pro-
cess stagnancy or degeneration and ensures continual improvement translating
into improved productivity, reduced defect leakage, and greater timeliness. Tracing
requirements across each development phase improves the completeness of software,

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 33

reduces rework, and simplifies maintenance. Verification and validation activities
are planned and executed to reduce defect leakage. Customers have access to the
project plan, receive regular status reports, and their feedback is sought and used
for process tuning. The KPA at Level 5 are:

Process change management N
Technology change management N
Defect prevention N

Software project teams in Level 5 organizations analyze defects to determine their
causes. Software processes are evaluated to prevent known types of defects from
recurring, and lessons learned are disseminated to other projects. The software
process capability of Level 5 organizations can be characterized as continuously
improving because Level 5 organizations are continuously striving to improve the
range of their process capability, thereby improving the process performance of
their projects. Improvement occurs both by incremental advancements in the exist-
ing process and by innovations using new technologies and methods.

People CMM
The People Capability Maturity Model (People CMM) is a framework that helps
organizations successfully address their critical people issues. On the basis of the best
current practices in fields such as human resources, knowledge management, and
organizational development, the People CMM guides organizations in improving
their processes for managing and developing their workforces. The People CMM
helps organizations characterize the maturity of their workforce practices, establish a
program of continuous workforce development, set priorities for improvement actions,
integrate workforce development with process improvement, and establish a culture
of excellence. Since its release in 1995, thousands of copies of the People CMM have
been distributed, and it is used worldwide by organizations small and large.

The People CMM consists of five maturity levels that establish successive foun-
dations for continuously improving individual competencies, developing effective
teams, motivating improved performance, and shaping the workforce the organi-
zation needs to accomplish its future business plans. Each maturity level is a well-
defined evolutionary plateau that institutionalizes new capabilities for developing
the organization’s workforce. By following the maturity framework, an organiza-
tion can avoid introducing workforce practices that its employees are unprepared
to implement effectively.

CMMI
The CMMI Product Suite provides the latest best practices for product and ser-
vice development and maintenance (Andrews and Whittaker, 2006). The CMMI

© 2009 by Taylor & Francis Group, LLC

34 ◾ Software Testing and Continuous Quality Improvement

models are the best process improvement models available for product and ser-
vice development and maintenance. These models extend the best practices of the
Capability Maturity Model for Software (SW-CMM®), the Systems Engineering
Capability Model (SECM), and the Integrated Product Development Capability
Maturity Model (IPD-CMM).

Organizations reported that CMMI is adequate for guiding their process
improvement activities and that CMMI training courses and appraisal methods are
suitable for their needs, although there are specific opportunities for improvement.
The cost of CMMI is an issue that affected adoption decisions for some, but not for
others. Finally, return-on-investment information is usually helpful to organiza-
tions when making the business case to adopt CMMI.

Malcolm Baldrige National Quality Award
As the National Institute of Standards and Technology (NIST) says:

In the early and mid-1980s, many industry and government leaders
saw that a renewed emphasis on quality was no longer an option for
American companies but a necessity for doing business in an ever-
expanding, and more demanding, competitive world market. But many
American businesses either did not believe quality mattered for them or
did not know where to begin (Arthur, 1993).

Public Law 100-107, signed into law on August 20, 1987, created the Malcolm
Baldrige National Quality Award. The Award Program led to the creation of a
new public–private partnership. Principal support for the program comes from
the Foundation for the Malcolm Baldrige National Quality Award, established
in 1988. The Award is named for Malcolm Baldrige, who served as Secretary of
Commerce from 1981 until his tragic death in a rodeo accident in 1987.

The Baldrige Award is given by the President of the United States to
businesses—manufacturing and service, small and large—and to edu-
cation and health care organizations that apply and are judged to be
outstanding in seven areas: leadership, strategic planning, customer
and market focus, information and analysis, human resource focus,
process management, and business results. . . . While the Baldrige
Award and the Baldrige recipients are the very visible centerpiece of the
U.S. quality movement, a broader national quality program has evolved
around the award and its criteria. A report, “Building on Baldrige:
American Quality for the 21st Century,” by the private Council on
Competitiveness, said, ‘More than any other program, the Baldrige
Quality Award is responsible for making quality a national priority and
disseminating best practices across the United States.’

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 35

Each year, more than 300 experts from industry, educational institu-
tions, governments at all levels, and nonprofit organizations volunteer
many hours reviewing applications for the award, conducting site visits,
and providing each applicant with an extensive feedback report citing
strengths and opportunities to improve. In addition, board members
have given thousands of presentations on quality management, perfor-
mance improvement, and the Baldrige Award (Arthur, 1993).

The Baldrige performance excellence criteria are a framework (see Table 2.4) that
any organization can use to improve overall performance. Seven categories make
up the award criteria.

The system for scoring examination items is based on these evaluation dimensions:

 1. Approach: Approach indicates the method that the company uses to achieve
the purposes. The following are the factors to decide on the correct approach:
the degree to which the approach is prevention-based; the appropriateness of
the tools, techniques, and methods; the effectiveness of their use; whether
the approach is systematic, integrated, and consistently applied; effective self-
evaluation and feedback; quantitative information gathered; and the unique-
ness and innovativeness of the approach.

 2. Deployment: This concerns the areas where the approach is deployed. It evalu-
ates whether the approach is implemented in all the products and services and
all internal processes, activities, facilities, and employees.

 3. Results: This refers to the outcome of the approach. The quality levels demon-
strated, rate of quality improvement, breadth, significance, and comparison
of the quality improvement and the extent to which quality improvement is
demonstrated are the key factors involved.

Leadership

Information Analysis
Planning

Human Resource
Quality Assurance

Results

Customer Satisfaction

figure 2.4

© 2009 by Taylor & Francis Group, LLC

36 ◾ Software Testing and Continuous Quality Improvement

As compared to other programs such as ISO, Japan’s Deming award and America’s
Baldrige Award:

Focus more on results and service N
Rely on the involvement of many different professional and trade groups N
Provide special credits for innovative approaches to quality N

table 2.4 Baldrige Performance framework

 1. Leadership—Examines how senior executives guide the organization and
how the organization addresses its responsibilities to the public and
practices good citizenship. Evaluations are based on the appropriateness,
effectiveness, and extent of the leader’s and the company’s involvement in
relation to the size and type of business.

 2. Measurement, analysis, and knowledge management—Examines the
management, effective use, analysis, and improvement of data and
information to support key organization processes and the organization’s
performance management system. The scope, management, and analysis
of data depend on the type of business, its resources, and the geographical
distribution.

 3. Strategic planning—Examines how the organization sets strategic directions
and how it determines key action plans. Evaluations are based on the
thoroughness and effectiveness of the processes.

 4. Human resource focus—Examines how the organization enables its
workforce to develop its full potential and how the workforce is aligned
with the organization’s objectives. Evaluation depends on the human
resource approach of the company.

 5. Process management—Examines aspects of how key production/delivery
and support processes are designed, managed, and improved. The types
of products and services, customer and government requirements,
regulatory requirements, and number of business locations are the factors
influencing this.

 6. Business results—Examines the organization’s performance and
improvement in its key business areas: customer satisfaction, financial and
marketplace performance, human resources, supplier and partner
performance, operational performance, and governance and social
responsibility. The category also examines how the organization performs
relative to competitors.

 7. Customer and market focus—Examines how the organization determines
requirements and expectations of customers and markets; builds
relationships with customers; and acquires, satisfies, and retains
customers.

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ◾ 37

Include a strong customer and human resource focus N
Stress the importance of sharing information N

notes
 1. http://www.sei.cmu.edu/cmmi/adoption/cmmi-start.html.
 2. http://www.nist.gov/public_affairs/factsheet/baldfaqs.htm.

© 2009 by Taylor & Francis Group, LLC

http://www.sei.cmu.edu
http://www.nist.gov

39

3Chapter

overview of testing
techniques

Software testing, as a separate process, witnessed vertical growth and received the
attention of project stakeholders and business sponsors in the last decade. Various
new techniques have been continuously introduced. Apart from the traditional
testing techniques, various new techniques necessitated by the complicated busi-
ness and development logic were realized to make software testing more meaning-
ful and purposeful. This part discusses some of the popular testing techniques that
have been adopted by the testing community.

Black-Box testing (functional)
In black-box, or functional testing, test conditions are developed on the basis of
the program or system’s functionality; that is, the tester requires information about
the input data and observed output, but does not know how the program or sys-
tem works. Just as one does not have to know how a car works internally to drive
it, it is not necessary to know the internal structure of a program to execute it.
The tester focuses on testing the program’s functionality against the specification.
With black-box testing, the tester views the program as a black box and is com-
pletely unconcerned with the internal structure of the program or system. Some
examples in this category include decision tables, equivalence partitioning, range
testing, boundary value testing, database integrity testing, cause–effect graphing,

© 2009 by Taylor & Francis Group, LLC

40 ◾ Software Testing and Continuous Quality Improvement

orthogonal array testing, array and table testing, exception testing, limit testing,
and random testing.

A major advantage of black-box testing is that the tests are geared to what the
program or system is supposed to do, which is natural and understood by everyone.
This should be verified with techniques such as structured walkthroughs, inspec-
tions, and joint application designs (JADs). A limitation is that exhaustive input
testing is not achievable, because this requires that every possible input condition
or combination be tested. In addition, because there is no knowledge of the internal
structure or logic, there could be errors or deliberate mischief on the part of a pro-
grammer that may not be detectable with black-box testing. For example, suppose
a payroll programmer wants to insert some job security into a payroll application
he is developing. By inserting the following extra code into the application, if the
employee were to be terminated, that is, his employee ID no longer existed in the
system, justice would sooner or later prevail:

if my employee ID exists
deposit regular pay check into my bank account
else
deposit an enormous amount of money into my bank account
erase any possible financial audit trails
erase this code

white-Box testing (Structural)
In white-box, or structural testing, test conditions are designed by examining paths
of logic. The tester examines the internal structure of the program or system. Test
data is driven by examining the logic of the program or system, without concern for
the program or system requirements. The tester knows the internal program struc-
ture and logic, just as a car mechanic knows the inner workings of an automobile.
Specific examples in this category include basis path analysis, statement coverage,
branch coverage, condition coverage, and branch/condition coverage.

An advantage of white-box testing is that it is thorough and focuses on the produced
code. Because there is knowledge of the internal structure or logic, errors or deliberate
mischief on the part of a programmer has a higher probability of being detected.

One disadvantage of white-box testing is that it does not verify that the specifi-
cations are correct; that is, it focuses only on the internal logic and does not verify
the conformance of the logic to the specification. Another disadvantage is that
there is no way to detect missing paths and data-sensitive errors. For example, if
the statement in a program should be coded “if |a–b| < 10” but is coded “if (a–b) <
1,” this would not be detectable without specification details. A final disadvantage
is that white-box testing cannot execute all possible logic paths through a program
because this would entail an astronomically large number of tests.

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ◾ 41

gray-Box testing (functional and Structural)
Black-box testing focuses on the program’s functionality against the specification.
White-box testing focuses on the paths of logic. Gray-box testing is a combination
of black- and white-box testing. The tester studies the requirements specifications
and communicates with the developer to understand the internal structure of the
system. The motivation is to clear up ambiguous specifications and “read between
the lines” to design implied tests. One example of the use of gray-box testing is when
it appears to the tester that a certain functionality seems to be reused throughout
an application. If the tester communicates with the developer and understands the
internal design and architecture, many tests will be eliminated, because it may be
possible to test the functionality only once. Another example is when the syntax of
a command consists of seven possible parameters that can be entered in any order,
as follows:

Command parm1, parm2, parm3, parm4, parm5, parm6, parm7

In theory, a tester would have to create 7!, or 5040 tests. The problem is com-
pounded further if some of the parameters are optional. If the tester uses gray-box
testing, by talking with the developer and understanding the parser algorithm, if
each parameter is independent, only seven tests may be required.

Manual versus automated testing
The basis of the manual testing categorization is that it is not typically carried out
by people and it is not implemented on the computer. Examples include structured
walkthroughs, inspections, JADs, and desk checking.

The basis of the automated testing categorization is that it is implemented on
the computer. Examples include boundary value testing, branch coverage testing,
prototyping, and syntax testing. Syntax testing is performed by a language com-
piler, and the compiler is a program that executes on a computer.

Static versus dynamic testing
Static testing approaches are time independent and are classified in this way because
they do not necessarily involve either manual or automated execution of the prod-
uct being tested. Examples include syntax checking, structured walkthroughs, and
inspections. An inspection of a program occurs against a source code listing in
which each code line is read line by line and discussed. An example of static test-
ing using the computer is a static flow analysis tool, which investigates another
program for errors without executing the program. It analyzes the other program’s

© 2009 by Taylor & Francis Group, LLC

42 ◾ Software Testing and Continuous Quality Improvement

control and data flow to discover problems such as references to a variable that has
not been initialized, and unreachable code.

Dynamic testing techniques are time dependent and involve executing a specific
sequence of instructions on paper or by the computer. Examples include structured
walkthroughs, in which the program logic is simulated by walking through the
code and verbally describing it. Boundary testing is a dynamic testing technique
that requires the execution of test cases on the computer with a specific focus on the
boundary values associated with the inputs or outputs of the program.

taxonomy of Software testing techniques
A testing technique is a set of interrelated procedures that, together, produce a test
deliverable. There are many possible classification schemes for software testing, and
Table 3.1 describes one way. The table reviews formal popular testing techniques
and also classifies each per the foregoing discussion as manual, automated, static,
dynamic, functional (black-box), or structural (white-box).

Table 3.2 describes each of the software testing methods.

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ◾ 43

table 3.1 testing technique Categories
Technique Manual Automated Static Dynamic Functional Structural

Acceptance testing x x x x

Ad hoc testing x x

Alpha testing x x x

Basis path testing x x x

Beta testing x x x

Black-box testing x x x

Bottom-up testing x x x

Boundary value
testing

x x x

Branch coverage
testing

x x x

Branch/condition
coverage

x x x

Cause–effect graphing x x x

Comparison testing x x x x x

Compatibility testing x x x

Condition coverage
testing

x x x

CRUD (create, read,
update, and delete)
testing

x x x

Database testing x x x

Decision tables x x x

Desk checking x x x

End-to-end testing x x x

Equivalence
partitioning

x x

Exception testing x x x

Exploratory testing x x x

Free-form testing x x x

Gray-box testing x x x x

Histograms x x

Incremental
integration testing

x x x x

Inspections x x x x

Integration testing x x x x

JADs (joint application
designs)

x x x

Load testing x x x x

Mutation testing x x x x

Continued

© 2009 by Taylor & Francis Group, LLC

44 ◾ Software Testing and Continuous Quality Improvement

table 3.1 testing technique Categories (Continued)
Technique Manual Automated Static Dynamic Functional Structural

Orthogonal array
testing

x x x

Pareto analysis x x

Performance testing x x x x x

Positive and negative
testing

x x x

Prior defect history
testing

x x x

Prototyping x x x

Random testing x x x

Range testing x x x

Recovery testing x x x x

Regression testing x x

Risk-based testing x x x

Run charts x x x

Sandwich testing x x x

Sanity testing x x x x

Security testing x x x

State transition testing x x x

Statement coverage
testing

x x x

Statistical profile
testing

x x x

Stress testing x x x

Structured
walkthroughs

x x x x

Syntax testing x x x x

System testing x x x x

Table testing x x x

Thread testing x x x

Top-down testing x x x x

Unit testing x x x x

Usability testing x x x x

User acceptance
testing

x x x x

White-box testing x x x

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ◾ 45

table 3.2 testing technique descriptions

Technique Brief Description

Acceptance testing Final testing based on the end-user/customer
specifications, or based on use by end users/
customers over a defined period of time

Ad hoc testing Similar to exploratory testing, but often taken to
mean that the testers have significant
understanding of the software before testing it

Alpha testing Testing of an application when development is
nearing completion; minor design changes may
still be made as a result of such testing. Typically
done by end users or others, not by programmers
or testers

Basis path testing Identifying tests based on flow and paths of a
program or system

Beta testing Testing when development and testing are
essentially completed and final bugs and
problems need to be found before final release.
Typically done by end users or others, not by
programmers or testers

Black-box testing Testing cases generated based on the system’s
functionality

Bottom-up testing Integrating modules or programs starting from the
bottom

Boundary value testing Testing cases generated from boundary values of
equivalence classes

Branch coverage testing Verifying that each branch has true and false
outcomes at least once

Branch/condition
coverage testing

Verifying that each condition in a decision takes
on all possible outcomes at least once

Cause–effect graphing Mapping multiple simultaneous inputs that may
affect others, to identify their conditions to test

Comparison testing Comparing software weaknesses and strengths to
competing products

Continued

© 2009 by Taylor & Francis Group, LLC

46 ◾ Software Testing and Continuous Quality Improvement

table 3.2 testing technique descriptions (Continued)

Technique Brief Description

Compatibility testing Testing how well software performs in a particular
hardware/software/operating system/network
environment

Condition coverage
testing

Verifying that each condition in a decision takes
on all possible outcomes at least once

CRUD testing Building a CRUD matrix and testing all object
creations, reads, updates, and deletions

Database testing Checking the integrity of database field values

Decision tables Table showing the decision criteria and the
respective actions

Desk checking Developer reviews code for accuracy

End-to-end testing Similar to system testing; the “macro” end of the
test scale; involves testing of a complete
application environment in a situation that
mimics real-world use, such as interacting with a
database, using network communications, or
interacting with other hardware, applications, or
systems if appropriate

Equivalence partitioning Each input condition is partitioned into two or
more groups. Test cases are generated from
representative valid and invalid classes

Exception testing Identifying error messages and exception-
handling processes and conditions that trigger
them

Exploratory testing Often taken to mean a creative, informal software
test that is not based on formal test plans or test
cases; testers may be learning the software as
they test it

Free-form testing Ad hoc or brainstorming using intuition to define
test cases

Gray-box testing A combination of black-box and white-box testing
to take advantage of both

Histograms A graphical representation of measured values
organized according to the frequency of
occurrence; used to pinpoint hot spots

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ◾ 47

table 3.2 testing technique descriptions (Continued)

Technique Brief Description

Incremental integration
testing

Continuous testing of an application as new
functionality is added; requires that various
aspects of an application’s functionality be
independent enough to work separately before
all parts of the program are completed, or that
test drivers be developed as needed; done by
programmers or by testers

Inspections Formal peer review that uses checklists, entry
criteria, and exit criteria

Integration testing Testing of combined parts of an application to
determine if they function together correctly. The
“parts” can be code modules, individual
applications, or client/server applications on a
network. This type of testing is especially relevant
to client/server and distributed systems

JADs Technique that brings users and developers
together to jointly design systems in facilitated
sessions

Load testing Testing an application under heavy loads, such as
testing of a Web site under a range of loads to
determine at what point the system’s response
time degrades or fails

Mutation testing A method for determining if a set of test data or
test cases is useful, by deliberately introducing
various code changes (“bugs”) and retesting with
the original test data/cases to determine if the
bugs are detected. Proper implementation
requires large computational resources

Orthogonal array testing Mathematical technique to determine which
variations of parameters need to be tested

Pareto analysis Analyze defect patterns to identify causes and
sources

Performance testing Term often used interchangeably with stress and
load testing. Ideally, performance testing (and any
other type of testing) is defined in requirements
documentation or QA or Test Plans

Continued

© 2009 by Taylor & Francis Group, LLC

48 ◾ Software Testing and Continuous Quality Improvement

table 3.2 testing technique descriptions (Continued)

Technique Brief Description

Positive and negative
testing

Testing the positive and negative values for all
inputs

Prior defect history
testing

Test cases are created or rerun for every defect
found in prior tests of the system

Prototyping General approach to gather data from users by
building and demonstrating to them some part of
a potential application

Random testing Technique involving random selection from a
specific set of input values where any value is as
likely as any other

Range testing For each input, identifies the range over which the
system behavior should be the same

Recovery testing Testing how well a system recovers from crashes,
hardware failures, or other catastrophic problems

Regression testing Testing a system in light of changes made during a
development spiral, debugging, maintenance, or
the development of a new release

Risk-based testing Measures the degree of business risk in a system
to improve testing

Run charts A graphical representation of how a quality
characteristic varies with time

Sandwich testing Integrating modules or programs from the top
and bottom simultaneously

Sanity testing Typically, an initial testing effort to determine if a
new software version is performing well enough
to accept it for a major testing effort. For example,
if the new software is crashing systems every five
minutes, bogging down systems to a crawl, or
destroying databases, the software may not be in
a “sane” enough condition to warrant further
testing in its current state

Security testing Testing how well the system protects against
unauthorized internal or external access, willful
damage, etc.; may require sophisticated testing
techniques

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ◾ 49

table 3.2 testing technique descriptions (Continued)

Technique Brief Description

State transition testing Technique in which the states of a system are first
identified, and then test cases written to test the
triggers causing a transition from one state to
another

Statement coverage
testing

Every statement in a program is executed at least
once

Statistical profile testing Statistical techniques are used to develop a usage
profile of the system that helps define transaction
paths, conditions, functions, and data tables

Stress testing Term often used interchangeably with load and
performance testing. Also used to describe such
tests as system functional testing while under
unusually heavy loads, heavy repetition of certain
actions or inputs, input of large numerical values,
or large complex queries to a database system

Structured
walkthroughs

A technique for conducting a meeting at which
project participants examine a work product for
errors

Syntax testing Data-driven technique to test combinations of
input syntax

System testing Black-box type testing that is based on overall
requirements specifications; covers all combined
parts of a system

Table testing Testing access, security, and data integrity of table
entries

Thread testing Combining individual units into threads of
functionality that together accomplish a function
or set of functions

Top-down testing Integrating modules or programs starting from the
top

Continued

© 2009 by Taylor & Francis Group, LLC

50 ◾ Software Testing and Continuous Quality Improvement

table 3.2 testing technique descriptions (Continued)

Technique Brief Description

Unit testing The most “micro” scale of testing; to test particular
functions or code modules. Typically done by the
programmer and not by testers, as it requires
detailed knowledge of the internal program
design and code. Not always easily done unless
the application has a well-designed architecture
with tight code; may require developing test
driver modules or test harnesses

Usability testing Testing for “user-friendliness.” Clearly, this is
subjective, and will depend on the targeted end
user or customer. User interviews, surveys, video
recording of user sessions, and other techniques
can be used. Programmers and testers are usually
not appropriate as usability testers

User acceptance testing Determining if software is satisfactory to an end
user or customer

White-box testing Test cases are defined by examining the logic paths
of a system

© 2009 by Taylor & Francis Group, LLC

51

4Chapter

transforming
requirements to
testable test Cases

introduction
Quality assurance (QA) is a holistic process involving the entire development and
production process, that is, monitoring, improving, and ensuring that issues and
bugs are found and fixed.

Software testing is a major component of the software development life cycle.
Some organizations assign responsibility for testing to their test programmers or
the QA department. Others outsource testing (see Section 5, Chapter 33, “On-Site/
Offshore Model”). During the software testing process, QA project teams are typi-
cally a mix of developers, testers, and the business community who work closely
together, sharing information and assigning tasks to one another.

The following section provides an overview of how to create test cases when
“good” requirements do exist.

Software requirements as the Basis of testing
Would you build a house without architecture and specific requirements? The
answer is no, because of the cost of materials and manpower rework. Somehow,

© 2009 by Taylor & Francis Group, LLC

52 ◾ Software Testing and Continuous Quality Improvement

there is a prevalent notion that software development efforts are different, that
is, put something together, declare victory, and then spend a great deal of time
fixing and reengineering the software. This is called “maintenance.” According
to Standish Group Statistic, American companies spend $84 billion annually on
failed software projects and $138 billion on projects that significantly exceed their
time and budget estimates, or have reduced functionality.

Figure 4.1 shows that the probability of project success (as measured by meeting
its target cost) is greatest when 8 to 14 percent of the total project cost is invested
in requirements activities.

requirement Quality factors
If software testing depends on good requirements, it is important to understand
some of the key elements of quality requirements.

Understandable
Requirements must be understandable. Understandable requirements are organized
in a manner that facilitates reviews. Some techniques to improve understandability
include the following:

Organize requirements by their object, for example, customer, order, invoice. N
User requirements should be organized by business process or scenario. This N
allows the subject matter expert to see if there is a gap in the requirements.

180

160

140

120

100

80

60

40

20

0

200 < 5% on Requirements Process
80%–200% Overrun

8–14% on Requirements Process
< 60% Overrun

Value of Investment in Requirements Process

0 5 10 15 20 25

Pe
rc

en
ta

ge
 o

f C
os

t O
ve

rr
un

OMV
GRO 70

TDRSSGALL

HST
IRAS

GOES I-M TETH
CEN

MARS LAND 76
ACT

MAG CDBE

HEAO
ISEE

SEASAT

ERB 77 STS
LAND 78

UARS

GRO 02
ERB 80

EUVE/EP
SMMDS

PION/VEN

VOYAGER
ULYSSES

IF

figure 4.1 importance of good requirements. (reference: ivy hooks.)

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 53

Separate functional from nonfunctional requirements, for example, func- N
tional versus performance.
Organize requirements by level of detail. This determines their impact on the N
system, for example, “the system shall be able to take an order” versus “the
system shall be able to take a retail order from the point of sale.”
Write requirements grammatically correctly and in a style that facilitates N
reviews. If the requirement is written in Microsoft Word, use the spell check
option but beware of the context; that is, spell check may pass a word or
phrase, but it may be contextually inappropriate.
Use “shall” for requirements. Do not use “will” or “should.” These are goals, N
not requirements. Using nonimperative words such as these makes the imple-
mentation of the requirement optional, potentially increasing cost and sched-
ule, reducing quality, and creating contractual misunderstandings.

Necessary
The requirement must also be necessary. The following is an example of an unneces-
sary requirement. Suppose the following requirement is included in a requirement
specification: “The system shall be acceptable if it passes 100 test cases.” This is really
a project process and not a requirement and should not be in a requirement specifi-
cation. A requirement must relate to the target application or system being built.

Modifiable
It must be possible to change requirements and associated information. The tech-
nique used to store requirements affects modifiability. For example, requirements
in a word processor are much more difficult to modify than in a requirements
management tool such as CaliberRM or Doors. However, for a very small project,
the cost and learning curve for the requirements management tool may make the
word processor the best option.

Consistency affects modifiability. Templates and glossaries for requirements
make global changes possible. Templates should be structured to make the require-
ments visible, thus facilitating modifiability. A good best practice is to label each
requirement with a unique identifier. Requirements should also be located in a
central spot and be located with ease. Any requirement dependencies should also be
noted, for example, requirement “Y” may depend on requirement “X.”

Nonredundant
There should not be duplicate requirements, as this causes problems. Duplicates
increase maintenance; that is, every time a requirement changes, its duplicates also
must be updated. Duplicate requirements also increase the potential for injecting
requirement errors.

© 2009 by Taylor & Francis Group, LLC

54 ◾ Software Testing and Continuous Quality Improvement

Terse

A good requirement must have no unnecessary verbiage or information. A tersely
worded requirement gets right to the point; for example, “On the other hand,”
“However,” “In retrospect,” and so on are pedantic.

Testable

It should be possible to verify or validate a testable requirement; that is, it should
be possible to prove the intent of the requirement. Untestable requirements lend
themselves to subjective interpretations by the tester. A best practice is to pretend
that computers do not exist and ask yourself, could I test this requirement and
know that it either works or does not?

Traceable

A requirement must also be traceable. Trace ability is key to verifying that require-
ments have been met. Compound requirements are difficult to trace and may cause
the product to fail testing. For example, the requirement “the system shall calculate
retirement and survivor benefits” is a compound requirement. The list approach avoids
misunderstanding when reviewing requirements for trace ability individually.

Within Scope

All requirements must be defined in the area under consideration. The scope of a
project is determined by all the requirements established for the project. The project
scope is defined and refined as requirements are identified, analyzed, and baselined.
A trace ability matrix will assist in keeping requirements within scope.

numerical Method for evaluating requirement Quality
A best practice to ensure quality requirements is to use a numerical measure rather
than subjective qualifiers such as “poor, acceptable, good, and excellent.”

The first step of this technique is to create a checklist of the requirements qual-
ity factors that will be used in your requirements review. The second step is to
weight each quality factor according to its importance. The total weight of all the
factors will be 100. For example:

Quality factor 1 = 10 N
Quality factor 2 = 5 N
Quality factor 3 = 10 N
Quality factor 4 = 5 N

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 55

Quality factor 5 = 20 N
Quality factor 6 = 15 N
Quality factor 7 = 10 N
Quality factor 8 = 25 N

The total score for quality starts at 100. The amount for an unmet quality factor is
subtracted from the total. For example, if all quality factors are met except Quality
factor 5, 20 is subtracted from 100, resulting in a final score of 80%.

Process for Creating test Cases
from good requirements
A technique is a process, style, and method of doing something. Appendix G
describes 39 software testing techniques. Examples include black box, white box,
equivalence class partitioning, etc. Techniques are used within a methodology.

A methodology or process is a philosophy, guide, or blueprint that provides
methods and principles for the field employing it. In the context of information
systems, methodologies are strategies with a strong focus on gathering information,
planning, and design elements.

The following sections outline a useful methodology for extrapolating test cases
from good requirements.

Step 1: Review the Requirements

Before writing test cases, the requirements need to be reviewed to ensure that they
reflect the requirements’ quality factors.

An inspection is a type of formal, rigorous team manual peer review that can dis-
cover many problems than individual reviewers cannot find on their own. Informal
manual peer reviews are also useful, depending on the situation. Unfortunately,
reviews of requirements are not always productive (see Section 2, “Waterfall Testing
Review,” Chapter 6 for more details about inspections and other types of reviews).

Two popular tools that automate the requirements process include the following:

Smart Check™ is commercially offered by Smartware Technologies, Inc. N
This tool is an automated document review tool that locates anomalies and
ambiguities within requirements or technical specifications based on a word,
word phrases, word category, and complexity level. The tool has a glossary of
words that research has shown to cause ambiguities and structural deficien-
cies. SmartCheck also allows the user to edit and add his or her own words,
phrases, and categories to the dictionary. Reports illustrate the frequency dis-
tribution for the 18 potential anomaly types, or by word or phrase. The tool is

© 2009 by Taylor & Francis Group, LLC

56 ◾ Software Testing and Continuous Quality Improvement

not intended to evaluate the correctness of the specified requirements. It is an
aid to writing the requirements right, not to writing the right requirements.

 The following is an example of the results obtained by running SmartCheck.
The quote is actually an excerpt from the U.S. Declaration of Independence.
Although this example is not a software requirements specification, it does
illustrate the point.

In every stage of these Oppressions We have Petitioned for Redress in
the most humble terms: Our repeated Petitions have been answered
only by repeated injury. A Prince, whose character is thus<-- a subor-
dinate conjunction to connect ideas - consider rewording marked
by every act which may<-- a potentially ambiguous condition - con-
sider rewording define a Tyrant, is unfit to be the rule<-- a potentially
ambiguous noun or variable of a free people.

 The SmartCheck™ report in Figure 4.2 illustrates the distribution of words or
phrases located on the basis of the 18 anomaly categories. The SmartCheck™
report in Figure 4.3 illustrates the distribution of the types of 18 anomaly cat-
egories. (Refer to http://www.smartwaretechnologies.com/ for more details).
ARM Tool (The Automated Requirement Measurement) was developed by N
the Software Assurance Technology Center (SATC) at the NASA Goddard
Space Flight Center as an early life-cycle tool for assessing requirements that
are specified in natural language. The objective of the ARM tool is to pro-
vide measures that can be used by project managers to assess the quality of
a requirements specification document. The ARM tool scans a requirements
specification document for key words and phrases and generates a report file
summarizing the specific quality indicators. (See http://sw-assurance.gsfc.
nasa.gov/disciplines/quality/index.php for more information.)

figure 4.2 SmartCheck™ word/phrase distribution report.

© 2009 by Taylor & Francis Group, LLC

http://sw-assurance.gsfc.nasa.gov
http://sw-assurance.gsfc.nasa.gov
http://www.smartwaretechnologies.com

Transforming Requirements to Testable Test Cases ◾ 57

The following are some requirements review tips to improve the process:

 1. Prepare the reviewers—Provide the reviewer the requirements before the
actual review, and tell them what kind of input you are seeking. Give them
guidance on how to study and analyze a requirements specification. For
example, point to the sections that you want them to review.

 Give the reviewers a checklist of typical requirements errors so that they
can focus their examination on those points (see several checklists in the
appendices and on the CD provided with the book).

 Tell the reviewers how to behave during the review. Make sure the partici-
pants understand how to collaborate effectively and constructively. Tell them
that there is no such thing as a stupid question.

 2. Invite the right reviewers—Determine the type of reviewers you need rep-
resented in your requirements reviews. Examples include developers, subject
matter experts (SMEs), business analysts, and testers.

 3. Emphasize finding major problems—The real leverage from a review
comes from finding major errors of commission and omission. Finding such
errors can help you avoid extensive—and expensive—rework much later in
the project.

 4. Ask the right questions—The following is a list of useful questions during
the reviews:

Does the software product have a clearly defined purpose and objectives? −
Are the characteristics of users (or user groups) of the product identified? −
Are all external interfaces of the software stated? −
Does each requirement have a unique identifier or label? −
Is each requirement simply stated and can it stand on its own? −
Are all the conditions identified? −
Are multiple actions identified? −

figure 4.3 SmartCheck™ anomaly-type report.

© 2009 by Taylor & Francis Group, LLC

58 ◾ Software Testing and Continuous Quality Improvement

Are requirements organized into logical groupings? −
Are the requirements hierarchically organized? −
Are the requirements prioritized (see “Requirements Prioritization Model” −
on the CD that came with the book)?
Are the types of requirements defined, for example, functional, perfor- −
mance, etc.?
Are the requirements consistent and nonconflicting? −
Are the requirements written in an active voice? −
Are the requirements ambiguous? −
Are there references to unknown terms, for example, acronyms, −
abbreviations?
Are the input and outputs correct and detailed? −
Do the requirements express what the customer really needs? −

 5. Send out the revised requirements document—After the requirements
errors have been corrected, send out the requirements document to the same
participants for them to review individually or as a group.

Step 2: Write a Test Plan
A software test plan is a document that describes the objectives, scope, approach,
and focus of a software testing effort. The process of preparing a test plan is a useful
way to think through the efforts needed to validate the acceptability of a software
product. The completed document will help the whole team understand the “why”
and “how” of product validation. It should be thorough enough to be useful but not
so thorough that no one outside the test group will read it.

The task of test planning consists of the following:

Prioritizing quality goals for the release N
Defining the testing activities to achieve those goals N
Evaluating how well the activities support the goals N
Planning the actions needed to carry out the activities N

(See Appendix E and the CD that comes with this book for examples of test plans.)

Step 3: Identify the Test Suite
After the test plan has been completed and the requirements are “testable,” an
effective way of transforming the requirements to test cases is to first design the test
suites. A test suite, also known as a validation suite, is a collection of test cases that
are intended to be used as input to a software program to show that it has some
specified set of behaviors. Test suites are used to group similar test cases together,
for example, Handle Orders.

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 59

A test suite often contains detailed instructions or goals for each collection of
test cases and information on the system configuration to be used during testing.
A group of test cases may also contain prerequisite states or steps, and descriptions
of the following tests.

A test suite (or by functionality) document is an organized table of contents for
test cases. It lists the names of all test cases. The suite can be organized by listing the
major product features, and then listing the test cases for each of those, as shown in
Table 4.1 (also see Appendix E5).

Another way is to build a table in which the rows are types of business objects
and the columns are types of operations (see Table 4.2). Each cell in the grid
lists test cases that test one type of operation for one type of object. For example,
an Order System object is “Orders.” The Orders business object would have test
cases for each of the following CRUD-type operations: adding an order, list all
orders, editing orders, deleting orders, searching for orders, etc. The next row
might contain the “Customer” business object and have test cases for almost all
the same operations.

The advantage of using an organized list or grid is that it gives the big picture,
and it helps identify any area that needs more work. It is easy to forget to test
other types of business objects and test business operations, for example, “Create
Coupons.” It is obvious that shoppers use coupons, but it is easy to forget to test
the ability to create coupons. If it is overlooked, there will be a clearly visible blank
space in the test suite document. These clear indications of missing test cases allow
one to improve the test suite sooner, make more realistic estimates of testing time
needed, and find more defects. These advantages allow the discovered defects to be
fixed sooner and help keep management expectations in sync with reality.

Step 4: Name the Test Cases
Having an organized system test suite makes it easier to list test cases because the
task is broken down into many small, specific subtasks.

There may be some list items or grid cells that really should be empty. If you
cannot think of any test cases for a part of the suite that logically should have some
test cases, explicitly mark it as “TBD.”

The name of each test case should be a short phrase describing a general test
situation. Use distinct test cases when different steps will be needed to test each
situation. One test case can be used when the steps are the same and different input
values are needed.

As you fill in the test suite outline, think of features or use cases that should be
in the software requirements specification but are not there yet. Note any missing
requirements in the requirements document as you go along.

At this point, you can already get a better feeling for the scope of the testing
effort. You can already roughly prioritize the test cases. You are already starting to
look at your requirements critically, and you may have identified missing or unclear

© 2009 by Taylor & Francis Group, LLC

60
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 4.1 function versus test Cases

Function/Test Matrix

Business Function

Test Case

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 25

© 2009 by Taylor & Francis Group, LLC

Tran
sfo

rm
in

g R
eq

u
irem

en
ts to

 Testab
le Test C

ases
◾

61
table 4.2 test Suite identification Matrix

Types of Operations

Business
Object Add Edit Search List Delete

Order 1. Create an
Internet order

 2. Create a POS
order

 3. Create a catalog
order

 4. Create a
recurring order

 1. Edit an Internet
order

 2. Edit a POS order
 3. Edit a catalog

order

 1. Search an order
by customer ID

 2. Search an order
by customer
name and
address

 3. Search an order
by zip code

 1. List all orders by
date

 2. List all orders by
customer name
and address

 3. List customers by
state

 4. List customers by
products

 1. Delete an
Internet order

 2. Delete a POS
order

 3. Delete a catalog
order

 4. Delete a
recurring order

 5. Delete all orders
by product type

Customer 1. Create a retail
customer

 1. Edit a retail
customer

 2. Edit a wholesale
customer

 1. Search a
customer by
customer ID

 2. Search a
customer by
customer name
and address

 3. Search a
customer by zip
code

 1. List all customers
by data ranges
date

 2. List all customers
by last name

 3. List customer by
product IDs

 4. List customers by
gender

 1. Delete a retail
customer

 2. Delete a
wholesale
customer

Account etc. etc. etc. etc. etc.

Coupons etc. etc. etc. etc. etc.

© 2009 by Taylor & Francis Group, LLC

62 ◾ Software Testing and Continuous Quality Improvement

requirements. Also, you can already estimate the level of specification-based test
coverage that you will achieve (see “Test Case Prioritization Model” on the CD
that came with the book).

Step 5: Write Test Case Descriptions and Objectives
In Step 4, you may have generated approximately one dozen test case names on your
first pass. That number will go up as you continue to make your testing more sys-
tematic. The advantage of having a large number of tests is that it usually increases
the coverage.

The disadvantage to creating a big test suite is simply that it is too big. It could
take a long time to fully specify every test case that you have mapped out. Also, the
resulting document could become too large, making it harder to maintain.

For each test case, write one or two sentences describing its purpose and objec-
tives. The description should provide enough information so that you could come
back to it after several weeks and recall the same ad hoc testing steps that you have
in mind now. Later, when you actually write detailed steps in the test case, any team
member can carry out the test the same way that you intended.

The act of writing the descriptions forces you to think a bit more about each test
case. When describing a test case, you may realize that it should actually be split
into two test cases, or merged with another test case. Again, make sure to note any
requirements problems or questions that you uncover.

Step 6: Create the Test Cases
The next step is to write the test case steps and specify test data. This is where the
testing techniques can help you define the test data and conditions. A rule of thumb
is to create approximately ten test cases per day.

Focus on the test cases that seem most in need of additional detail. For example,
select system test cases that cover the following:

High-priority-use cases or features N
Software components that are currently available for testing N
Features that must work properly before other features can be exercised N
Features that are needed for product demos or screenshots N
Requirements that need to be clearer N

Each test case should be simple enough to clearly succeed or fail. Ideally, the steps
of a test case are a simple sequence: set up the test situation, exercise the system with
specific test inputs, and verify the correctness of the system outputs.

Systems that are highly testable tend to have a large number of simple test
cases that follow the set up–exercise–verify pattern. For those test cases, a one-
column format can clearly express the needed steps. However, not all test cases

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 63

are simple. Sometimes it is impractical to test one requirement at a time. Instead,
some system test cases may be longer scenarios that exercise several requirements
and verify correctness at each step. For those test cases, a two-column format
may be useful.

In the one-column format, each step is a brief verb phrase that describes
the action that the tester should take. For example, “Enter Username,” “Enter
Password,” “Select Login,” and “See Home Page.” Verification of expected outputs
are written using the verbs “observe” and “verify.” If multiple inputs are needed,
multiple outputs must be verified.

In the two-column format, each test case step has two parts. The test input is a
verb phrase describing what the tester should do in that step. The expected output
is a noun phrase describing all the output that the tester should observe at that step.
(See Appendix E, “Test Templates,” and the templates in the CD that came with
the book.)

If you only have one test input value for a given test case, then you could write
that test data value directly into the step where it is used. However, many test cases
will have a set of test data values that must all be used to adequately cover all pos-
sible inputs. Define and use test input variables. Each variable is defined with a set
of its selected values, and then it is used in test case steps just as you would use a
variable in a programming language. When carrying out the tests, the tester should
repeat each test case with each possible combination of test variable values, or as
many as are practical.

Carefully selecting test data is as important as defining the steps of the test case.
The concepts of boundary conditions and equivalence partitions are key to good
test data selection. Try these steps to select test data:

Determine the set of all input values that can possibly be entered for a given N
input parameter.
Define the boundary between valid and invalid input values. For example, N
negative ages are impossible. You might also check for clearly unreasonable
inputs. For example, an age entered as 200 is unrealistic.

(See Appendix G, “Software Testing Techniques,” for more information on how to
write test cases. Thirty-nine testing techniques are included.)

Step 7: Review the Test Cases
A suite of system test cases can find many defects, but still leave many other critical
defects undetected. One clear way to guard against undetected defects is to increase
the coverage of your test suite.

Although a suite of unit tests might be evaluated in terms of its implementa-
tion coverage, a suite of system test cases should instead be evaluated in terms of
specification coverage. Implementation coverage measures the percentage of lines

© 2009 by Taylor & Francis Group, LLC

64 ◾ Software Testing and Continuous Quality Improvement

of code that are executed by the unit test cases. If there is a line of code that is never
executed, then there could be an undetected defect on that line.

Specification coverage measures the percentage of written requirements that the
system test suite covers. If there is a requirement that is not tested by any system test
case, then you are not assured that the requirement has been satisfied.

You can evaluate the coverage of your system tests at two levels: (1) the test
suite itself is an organized table of contents for the test cases that can make it easy
to notice parts of the system that are not being tested; and (2) within an individual
test case, the set of possible input values should cover all input values. (See the “Test
Case Review Checklist” located on the CD that came with the book.)

transforming use Cases to test Cases
The use case, created by Ivar Jacobsen, is a scenario that describes the use of a sys-
tem by an actor to accomplish work.

The following are the steps the tester can follow to create effective test cases
from use cases.

Step 1: Draw a Use Case Diagram
Use cases can be represented visually with use case diagrams as shown in Figure 4.4.

The ovals represent use cases, and the stick figures represent “actors,” which can
be either humans or other systems. The lines represent communication between
an actor and a use case. Use cases provide the “big picture.” Each use case repre-
sents functionality that will be implemented, and each actor represents someone or
something outside our system that interacts with it.

Step 2: Write the Detailed Use Case Text
The details of each use case are then documented in text format. Table 4.3 illus-
trates the “Enroll” use case details consisting of the normal and alternative flows.

Student

Enroll

Change

Drop

figure 4.4 use case diagram.

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 65

table 4.3 format for the “enroll” use Case textual description

Use case ID Enroll_001

Use case name Enroll a Student

Created by John Doe Last updated
by:

Date created 3/15/2008 Date last
updated:

Actors Student

Description Enroll a student into classes

Trigger Student wishes to enroll before the enrollment
deadline

Preconditions Student has been accepted to the university
Enrollment period has started

Postconditions Student’s information has been validated and stored
in the university enrollment system

Basic flow Enrollment:
Student enters his or her name
Student enters his or her address
Student enters his or her phone number
Student enters his or her student number
Student presses the “Submit” button
Enrollment system lists the available courses from a
drop-down list

Student selects a course from a drop-down list and
presses the “Accept” button

The system stores the course information and asks
the student if he or she wants to select another
course

The student selects “Yes,” and the enrollment
process continues (Step 6) until all the courses
have been selected and the student presses “No”

All selected courses and schedule are printed out
The student logs off the system

Alternative flows A1. The “Submit” button is pressed (Step 5) and if any
information is incorrect, an error message is displayed
next to the error field and Step 5 is repeated

A2. The student presses the “Reject” button (Step 7)

Continued

© 2009 by Taylor & Francis Group, LLC

66 ◾ Software Testing and Continuous Quality Improvement

Step 3: Identify Use Case Scenarios

A use case scenario is an instance of a use case, or a complete “path” through the
use case. End users of a system can go down many paths as they execute the func-
tionality specified in the use case. To illustrate this, Figure 4.5 is a flowchart of the
enrollment process. The basic (or normal) path is illustrated by the dotted lines.

The alternate paths (or exceptions) are depicted as A1 and A2. A1 is the case
when an error occurs when the student is entering his or her information into the
system. A2 depicts the case when the student has selected a particular course but
then chooses not to accept it.

Table 4.4 lists some possible combinations of scenarios for Figure 4.5. Starting
with the basic flow combinations, alternative flows are added to define the sce-
narios. These scenarios will be used as the basis for creating test cases.

Step 4: Generating the Test Cases

A test case is a set of test inputs, execution conditions, and expected results devel-
oped for a particular objective.

table 4.3 format for the “enroll” use Case textual description (Continued)

Actors Student

Includes N/A

Priority High

Frequency of use As needed

Business rules N/A

Special requirements N/A

Assumptions Selected courses must not be full

Notes and Issues N/A

table 4.4 use Case Scenarios

Scenario 1 Basic flow

Scenario 2 Basic flow Alternate
flow 1

Scenario 3 Basic flow Alternate
flow 2

Scenario 4 Basic flow Alternate
flow 2

Alternate
flow 3

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 67

Start Enrollment

Student Enters
Information

Error?

System Lists
Course

Student
Selects a
Course

Accept?

System Stores
Information

More
Courses?

System Prints
Courses

Student Logs
Off System

End–Use Case

Yes

Yes

Yes

A3

A2

No

No

No

A1

figure 4.5 enrollment flowchart.

© 2009 by Taylor & Francis Group, LLC

68 ◾ Software Testing and Continuous Quality Improvement

Once the set of scenarios has been identified, the next step is to identify the test
cases. This is accomplished by analyzing the scenarios and reviewing the use case
textual descriptions. There should be at least one test case for each scenario. For
each invalid test case, there should be only one invalid input.

To document the test cases, a matrix format can be used, as illustrated in
Table 4.5. The first column of the first row contains the test case ID, and the second
column has a brief description of the test case and the scenario being tested. All the
other columns except the last one contain data elements that will be used to imple-
ment the tests. The last column contains a description of the test case’s expected
output. The “V” depicts a valid test input, and an “I” depicts an invalid test input.

Step 5: Generating Test Data
Once all of the test cases have been identified, they should be reviewed and validated
to ensure accuracy and to identify redundant or missing test cases. Then, once they
are approved, the final step is to substitute actual data values for the I’s and V’s.
Table 4.6 shows a test case matrix with values substituted for the I’s and V’s in the
previous matrix. A number of techniques can be used for identifying data values.

Two valuable techniques are Equivalence Class Partitioning and Boundary
Value Analysis (see Appendix G, “Software Testing Techniques,” for more details).

Summary
Use cases are useful in the front end of the software development life cycle, and test
cases are typically associated with the latter part of the life cycle. By leveraging use
cases to generate test cases, testing teams can get started much earlier in the life cycle.

what to do when requirements
are nonexistent or Poor?
The following section provides an overview of how to create test cases when “good”
requirements do not exist.

Depending on the project and organization, requirements may be very well
written and satisfy the requirements quality factors described earlier. On the other
hand, it is often the case that requirements are not clear, unambiguous, and pres-
ent. In this case, other alternatives need to be considered.

Ad Hoc Testing

The Art of Ad Hoc Testing

Ad hoc testing is the least formal of test techniques. It has been criticized because
it is not structured. This testing type is most often used as a complement to other

© 2009 by Taylor & Francis Group, LLC

Tran
sfo

rm
in

g R
eq

u
irem

en
ts to

 Testab
le Test C

ases
◾

69
table 4.5 enrollment test Case Matrix

Test Case
ID Scenario/Condition

Student
Name Address

Phone
Number

Student
Number

Course
Rejected

Exit
Enrollment Expected Result

Enroll 1 Scenario 1—
successful enrollment

V V V V No Yes Selected courses
are displayed
and exit system

Enroll 2 Scenario 2—unidentified
student

I N/A N/A N/A N/A No Error message;
back to list of
available courses

Enroll 3 Scenario 3—rejects a
course

V V V V Yes No Selected course
is selected,
rejected; back to
list of available
courses

© 2009 by Taylor & Francis Group, LLC

70
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 4.6 enrollment test Case details

Test Case
ID

Scenario/
Condition

Student
Name Address

Phone
Number

Student
Number

Course
Selected Expected Result

Enroll 1 Scenario 1—
successful
registration

John Doe 2719 Brook
Avenue, Dallas,
Texas 75093

(972) 9832876 G3982 Oceanography Courses and
schedule displayed;
exit system

Enroll 2 Scenario 2—
unidentified
student

Invalid 2719 Brook
Avenue, Dallas,
Texas 75093

(972) 9832876 G3982 Oceanography Error message; back
to login screen

Enroll 3 Scenario 2—
unidentified
student

John Doe Invalid (972) 9832876 G3982 Oceanography Error message; back
to login screen

Enroll 4 Scenario 2—
unidentified
student

John Doe 2719 Brook
Avenue, Dallas,
Texas 75093

Invalid G3982 Oceanography Error message; back
to login screen

Enroll 5 Scenario 2—
unidentified
student

John Doe 2719 Brook
Avenue, Dallas,
Texas 75093

(972) 9832876 Invalid Oceanography Error message; back
to login screen

Enroll 6 Scenario 2—
unidentified
student

John Doe 2719 Brook
Avenue, Dallas,
Texas 75093

(972) 9832876 G3982 Invalid Error message; back
to login screen

Enroll 7 Scenario 3—
unidentified
student

John Doe 2719 Brook
Avenue, Dallas,
Texas 75093

(972) 9832876 G3982 Oceanography
rejected

Back to login screen

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 71

types of testing. Ad hoc testing finds a place during the entire testing cycle. Early
in the project, ad hoc testing provides breadth to testers’ understanding of your pro-
gram, thus aiding in discovery. In the middle of a project, the data obtained helps
set priorities and schedules. As a project nears the ship date, ad hoc testing can be
used to examine defect fixes more rigorously, as described earlier.

However, this is also a strength; that is, important things can be found quickly.
Ad hoc testing is performed with improvisation in which the tester seeks to find
defects with any means that seem appropriate. It is different from regression test-
ing, which looks for a specific issue with detailed reproducible steps, with a clear
expected result.

Ad hoc testing is in many ways similar to jazz improvisation. Jazz musicians
sometimes use a fake book consisting of lead sheets for the songs on which they
will improvise. After playing the recognizable melody once, the musicians take
turns playing extemporaneous solos. Sometimes they will also vary the rhythm
of the piece while improvising; for example, by playing behind the beat. These
improvisational solos may be recognizable as related to the original tune, or they
may not. However, toward the end of the song, the players typically return to the
original melody.

There is a parallel to software testing. Testers often start with a documented test
design that systematically describes all the cases to be covered. One of the more
productive ways to perform improvisational testing is to gather a group of two or
more skilled testers in the same room, and ask them to collaborate on extemporane-
ous testing. The defect-finding power of testers collaborating with improvisational
testing is very similar to the power of collaboration exhibited in jazz sessions.

One approach to improvisational testing is to use existing documented tests as
the basis, and then invent variations on that theme.

Advantages and Disadvantages of Ad Hoc Testing

One of the best uses of ad hoc testing is for discovery. Reading the requirements or
specifications (if they exist) often does not provide a good sense of how a program
behaves. Ad hoc testing can find holes in your test strategy, and can expose rela-
tionships between subsystems that would otherwise not be apparent. In this way, it
serves as a tool for checking the completeness of your testing.

Missing cases may be found that would not otherwise be apparent with formal
test cases, as these are set in concrete. Defects found while doing ad hoc testing are
often examples of entire classes of forgotten test cases.

Another use for ad hoc testing is to determine the priorities for your other test-
ing activities. Low-level housekeeping functions and basic features often do not
make it into the requirements and thus have no associated test cases.

A disadvantage of ad hoc testing is that these forms of tests are not documented
and, therefore, not repeatable. This limits ad hoc tests from the regression testing
suite.

© 2009 by Taylor & Francis Group, LLC

72 ◾ Software Testing and Continuous Quality Improvement

Exploratory Testing

The Art of Exploratory Testing

Exploratory testing is extra suitable if requirements and specifications are incom-
plete, or if there is lack of time. The approach can also be used to verify that pre-
vious testing has found the most important defects. It is common to perform a
combination of exploratory and scripted testing, i.e., a written set of test steps to
test software, where the choice is based on risk.

Exploratory testing as a technique for testing computer software does not require
significant advanced planning and is tolerant of limited documentation. It relies on
the skill and knowledge of the tester to guide the testing, and uses an active feed-
back loop to guide and calibrate the effort. According to James Bach, “The classical
approach to test design, i.e., scripted testing, is like playing ‘20 Questions’ by writ-
ing out all the questions in advance.”

Exploratory testing is the tactical pursuit of software faults and defects driven
by challenging assumptions. It is an approach in software testing with simultane-
ous learning, test design, and test execution. While the software is being tested, the
tester learns things that together with experience and creativity generates new good
tests to run.

Exploratory testing has been performed for a long time, and has similarities to
ad hoc testing. In the early 1990s, ad hoc was too often synonymous with sloppy
and careless work. This new terminology was first published by Cem Kaner in his
book Testing Computer Software. Exploratory testing is more structured than classi-
cal ad hoc testing and can be as disciplined as any other intellectual activity.

Exploratory testing seeks to find out how the software actually works, and to
ask questions about how it will handle difficult and easy cases. The testing is depen-
dent on the tester’s skill of inventing test cases and finding defects. The more the
tester knows about the product and different test methods, the better the testing
will be.

When performing exploratory testing, there are no exact expected results; it is
the tester who decides what will be verified, critically investigating the correctness
of the result.

In reality, testing almost always is a combination of exploratory and scripted
testing, but with a tendency toward either one, depending on the context.

According to Cem Kaner and James Bach, exploratory testing is more a [mind-
set] or “… a way of thinking about testing” than a methodology. The documentation
of exploratory testing ranges from documenting all tests performed to document-
ing just the bugs.

Exploratory Testing Process

The basic steps of exploratory testing are as follows:

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ◾ 73

 1. Identify the purpose of the product.
 2. Identify functions.
 3. Identify areas of potential instability.
 4. Test each function and record problems.
 5. Design and record a consistency verification test.

According to James Bach, “Exploratory Testing, as I practice it, usually proceeds
according to a conscious plan. But not a rigorous plan … it is not scripted in detail.
To the extent that the next test we do is influenced by the result of the last test we
did, we are doing exploratory testing. We become more exploratory when we can’t
tell what tests should be run in advance of the test cycle.”

Test cases themselves are not preplanned:

Exploratory testing can be concurrent with product development and test N
execution.
Such testing is based on implicit and explicit (if they exist) specifications as N
well as the “as-built” product.
Exploratory testing starts with a conjecture as to correct behavior, followed N
by exploration for evidence that it works/does not work.
It is based on some kind of mental model. N
“Try it and see if it works.” N

Advantages and Disadvantages of Exploratory Testing

The main advantage of exploratory testing is that less preparation is needed, important
bugs are found fast, and it is more intellectually stimulating than scripted testing.

Another major benefit is that testers can use deductive reasoning based on the
results of previous tests to guide their future testing on the fly. They do not have
to complete a current series of scripted tests before focusing in on or moving on to
exploring a more target-rich environment. This also accelerates bug detection when
used intelligently.

Another benefit is that, after initial testing, most bugs are discovered by some
kind of exploratory testing. This can be demonstrated logically by stating, “Programs
that pass certain tests tend to continue to pass the same tests and are more likely to
fail other tests or scenarios that are yet to be explored.”

Disadvantages are that the tests cannot be reviewed in advance (and thus can-
not prevent errors in code and test cases), and that it can be difficult to show exactly
which tests have been run.

When repeating exploratory tests, they will not be performed in precisely the
same manner, which can be a disadvantage if it is more important to know what
exact functionality.

© 2009 by Taylor & Francis Group, LLC

75

5Chapter

Quality through
Continuous
improvement Process

Contribution of edward deming
Although Henry Ford and Fredrick Winslow Taylor made enormous contributions
to factory production, Dr. Edward Deming has gone beyond them. He has influ-
enced every facet of work in every industry, including government, schools, and
hospitals. Deming has had a profound effect on how people think, how they see
themselves, and how they relate to their customers, to one another, and to society.

In 1928 he earned his Ph.D. in physics and in the next four years published
papers about the effect of electrons on the structure of materials. He started his
career at the frontiers of physics. In 1934 he began to move away from physics and
physical chemistry and published his first paper in the field of statistics. In 1937 he
wrote a paper on the statistical theory of errors.

By law the federal government is required to take a population census every
ten years, and in 1940 Deming became involved with the Census Bureau of the
Department of Commerce. The proper tool for this task was statistics, and so we
find in his list of publications a series of 26 papers dealing almost solely with prob-
lems of sampling. One paper published in 1944, during World War II, introduced
Shewhart’s methods of quality control to engineers. He took the lead in getting this

© 2009 by Taylor & Francis Group, LLC

76 ◾ Software Testing and Continuous Quality Improvement

subject into the wartime training of engineers, giving the first course himself at
Stanford University. From around 1945 onward, people did not think of Deming
as a physicist but as a statistician. It is not surprising, therefore, that when General
MacArthur needed to make a population survey in Japan in 1948, he called upon
Deming. In 1953—3 years after he started to work with Japanese managers—
Deming started his crusade to bring quality management principles to American
managers. In 1953 he published Management’s Responsibility for the Use of Statistical
Techniques in Industry, thus marking the start of a theme he would pursue for the
next 40 years. He had begun to see the transformation in Japan.

role of Statistical Methods
Deming’s quality method includes the use of statistical methods that he believed
were essential to minimize confusion when there was variation in a process.
Statistics also help us to understand the processes themselves, gain control, and
improve them. This is brought home by the quote, “In God we trust. All others
must use data.” Particular attention is paid to locating a problem’s major causes,
which, when removed, improve quality significantly. Deming points out that many
statistical techniques are not difficult and require some background in mathemat-
ics. Education is a very powerful tool and is required at all levels of an organization
to make it work.

The following is an outline of some statistical methods that are further described
and applied to software testing. More details are provided in Section 3.

Cause-and-Effect Diagram
Often called the “fishbone” diagram, this method can be used in brainstorming
sessions to locate factors that may influence a situation. This is a tool used to iden-
tify possible causes of a problem by representing the relationship between an effect
and its possible cause.

Flowchart
This is a graphical method of documenting a process. It is a diagram that shows
the sequential steps of a process or of a workflow that go into creating a product or
service. The justification of flowcharts is that to improve a process, one must first
understand it.

Pareto Chart
This is a commonly used graphical technique in which events to be analyzed are
named. The incidents are counted by name, and the events are ranked by frequency

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ◾ 77

in a bar chart in ascending sequence. Pareto analysis applies the 80/20 rule. An
example of this is when 20 percent of an organization’s customers accounts for 80
percent of the revenue. This implies that the focus should be on the 20 percent.

Run Chart
A run chart is a graphical technique that graphs data points in chronological order
to illustrate trends of a characteristic being measured, to assign a potential cause
rather than random variation.

Histogram
A histogram is a graphical description of measured values organized according to the fre-
quency or relative frequency of occurrence. It also provides the average and variation.

Scatter Diagram
A scatter diagram is a graph designed to show where there is a relationship between
two variables or changing factors.

Control Chart
A control chart is a statistical method for distinguishing between special and com-
mon variations exhibited by processes. It is a run chart with statistically determined
upper and lower limits drawn on either side of the process averages.

deming’s 14 Quality Principles
Deming outlined 14 quality principles that must be used concurrently to achieve
quality. Although these principles were applied to industry, influencing government,
schools, and hospitals, many are also applicable to achieving software quality from an
information technology perspective. The following is a brief discussion of each point,
followed by a description of how a quality assurance organization might apply each.

Point 1: Create Constancy of Purpose
Most companies tend to dwell on their immediate problems without adequate atten-
tion to the future. According to Deming, “It is easy to stay bound up in the tangled
knots of the problems of today, becoming ever more and more efficient in the future,
but no company without a plan for the future will stay in business.” A constancy of
purpose requires innovation (e.g., long-term planning for it), investment in research
and education, and continuous improvement of products and service.

© 2009 by Taylor & Francis Group, LLC

78 ◾ Software Testing and Continuous Quality Improvement

To apply this point, an information technology quality assurance organization
can do the following:

Develop a quality assurance plan that provides a long-range quality direction. N
Require software testers to develop and maintain comprehensive test plans N
for each project.
Encourage quality analysts and testers to come up with new and innovative N
ideas to maximize quality.
Strive to continuously improve quality processes. N

Point 2: Adopt the New Philosophy
Quality must become the new religion. According to Deming, “The cost of living
depends inversely on the goods and services that a given amount of money will
buy, for example, reliable service reduces costs. Delays and mistakes raise costs.”
Consumers of goods and services end up paying for delays and mistakes, which
reduces their standard of living. Tolerance of acceptable levels of defects in systems
is the roadblock between quality and productivity, i.e., the rush to verify quality
will diminish the quality level.

To apply this point, an information technology quality assurance organization
can do the following:

Educate the information technology organization on the need and value N
of quality.
Promote the quality assurance department to the same level as any other N
department.
Defuse the notion that quality assurance is negative and that it is a “watch- N
dog” function.
Develop a risk management plan, and do not accept any anomalies outside N
the range of acceptable risk tolerance.

Point 3: Cease Dependence on Mass Inspection
The old way of thinking is to inspect bad quality out. A better approach is to use
inspection to see how we are doing, and not leave it to the final product stage, when
it is difficult to determine where in the process a defect took place. Quality should
be built in without the dependence on mass inspections.

To apply this point, an information technology quality assurance organization
can do the following:

Promote and interject technical reviews, walkthroughs, and inspections as N
nondefensive techniques for achieving quality throughout the entire develop-
ment cycle.

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ◾ 79

Instill the need for the whole organization to be quality conscious and treat it N
as a tangible, measurable work product deliverable.
Require statistical evidence of information technology quality. N

Point 4: End the Practice of Awarding
Business on Price Tag Alone
“Two or more suppliers for the same item will multiply the evils that are necessar-
ily inherent and bad enough with any one supplier.” A buyer will serve her com-
pany best by developing a long-term relationship of loyalty and trust with a single
vendor. Rather than using standards manuals by which vendors must qualify for
business, a better approach is active involvement by the supplier’s management with
Deming’s 14 points.

To apply this point, an information technology quality assurance organization
can do the following:

Require software quality and test vendors to provide statistical evidence of N
their quality.
Pick the best vendor for each quality assurance tool, testing tool, or service, N
and develop a working relationship consistent with the quality plan.

Point 5: Improve Constantly and Ceaselessly
the System of Production and Service
Improvement is not a one-time effort: management is obliged to improve qual-
ity continuously. As Deming points out, “Putting out fires is not improvement.
Finding a point out of control, finding the special cause and removing it is only put-
ting the process back to where it was in the first place. The obligation for improve-
ment is a ceaseless process.”

To apply this point, an information technology quality assurance organization
can do the following:

Constantly improve quality assurance and testing processes. N
Not rely on judgment. N
Use statistical techniques such as root cause-and-effect analysis to uncover N
the sources of problems and test analysis.

Point 6: Institute Training and Retraining
Often, little or no training is provided to workers, and they do not know when they
have done their jobs correctly. It is very difficult for a worker to unlearn improper
training. Deming stresses that training should not end as long as performance is
not in statistical control and there is something to be gained.

© 2009 by Taylor & Francis Group, LLC

80 ◾ Software Testing and Continuous Quality Improvement

To apply this point, an information technology quality assurance organization
can do the following:

Institute modern training aids and practices. N
Encourage quality staff to constantly increase their knowledge of quality and N
testing techniques by attending seminars and classes.
Reward staff for creating new seminars and special interest groups. N
Use statistical techniques to determine when training is needed and completed. N

Point 7: Institute Leadership
As Deming points out, “There is no excuse to offer for putting people on a job
that they know not how to do. Most so-called ‘goofing off’—somebody seems to
be lazy, doesn’t seem to care—that person is almost always in the wrong job, or
has very poor management.” It is the responsibility of management to discover the
inhibitors that prevent workers from taking pride in their jobs. From an informa-
tion technology point of view, development often views the job of quality to be the
QA department’s responsibility. QA should be very aggressive as quality leaders and
point out that quality is everyone’s responsibility.

To apply this point, an information technology quality assurance organization
can do the following:

Take the time to train a developer on how to unit test code effectively if an N
excessive number of defects in his or her code are discovered by QA testing.
Improve supervision, which is the responsibility of management. N
Allow the project leader to have more time to help people on the job. N
Use statistical methods to indicate where there are faults. N

Point 8: Drive Out Fear
There is often no incentive for problem solving. Suggesting new ideas is too risky.
People are afraid of losing their raises, promotions, or jobs. As Deming points out,
“Fear takes a horrible toll. Fear is all around, robbing people of their pride, hurt-
ing them, robbing them of a chance to contribute to the company. It is unbe-
lievable what happens when you unloose fear.” A common problem is the fear of
inspections.

To apply this point, an information technology quality assurance organization
can do the following:

Promote the idea that quality is goodness and should be rewarded, and pro- N
mote any new ideas to improve quality.
Prior to a structured walkthrough, inspection, or JAD session, make sure N
everyone understands the ground rules; promote an “egoless” environment.

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ◾ 81

Periodically schedule a “Quality Day” in which quality improvement ideas N
are openly shared.

Point 9: Break Down Barriers between Staff Areas
There are numerous problems when departments have different goals and do not
work as a team to solve problems, set policies, or define new directions. As Deming
points out, “People can work superbly in their respective departments, but if their
goals are in conflict, they can ruin the company. It is better to have teamwork,
working for the company.”

To apply this point, an information technology quality assurance organization
can do the following:

Promote the need for the quality assurance and other departments (partic- N
ularly development) to work closely together; QA should be viewed as the
“good guys” trying to make the software products the best in the world.
Point out that a defect discovered before production is one that will not be N
discovered by end users.

Point 10: Eliminate Slogans, Exhortations,
and Targets for the Workforce
As Deming points out, “Slogans never helped anybody do a good job. They gener-
ate frustration and resentment.” Slogans such as “Zero Defects” or “Do It Right
the First Time” are fine on the surface. The problem is that they are viewed as
signals that management does not understand employees’ problems, or care. There
is a common practice of setting goals without describing how they are going to be
accomplished.

To apply this point, an information technology quality assurance organization
can do the following:

Encourage management to avoid the use of slogans. N
Rather than generate slogans, develop and document quality standards, pro- N
cedures, and processes that the rest of the organization can use to help maxi-
mize quality.

Point 11: Eliminate Numerical Goals
As Deming points out, “Quotas or other work standards, such as measured day
work or rates, impede quality perhaps more than any other single working condi-
tion. As work standards are generally used, they guarantee inefficiency and high
costs.” A proper work standard would define what is and is not acceptable in terms
of quality.

© 2009 by Taylor & Francis Group, LLC

82 ◾ Software Testing and Continuous Quality Improvement

To apply this point, an information technology quality assurance organization
can do the following:

Look not just at the numbers, but look carefully at the quality standards. N
Avoid formally publicizing defect rates by individual or department. N
Work with the development organization to define quality standards and N
procedures to improve quality.
When there are specific quality issues, have the department manager address N
them informally.

Point 12: Remove Barriers to Pride of Workmanship
People are regarded as a commodity, to be used as needed. If not needed, they
are returned to the market. Managers cope with many problems, but tend to shy
away from people problems. They often form “Quality Control Circles,” but this
is often a way for a manager to pretend to be doing something about a problem.
Management seldom invests employees with any authority, nor does it act upon
their recommendations.

To apply this point, an information technology quality assurance organization
can do the following:

Instill an image that quality is their deliverable and is a very valuable N
commodity.
Delegate responsibility to the staff to seek out quality and do whatever it N
takes to accomplish it.

Point 13: Institute a Vigorous Program
of Education and Retraining
People must acquire new knowledge and skills. Education and retraining are an
investment in people, which is required for long-term planning. Education and
training must fit people into new jobs and responsibilities.

To apply this point, an information technology quality assurance organization
can do the following:

Encourage quality staff to constantly increase their knowledge of quality and N
testing techniques by attending seminars and classes.
Reward staff for creating new seminars and special interest groups. N
Retrain individuals in new quality skills. N

Point 14: Take Action to Accomplish the Transformation
Top management needs to push these 13 points. Every employee, including man-
agers, should acquire a precise idea of how to improve quality continually, but the

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ◾ 83

initiative must come from top management. The following discusses a process that
can be used to apply Deming’s Point 14. It is also the process that is constantly
reinforced in this text to improve software testing processes.

Continuous improvement through the
Plan, do, Check, act Process
The term control has various meanings, including supervising, governing, regulat-
ing, or restraining. The control in quality control means defining the objective of
the job, developing and carrying out a plan to meet that objective, and checking to
determine if the anticipated results are achieved. If the anticipated results are not
achieved, modifications are made in the work procedure to fulfill the plan.

One way to describe the foregoing is with the Deming Cycle (or PDCA cir-
cle; see Figure 5.1), named after Deming in Japan because he introduced it there,
although it was originated by Shewhart. It was the basis of the turnaround of the
Japanese manufacturing industry, in addition to other Deming management prin-
ciples. The word management describes many different functions, encompassing
policy management, human resources management, and safety control, as well as
component control and management of materials, equipment, and daily schedules.
In this text, the Deming model is applied to software quality.

In the Plan quadrant of the circle, one defines objectives and determines the
conditions and methods required to achieve them. It is crucial to clearly describe
the goals and policies needed to achieve the objectives at this stage. A specific objec-
tive should be documented numerically, if possible. The procedures and conditions
for the means and methods to achieve the objectives are described.

In the Do quadrant of the circle, the conditions are created and the necessary
training to execute the plan is imparted. It is paramount that everyone thoroughly
understands the objectives and the plan. Workers need to be taught the procedures
and skills required to fulfill the plan and thoroughly understand the job. The work
is then performed according to these procedures.

In the Check quadrant of the circle, one must check to determine whether
work is progressing according to the plan and whether the expected results are
obtained. The performance of the set procedures must be checked against changes

Act Plan

Check Do

figure 5.1 the deming quality circle.

© 2009 by Taylor & Francis Group, LLC

84 ◾ Software Testing and Continuous Quality Improvement

in conditions, or abnormalities that may appear. As often as possible, the results of
the work should be compared with the objectives. If a check detects an abnormal-
ity—that is, if the actual value differs from the target value—then a search for the
cause of the abnormality must be initiated to prevent its recurrence. Sometimes, it
is necessary to retrain workers and revise procedures. It is important to make sure
these changes are reflected and more fully developed in the next plan.

In the Action quadrant of the circle, if the checkup reveals that the work is not
being performed according to plan or results are not what was anticipated, mea-
sures must be devised for appropriate action.

going around the PdCa Circle
The foregoing procedures not only ensure that the quality of the products meets
expectations, but they also ensure that the anticipated price and delivery date are
fulfilled. Sometimes our preoccupation with current concerns makes us unable
to achieve optimal results. By going around the PDCA circle, we can improve
our working methods and obtain the desired results. Repeated use of PDCA
makes it possible to improve the quality of the work, the work methods, and the
results. Sometimes this concept is depicted as an ascending spiral, as illustrated in
Figure 5.2.

ACT(A)

Quality
Product or

Service

Plan(P)
Check(C) DO(D)

PDCA

PDCA

PDCA

PDCA

figure 5.2 the ascending spiral.

© 2009 by Taylor & Francis Group, LLC

2waterfall
teSting review

The waterfall life-cycle development methodology consists of distinct phases from
requirements to coding. Life-cycle testing means that testing occurs in parallel
with the development life cycle and is a continuous process. Deming’s continuous
improvement process is applied to software testing using the quality circle, prin-
ciples, and statistical techniques.

The psychology of life-cycle testing encourages testing to be performed outside
the development organization. The motivation for this is that there are clearly defined
requirements, and it is more efficient for a third party to verify these requirements.

The test plan is the bible of software testing. It is a document prescribing the test
objectives, scope, strategy approach, and test details. There are specific guidelines
for building a good test plan.

The two major quality assurance verification approaches for each life-cycle phase
are technical reviews and software testing. Technical reviews are more preventive;
that is, they aim to remove defects as soon as possible. Software testing verifies the
actual code that has been produced.

The objectives of this section are to:

Discuss how life-cycle testing is a parallel activity. N
Describe how Deming’s process improvement is applied. N
Discuss the psychology of life-cycle development and testing. N
Discuss the components of a good test. N
List and describe how technical review and testing are verification techniques. N

© 2009 by Taylor & Francis Group, LLC

87

6Chapter

overview

The following provides an overview of the waterfall life-cycle devel-
opment methodology and the associated testing activities. Deming’s
continuous quality improvement is applied with technical review and
testing techniques.

waterfall development Methodology
The life-cycle development or waterfall approach breaks the development cycle
down into discrete phases, each with a rigid sequential beginning and end (see
Figure 6.1). Each phase is fully completed before the next is started. Once a phase is
completed, in theory during development, one never goes back to change it.

In Figure 6.1 you can see that the first phase in the waterfall is user require-
ments. In this phase, the users are interviewed, their requirements are analyzed,
and a document is produced detailing what the users’ requirements are. Any reen-
gineering or process redesign is incorporated into this phase.

In the next phase, entity relation diagrams, process decomposition diagrams,
and data flow diagrams are created to allow the system to be broken down into man-
ageable components from a data and functional point of view. The outputs from the
logical design phase are used to develop the physical design of the system. During
the physical and program unit design phases, various structured design techniques,
such as database schemas, Yourdon structure charts, and Warnier–Orr diagrams,
are used to produce a design specification that will be used in the next phase.

© 2009 by Taylor & Francis Group, LLC

88 ◾ Software Testing and Continuous Quality Improvement

In the program unit design phase, programmers develop the system according
to the physical design produced in the previous phase. Once complete, the sys-
tem enters the coding phase, where it will be written in a programming language,
unit or component tested, integration tested, system tested, and finally, user tested
(often called acceptance testing).

Now the application is delivered to the users for the operation and mainte-
nance phase (not shown in Figure 6.1). Defects introduced during the life-cycle
phases are detected and corrected, and new enhancements are incorporated into
the application.

Continuous improvement “Phased” approach
Deming’s continuous improvement process, which was discussed in the previous
section, is effectively applied to the waterfall development cycle using the Deming
quality cycle, or PDCA; that is, Plan, Do, Check, and Act. It is applied from two
points of view: software testing, and quality control or technical reviews.

As defined in Section 1, “Software Quality in Perspective,” the three major
components of quality assurance are software testing, quality control, and software
configuration management. The purpose of software testing is to verify and validate
the activities to ensure that the software design, code, and documentation meet
all the requirements imposed on them. Software testing focuses on test planning,
test design, test development, and test execution. Quality control is the process
and methods used to monitor work and observe whether requirements are met. It
focuses on structured walkthroughs and inspections to remove defects introduced
during the software development life cycle.

Use
Requirements

Logical
Design

Physical
Design

Program
Unit Design

Coding

figure 6.1 waterfall development methodology.

© 2009 by Taylor & Francis Group, LLC

Overview ◾ 89

Psychology of life-Cycle testing
In the waterfall development life cycle, there is typically a concerted effort to keep
the testing and development departments separate. This testing organization is
typically separate from the development organization, with a different reporting
structure. The basis of this is that because requirements and design documents
have been created at specific phases in the development life cycle, a separate quality
assurance organization should be able to translate these documents into test plans,
test cases, and test specifications. Underlying assumptions include the belief that (1)
programmers should not test their own programs and (2) programming organiza-
tions should not test their own programs.

It is thought that software testing is a destructive process and that it would be
very difficult for a programmer to suddenly change his perspective from developing
a software product to trying to find defects, or breaking the software. It is believed
that programmers cannot effectively test their own programs because they cannot
bring themselves to attempt to expose errors.

Part of this argument is that there will be errors due to the programmer’s mis-
understanding of the requirements of the programs. Thus, a programmer testing
his own code would have the same bias, and would not be as effective testing it as
someone else.

It is not impossible for a programmer to test her own programs, but testing is
more effective when performed by someone who does not have a stake in it, as a
programmer does. Because the development deliverables have been documented,
why not let another individual verify them?

It is thought that a programming organization is measured by its ability to
produce a program or system on time and economically. As with an individual
programmer, it is difficult for the programming organization to be objective. From
the point of view of the programming organization, if a concerted effort were made
to find as many defects as possible, the project would probably be late and not cost
effective. Less quality is the result.

From a practical point of view, an independent organization should be respon-
sible for the quality of the software products. Product test or quality assurance
organizations were created to serve as independent parties.

Software testing as a Continuous improvement Process
Software life-cycle testing means that testing occurs in parallel with the develop-
ment cycle and is a continuous process (see Figure 6.2). The software testing process
should start early in the application life cycle, not just in the traditional validation
testing phase after the coding phase has been completed. Testing should be inte-
grated into application development. For this, there needs to be a commitment

© 2009 by Taylor & Francis Group, LLC

90 ◾ Software Testing and Continuous Quality Improvement

on the part of the development organization and close communication with the
quality assurance function.

A test plan is initiated during the requirements phase. It describes the organiza-
tion of testing work. It is a document describing the approach to be taken for the
intended testing activities and includes the items to be tested, the types of tests to
be performed, test schedules, human resources, reporting procedures, evaluation
criteria, and so on.

During logical, physical, and program unit design, the test plan is refined with
more details. Test cases are also created. A test case is a specific set of test data and
test scripts. A test script guides the tester through a test and ensures consistency
among separate executions of the test. A test also includes the expected results, so
that it can be verified whether the test met the objective correctly. During the cod-
ing phase, test scripts and test data are generated. During application testing, the
test scripts are executed and the results are analyzed.

Figure 6.2 shows a correspondence between application development and the
testing activities. The application development cycle proceeds from user require-
ments and design until the code is completed. During test design and development,
the acceptance test criteria are established in a test plan. As more details are refined,
the system, integration, and unit testing requirements are established. There may be
a separate test plan for each test type, or one plan may be used.

During test execution, the process is reversed. Test execution starts with unit
testing. Integration tests are performed that combine individual unit-tested pieces
of code. Once this is completed, the system is tested from a total system point of
view. This is known as system testing. System testing is a multifaceted test to evalu-
ate the functionality, performance, and usability of the system. The final test is the
acceptance test, which is a user-run test that verifies the ability of the system to

User
Requirements

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

Coding

Program
Unit Design

Physical
Design

Logical
Design

Verifies

Verifies

Verifies

Verifies

figure 6.2 development phases versus testing types.

© 2009 by Taylor & Francis Group, LLC

Overview ◾ 91

meet the original user objectives and requirements. In some cases the system test
serves as the acceptance test.

If you will recall, the PDCA approach (i.e., Plan, Do, Check, and Act) is a con-
trol mechanism used to control, supervise, govern, regulate, or restrain a system.
The approach first defines the objectives of a process, develops and carries out the
plan to meet those objectives, and checks to determine if the anticipated results are
achieved. If they are not achieved, the plan is modified to fulfill the objectives. The
PDCA quality cycle can be applied to software testing.

The Plan step of the continuous improvement process, when applied to soft-
ware testing, starts with a definition of the test objectives; for example, what is to be
accomplished as a result of testing. Testing criteria do more than simply ensure that
the software performs according to specifications. Objectives ensure that all respon-
sible individuals contribute to the definition of the test criteria, to maximize quality.

A major deliverable of this step is a software test plan. A test plan is the basis for
accomplishing testing. The test plan should be considered an ongoing document.
As the system changes, so does the plan. The test plan also becomes part of the sys-
tem maintenance documentation after the application is delivered to the user. The
outline of a good test plan includes an introduction, the overall plan, and testing
requirements. As more detail is available, the business functions, test logs, problem
and summary reports, test software, hardware, data, personnel requirements, test
schedule, test entry criteria, and exit criteria are added.

The Do step of the continuous improvement process when applied to software
testing describes how to design and execute the tests included in the test plan. The
test design includes test cases, test procedures and scripts, expected results, func-
tion/test case matrix, test logs, and so on. The more definitive a test plan is, the
easier the test design will be. If the system changes between development of the test
plan and when the tests are to be executed, the test plan should be updated accord-
ingly; that is, whenever the system changes, the test plan should change.

The test team is responsible for the execution of the tests and must ensure that
the test is executed according to the plan. Elements of the Do step include selecting
test tools; defining the resource requirements; and defining the test setup conditions
and environment, test requirements, and the actual testing of the application.

The Check step of the continuous improvement process when applied to soft-
ware testing includes the evaluation of how the testing process is progressing. Again,
the credo for statisticians, “In God we trust. All others must use data,” is crucial
to the Deming method. It is important to base decisions as much as possible on
accurate and timely data. Testing metrics such as the number and types of defects,
the workload effort, and the schedule status are key.

It is also important to create test reports. Testing began with setting objectives,
identifying functions, selecting tests to validate the test functions, creating test
conditions, and executing the tests. To construct test reports, the test team must
formally record the results and relate them to the test plan and system objectives.
In this sense, the test report reverses all the previous testing tasks.

© 2009 by Taylor & Francis Group, LLC

92 ◾ Software Testing and Continuous Quality Improvement

Summary and interim test reports should be written at the end of testing and
at key testing checkpoints. The process used for report writing is the same whether
it is an interim or a summary report, and, similar to other tasks in testing, report
writing is also subject to quality control; that is, it should be reviewed. A test report
should at least include a record of defects discovered, data reduction techniques,
root cause analysis, the development of findings, and recommendations to manage-
ment to improve the testing process.

The Act step of the continuous improvement process when applied to software
testing includes devising measures for appropriate actions relating to work that was
not performed according to the plan or results that were not anticipated in the plan.
This analysis is fed back to the plan. Examples include updating the test suites, test
cases, and test scripts, and reevaluating the people, process, and technology dimen-
sions of testing.

the testing Bible: Software test Plan
A test plan is a document describing the approach to be taken for intended testing
activities and serves as a service-level agreement between the quality assurance test-
ing function and other interested parties, such as development. A test plan should be
developed early in the development cycle, and will help improve the interactions of
the analysis, design, and coding activities. A test plan defines the test objectives, scope,
strategy and approach, test procedures, test environment, test completion criteria,
test cases, items to be tested, the tests to be performed, the test schedules, personnel
requirements, reporting procedures, assumptions, risks, and contingency planning.

When developing a test plan, one should be sure that it is simple, complete,
current, and accessible by the appropriate individuals for feedback and approval. A
good test plan flows logically and minimizes redundant testing, demonstrates full
functional coverage, provides workable procedures for monitoring, tracking, and
reporting test status, contains a clear definition of the roles and responsibilities of the
parties involved, has target delivery dates, and clearly documents the test results.

There are two ways of building a test plan. The first approach is a master test
plan that provides an overview of each detailed test plan, that is, a test plan of a test
plan. A detailed test plan verifies a particular phase in the waterfall development
life cycle. Test plan examples include unit, integration, system, and acceptance.
Other detailed test plans include application enhancements, regression testing, and
package installation. Unit test plans are code oriented and very detailed, but short
because of their limited scope. System or acceptance test plans focus on the func-
tional test or black-box view of the entire system, not just a software unit. (See
Appendix E1, “Unit Test Plan,” and Appendix E2, “System/Acceptance Test Plan,”
for more details.)

The second approach is one test plan. This approach includes all the test types
in one test plan, often called the acceptance/system test plan, but covers unit,

© 2009 by Taylor & Francis Group, LLC

Overview ◾ 93

integration, system, and acceptance testing, and all the planning considerations to
complete the tests.

A major component of a test plan, often in the “Test Procedure” section, is a
test case, as shown in Figure 6.3. (Also see Appendix E8, “Test Case.”) A test case
defines the step-by-step process whereby a test is executed. It includes the objectives
and conditions of the test, the steps needed to set up the test, the data inputs, the
expected results, and the actual results. Other information such as the software,
environment, version, test ID, screen, and test type is also provided.

Major Steps in developing a test Plan
A test plan is the basis for accomplishing testing and should be considered a living
document; that is, as the application changes, the test plan should change.

A good test plan encourages the attitude of “quality before design and coding.”
It is able to demonstrate that it contains full functional coverage, and the test cases
trace back to the functions being tested. It also contains workable mechanisms for
monitoring and tracking discovered defects and report status. Appendix E2 is a
System/Acceptance Test Plan template that combines unit, integration, and system
test plans into one. It is also used in this section to describe how a test plan is built
during the waterfall life-cycle development methodology.

The following are the major steps that need to be completed to build a good
test plan.

Step 1: Define the Test Objectives

The first step in planning any test is to establish what is to be accomplished as a
result of the testing. This step ensures that all responsible individuals contribute
to the definition of the test criteria that will be used. The developer of a test plan
determines what is going to be accomplished with the test, the specific tests to be
performed, the test expectations, the critical success factors of the test, constraints,
scope of the tests to be performed, the expected end products of the test, a final
system summary report (see Appendix E11, “System Summary Report”), and the
final signatures and approvals. The test objectives are reviewed and approval for the
objectives is obtained.

Step 2: Develop the Test Approach

The test plan developer outlines the overall approach or how each test will be per-
formed. This includes the testing techniques that will be used, test entry criteria,
test exit criteria, procedures to coordinate testing activities with development, the
test management approach, such as defect reporting and tracking, test progress

© 2009 by Taylor & Francis Group, LLC

94 ◾ Software Testing and Continuous Quality Improvement

Date: _____________________ _____________________

_____________________ _____________________

Environment:

Objective:_____________________ Test ID _______________________ Reg. ID

Function:_____________________

Condition to test:

Data/steps to perform

Expected results:

Actual results: Passed ____Failed ____

__

__

__

__

__

__

__

__

__

__

(Unit, Integ., System, Accept.)

Screen:_________________________________

Tested by:

System:

Version: _____________________ Test Type:______________________________

figure 6.3 test case form.

© 2009 by Taylor & Francis Group, LLC

Overview ◾ 95

tracking, status reporting, test resources and skills, risks, and a definition of the test
basis (functional requirement specifications, etc.).

Step 3: Define the Test Environment

The test plan developer examines the physical test facilities, defines the hardware,
software, and networks, determines which automated test tools and support tools
are required, defines the help desk support required, builds special software required
for the test effort, and develops a plan to support the foregoing.

Step 4: Develop the Test Specifications

The developer of the test plan forms the test team to write the test specifications,
develops test specification format standards, divides up the work tasks and work
breakdown, assigns team members to tasks, and identifies features to be tested. The
test team documents the test specifications for each feature and cross-references
them to the functional specifications. It also identifies the interdependencies and
work flow of the test specifications and reviews the test specifications.

Step 5: Schedule the Test

The test plan developer develops a test schedule based on the resource availabil-
ity and development schedule, compares the schedule with deadlines, balances
resources and workload demands, defines major checkpoints, and develops con-
tingency plans.

Step 6: Review and Approve the Test Plan

The test plan developer or manager schedules a review meeting with the major play-
ers, reviews the plan in detail to ensure it is complete and workable, and obtains
approval to proceed.

Components of a test Plan
A system or acceptance test plan is based on the requirement specifications and is
required in a very structured development and test environment. System testing
evaluates the functionality and performance of the whole application and consists
of a variety of tests, including performance, usability, stress, documentation, secu-
rity, volume, recovery, and so on. Acceptance testing is a user-run test that demon-
strates the application’s ability to meet the original business objectives and system
requirements, and usually consists of a subset of system tests.

© 2009 by Taylor & Francis Group, LLC

96 ◾ Software Testing and Continuous Quality Improvement

Table 6.1 cross-references the sections of Appendix E2, “System/Acceptance
Test Plan,” against the waterfall life-cycle development phases. “Start” in the
intersection indicates the recommended start time, or first-cut of a test activ-
ity. “Refine” indicates a refinement of the test activity started in a previous life-
cycle phase. “Complete” indicates the life-cycle phase in which the test activity
is completed.

technical reviews as a Continuous
improvement Process
Quality control is a key preventive component of quality assurance. Defect removal
via technical reviews during the development life cycle is an example of a quality
control technique. The purpose of technical reviews is to increase the efficiency
of the development life cycle and provide a method to measure the quality of the
products. Technical reviews reduce the amount of rework, testing, and “quality
escapes,” that is, undetected defects. They are the missing links to removing defects
and can also be viewed as a testing technique, even though we have categorized
testing as a separate quality assurance component.

Originally developed by Michael Fagan of IBM in the 1970s, inspections have
several aliases. They are often referred to interchangeably as “peer reviews,” “inspec-
tions,” or “structured walkthroughs.” Inspections are performed at each phase of
the development life cycle from user requirements through coding. In the latter,
code walkthroughs are performed in which the developer walks through the code
for the reviewer.

Research demonstrates that technical reviews can be a lot more productive than
automated testing techniques in which the application is executed and tested. A
technical review is a form of testing, or manual testing, not involving program
execution on the computer. Structured walkthroughs and inspections are a more
efficient means of removing defects than software testing alone. They also remove
defects earlier in the life cycle, thereby reducing defect-removal costs significantly.
They represent a highly efficient, low-cost technique of defect removal and can
potentially result in a reduction of defect-removal costs of greater than two thirds
when compared to dynamic software testing. A side benefit of inspections includes
the ability to periodically analyze the defects recorded and remove the root causes
early in the software development life cycle.

The purpose of the following section is to provide a framework for implementing
software reviews. Discussed is the rationale for reviews, the roles of the participants,
planning steps for effective reviews, scheduling, allocation, agenda definition, and
review reports.

© 2009 by Taylor & Francis Group, LLC

O
verview

◾

97
table 6.1 System/acceptance test Plan versus Phase

Test Section
Requirements

Phase

Logical
Design
Phase

Physical
Design
Phase

Program
Unit Design

Phase
Coding
Phase

 1. Introduction

 a. System description Start Refine Refine Complete

 b. Objective Start Refine Refine Complete

 c. Assumptions Start Refine Refine Complete

 d. Risks Start Refine Refine Complete

 e. Contingencies Start Refine Refine Complete

 f. Constraints Start Refine Refine Complete

 g. Approval signatures Start Refine Refine Complete

 2. Test approach and strategy

 a. Scope of testing Start Refine Refine Complete

 b. Test approach Start Refine Refine Complete

 c. Types of tests Start Refine Refine Complete

 d. Logistics Start Refine Refine Complete

Continued

© 2009 by Taylor & Francis Group, LLC

98
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 6.1 System/acceptance test Plan versus Phase (Continued)

Test Section
Requirements

Phase

Logical
Design
Phase

Physical
Design
Phase

Program
Unit Design

Phase
Coding
Phase

 e. Regression policy Start Refine Refine Complete

 f. Test facility Start Refine Complete

 g. Test procedures Start Refine Complete

 h. Test organization Start Refine Complete

 i. Test libraries Start Refine Complete

 j. Test tools Start Refine Complete

 k. Version control Start Refine Complete

 l. Configuration building Start Refine Complete

 m. Change control Start Refine Complete

 3. Test execution setup

 a. System test process Start Refine Complete

 b. Facility Start Refine Complete

 c. Resources Start Refine Complete

 d. Tool plan Start Refine Complete

 e. Test organization Start Refine Complete

© 2009 by Taylor & Francis Group, LLC

O
verview

◾

99
 4. Test specifications

 a. Functional decomposition Start Refine Refine Complete

 b. Functions not to be tested Start Refine Refine Complete

 c. Unit test cases Start Complete

 d. Integration test cases Start Complete

 e. System test cases Start Refine Complete

 f. Acceptance test cases Start Refine Refine Complete

 5. Test procedures

 a. Test case, script, data development Start Refine Refine Refine Complete

 b. Test execution Start Refine Refine Refine Complete

 c. Correction Start Refine Refine Refine Complete

 d. Version control Start Refine Refine Refine Complete

 e. Maintaining test libraries Start Refine Refine Refine Complete

 f. Automated test tool usage Start Refine Refine Refine Complete

 g. Project management Start Refine Refine Refine Complete

 h. Monitoring and status reporting Start Refine Refine Refine Complete

Continued

© 2009 by Taylor & Francis Group, LLC

100
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 6.1 System/acceptance test Plan versus Phase (Continued)

Test Section
Requirements

Phase

Logical
Design
Phase

Physical
Design
Phase

Program
Unit Design

Phase
Coding
Phase

 6. Test tools

 a. Tools to use Start Refine Complete

 b. Installation and setup Start Refine Complete

 c. Support and help Start Refine Complete

 7. Personnel resources

 a. Required skills Start Refine Refine Complete

 b. Roles and responsibilities Start Refine Refine Complete

 c. Numbers and time required Start Refine Refine Complete

 d. Training needs Start Refine Refine Complete

 8. Test schedule

 a. Development of test plan Start Refine Refine Complete

 b. Design of test cases Start Refine Refine Complete

 c. Development of test cases Start Refine Refine Complete

 d. Execution of test cases Start Refine Refine Complete

 e. Reporting of problems Start Refine Refine Complete

 f. Developing test summary report Start Refine Refine Complete

 g. Documenting test summary report Start Refine Refine Complete

© 2009 by Taylor & Francis Group, LLC

Overview ◾ 101

Motivation for technical reviews
The motivation for a review is that it is impossible to test all software. Clearly,
exhaustive testing of code is impractical. Technology also does not exist for testing
a specification or high-level design. The idea of testing a software test plan is also
bewildering. Testing also does not address quality issues or adherence to standards,
which are possible with review processes.

There are a variety of software technical reviews available for a project, depending
on the type of software product and the standards that affect the review processes.
The types of reviews depend on the deliverables to be produced. For example, for a
Department of Defense contract, there are certain stringent standards for reviews
that must be followed. These requirements may not be required for in-house appli-
cation development.

A review increases the quality of the software product, reduces rework and
ambiguous efforts, reduces testing, and defines test parameters, and is a repeatable
and predictable process. It is an effective method for finding defects and discrepan-
cies; it increases the reliability of the delivered product, has a positive impact on the
schedule, and reduces development costs.

Early detection of errors reduces rework at later development stages, clarifies
requirements and design, and identifies interfaces. It reduces the number of failures
during testing, reduces the number of retests, identifies requirements testability,
and helps identify missing or ambiguous requirements.

types of reviews
There are formal and informal reviews. Informal reviews occur spontaneously
among peers; the reviewers do not necessarily have any responsibility and do not
have to produce a review report. Formal reviews are carefully planned meetings in
which reviewers are held responsible for their participation, and a review report is
generated that contains action items.

The spectrum of review ranges from very informal peer reviews to extremely
formal and structured inspections. The complexity of a review is usually correlated
to the complexity of the project. As the complexity of a project increases, the need
for more formal reviews increases.

Structured Walkthroughs
A structured walkthrough is a presentation review in which a review participant, usu-
ally the developer of the software being reviewed, narrates a description of the soft-
ware, and the remainder of the group provides feedback throughout the presentation.
Testing deliverables such as test plans, test cases, and test scripts can also be reviewed
using the walkthrough technique. These are referred to as presentation reviews because
the bulk of the feedback usually occurs only for the material actually presented.

© 2009 by Taylor & Francis Group, LLC

102 ◾ Software Testing and Continuous Quality Improvement

Advance preparation of the reviewers is not necessarily required. One potential
disadvantage of a structured walkthrough is that, because of its informal struc-
ture, disorganized and uncontrolled reviews may result. Walkthroughs may also be
stressful if the developer is conducting the walkthrough.

Inspections
The inspection technique is a formally defined process for verification of the soft-
ware product throughout its development. All software deliverables are examined
at defined phases to assess the current status and quality effectiveness, from the
requirements to coding phase. One of the major decisions within an inspection is
whether a software deliverable can proceed to the next development phase.

Software quality is achieved in a product during the early stages when the cost
to remedy defects is 10 to 100 times less than it would be during testing or main-
tenance. It is, therefore, advantageous to find and correct defects as near to their
point of origin as possible. Exit criteria are the standard against which inspections
measure completion of the product at the end of a phase.

The advantages of inspections are that they are very systematic, controlled, and
less stressful. The inspection process promotes the concept of egoless programming.
If managed properly, it is a forum in which developers need not become emotion-
ally protective of the work produced. An inspection requires an agenda to guide the
review preparation and the meeting itself. Inspections have rigorous entry and exit
requirements for the project work deliverables.

A major difference between structured walkthroughs and inspections is that
inspections collect information to improve the development and review processes
themselves. In this sense, an inspection is more of a quality assurance technique
than walkthroughs.

Phased inspections apply the PDCA (Plan, Do, Check, and Act) quality model.
Each development phase has entrance requirements; for example, how to qualify
to enter an inspection and exit criteria, and how to know when to exit the inspec-
tion. In-between the entry and exit are the project deliverables that are inspected.
In Table 6.2, the steps of a phased inspection and the corresponding PDCA steps
are shown.

The Plan step of the continuous improvement process consists of inspection
planning and preparing an education overview. The strategy of an inspection is
to design and implement a review process that is timely, efficient, and effective.
Specific products are designated, as are acceptable criteria, and meaningful metrics
are defined to measure and maximize the efficiency of the process. Inspection mate-
rials must meet inspection entry criteria. The right participants are identified and
scheduled. In addition, a suitable meeting place and time are decided. The group of
participants is educated on what is to be inspected and their roles.

The Do step includes individual preparation for the inspections and the inspec-
tion itself. Participants learn the material and prepare for their assigned roles, and

© 2009 by Taylor & Francis Group, LLC

Overview ◾ 103

the inspection proceeds. Each review is assigned one or more specific aspects of the
product to be reviewed in terms of technical accuracy, standards and conventions,
quality assurance, and readability.

The Check step includes the identification and documentation of the defects
uncovered. Defects are discovered during the inspection, but solution hunting and
the discussion of design alternatives are discouraged. Inspections are a review pro-
cess, not a solution session.

The Act step includes the rework and follow-up required to correct any defects.
The author reworks all discovered defects. The team ensures that all the potential cor-
rective actions are effective and no secondary defects are inadvertently introduced.

By going around the PDCA cycle for each development phase using inspec-
tions, we verify and improve each phase deliverable at its origin and stop it dead in
its tracks when defects are discovered (see Figure 6.4). The next phase cannot start
until the discovered defects are corrected. The reason is that it is advantageous to
find and correct defects as near to their point of origin as possible. Repeated applica-
tion of the PDCA results in an ascending spiral, facilitating quality improvement at
each phase. The end product is dramatically improved, and the bewildering task of
the software testing process will be minimized; for example, a lot of the defects will
have been identified and corrected by the time the testing team receives the code.

Participant roles
Roles will depend on the specific review methodology being followed, that is, struc-
tured walkthroughs or inspections. These roles are functional, which implies that it

table 6.2 PdCa Process and inspections

Inspection Step Description Plan Do Check Act

1. Planning Identify participants, get
materials together, schedule
the overview

√

2. Overview Educate for the inspections √

3. Preparation Individual preparation for the
inspections

√

4. Inspection Actual inspection to identify
defects

√ √

5. Rework Rework to correct any defects √

6. Follow-up Follow up to ensure all defects
are corrected

√

© 2009 by Taylor & Francis Group, LLC

104 ◾ Software Testing and Continuous Quality Improvement

is possible in some reviews for a participant to execute more than one role. The role of
the review participants after the review is especially important because many errors
identified during a review may not be fixed correctly by the developer. This raises the
issue of who should follow up on a review and whether another review is necessary.

The review leader is responsible for the review. This role requires scheduling the
review, conducting an orderly review meeting, and preparing the review report. The
review leader may also be responsible for ensuring that action items are properly
handled after the review process. Review leaders must possess both technical and
interpersonal management characteristics. The interpersonal management qualities
include leadership ability, mediator skills, and organizational talents. The review
leader must keep the review group focused at all times and prevent the meeting
from becoming a problem-solving session. Material presented for review should not
require the review leader to spend more than two hours for preparation.

The recorder role in the review process guarantees that all information nec-
essary for an accurate review report is preserved. The recorder must understand
complicated discussions and capture their essence in action items. The role of the
recorder is clearly a technical function and one that cannot be performed by a non-
technical individual.

The reviewer role is to objectively analyze the software and be accountable for
the review. An important guideline is that the reviewer must keep in mind that it
is the software that is being reviewed and not the producer of the software. This
cannot be overemphasized. Also, the number of reviewers should be limited to six.
If too many reviewers are involved, productivity will decrease.

In a technical review, the producer may actually lead the meeting in an orga-
nized discussion of the software. A degree of preparation and planning is needed
in a technical review to present material at the proper level and pace. The attitude

PDCA

PDCA

PDCA

PDCA

PDCA

User
Requirements

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

Coding

Program
Unit Design

Physical
Design

Logical
Design

Verifies

Verifies

Verifies

Verifies

figure 6.4 Phased inspections as an ascending spiral.

© 2009 by Taylor & Francis Group, LLC

Overview ◾ 105

of the producer is also important, and it is essential that he or she does not become
defensive. This can be facilitated by the group leader’s emphasizing that the purpose
of the inspection is to uncover defects and produce the best product possible.

Steps for an effective review
Step 1: Plan for the Review Process
Planning can be described at both the organizational level and the specific review
level. Considerations at the organizational level include the number and types of
reviews that are to be performed for the project. Project resources must be allocated
for accomplishing these reviews.

At the specific review level, planning considerations include selecting partici-
pants and defining their respective roles, scheduling the review, and developing a
review agenda. There are many issues involved in selecting the review participants.
It is a complex task normally performed by management, with technical input.
When selecting review participants, care must be exercised to ensure that each
aspect of the software under review can be addressed by at least some subset of the
review team.

To minimize the stress and possible conflicts in the review processes, it is impor-
tant to discuss the role that a reviewer plays in the organization and the objectives
of the review. Focusing on the review objectives will lessen personality conflicts.

Step 2: Schedule the Review
A review should ideally take place soon after a producer has completed the software
but before additional effort is expended on work dependent on the software. The
review leader must state the agenda based on a well-thought-out schedule. If all the
inspection items have not been completed, another inspection should be scheduled.

The problem of allocating sufficient time to a review stems from the difficulty in
estimating the time needed to perform the review. The approach that must be taken
is the same as that for estimating the time to be allocated for any meeting; that is,
an agenda must be formulated and time estimated for each agenda item. An effec-
tive technique is to estimate the time for each inspection item on a time line.

Another scheduling problem is the duration of the review when the review is
too long. This requires that review processes be focused in terms of their objec-
tives. Review participants must understand these review objectives and their
implications in terms of actual review time, as well as preparation time, before
committing to the review. The deliverable to be reviewed should meet a certain
set of entry requirements before the review is scheduled. Exit requirements must
also be defined.

© 2009 by Taylor & Francis Group, LLC

106 ◾ Software Testing and Continuous Quality Improvement

Step 3: Develop the Review Agenda
A review agenda must be developed by the review leader and the producer prior to
the review. Although review agendas are specific to any particular product and the
objective of its review, generic agendas should be produced for related types of prod-
ucts. These agendas may take the form of checklists (see Appendix F, “Checklists,”
for more details).

Step 4: Create a Review Report
The output of a review is a report. The format of the report is not important. The
contents should address the management perspective, user perspective, developer
perspective, and quality assurance perspective.

From a management perspective, the review report serves as a summary of the
review that highlights what was reviewed, who did the reviewing, and their assess-
ment. Management needs an estimate of when all action items will be resolved to
successfully track the project.

The user may be interested in analyzing review reports for some of the same rea-
sons as the manager. The user may also want to examine the quality of intermediate
work products in an effort to monitor the development organization’s progress.

From a developer’s perspective, the critical information is contained in the
action items. These may correspond to actual errors, possible problems, inconsis-
tencies, or other considerations that the developer must address.

The quality assurance perspective of the review report is twofold: quality assurance
must ensure that all action items in the review report are addressed, and it should also
be concerned with analyzing the data on the review forms and classifying defects to
improve the software development and review process. For example, a large number
of specification errors might suggest a lack of rigor or time in the requirements speci-
fications phase of the project. Another example is a large number of defects reported,
suggesting that the software has not been adequately unit tested.

© 2009 by Taylor & Francis Group, LLC

107

7Chapter

Static testing the
requirements

The testing process should begin early in the application development life cycle,
not just at the traditional testing phase at the end of coding. Testing should be
integrated with the application development phases.

During the requirements phase of the software development life cycle, the busi-
ness requirements are defined on a high level and are the basis of the subsequent
phases and the final implementation. Testing in its broadest sense commences
during the requirements phase (see Figure 7.1), which increases the probability of
developing a quality system based on the user’s expectations. The result is that the
requirements are verified to be correct and complete. Unfortunately, more often than
not, poor requirements are produced at the expense of the application. Poor require-
ments ripple down the waterfall and result in a product that does not meet the user’s
expectations. Some characteristics of poor requirements include the following:

Partial set of functions defined N
Performance not considered N
Ambiguous requirements N
Security not defined N
Interfaces not documented N
Erroneous and redundant requirements N
Requirements too restrictive N
Contradictory requirements N

Functionality is the most important part of the specification and should include
a hierarchic decomposition of the functions. The reason for this is that it provides

© 2009 by Taylor & Francis Group, LLC

108 ◾ Software Testing and Continuous Quality Improvement

a description that is described in levels to enable all the reviewers to read as much
detail as needed. Specifically, this will make the task of translating the specification
to test requirements much easier.

Another important element of the requirements specification is the data descrip-
tion (see Appendix C, “Requirements Specification,” for more details). It should
contain details such as whether the database is relational or hierarchical. If it is
hierarchical, a good representation is a data model or entity relationship diagram in
terms of entities, attributes, and relationships.

Another section in the requirements should be a description of the interfaces
between the system and external entities that interact with the system, such as
users, external software, or external hardware. A description of how users will inter-
act with the system should be included. This would include the form of the inter-
face and the technical capabilities of the users.

During the requirements phase, the testing organization needs to perform two
functions simultaneously. It needs to build the system/acceptance test plan and also
verify the requirements. The requirements verification entails ensuring the correct-
ness and completeness of the documentation prepared by the development team.

testing the requirements with ambiguity reviews
An Ambiguity Review, developed by Richard Bender from Bender RBT, Inc., is a
very powerful testing technique that eliminates defects in the requirements phase
of the software life cycle, thereby avoiding those defects from propagating to the
remaining phases of the software development life cycle. A QA Engineer trained in
the technique performs the Ambiguity Review. The Engineer is not a domain expert

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

Coding

Program
Unit Design

Physical
Design

Logical
Design

Verifies

Verifies

Verifies

Verifies

User
Requirements

PDCA

PDCA

PDCA

PDCA

PDCA

figure 7.1 requirements phase and acceptance testing.

© 2009 by Taylor & Francis Group, LLC

Static Testing the Requirements ◾ 109

(SME), and is not reading the requirements for content, but only to identify ambi-
guities in the logic and structure of the wording. The Ambiguity Review takes place
after the requirements, or section of the requirements, reach first draft, and prior
to them being reviewed for content, i.e. correctness and completeness by domain
experts. The Engineer identifies all ambiguous words and phrases on a copy of the
requirements. A summary of the findings is presented to the Business Analyst.

The Ambiguity Review Checklist identifies 15 common problems that occur in
writing requirements.

testing the requirements with technical reviews
A software technical review is a form of peer review in which a team of qualified
personnel examines the suitability of the software product for its intended use and
identifies descrepancies from specifications and standards. Technical reviews may
also provide recommendations of alternatives and examiniation of various alterna-
tives. Technical reviews differ from software walkthroughs in its specific focus is on
the technical quality of the product reviews. It differs from a software inspection
in its ability to suggest direct alterations to the product reviewed, and its lack of a
direct focus on training and process improvements (Source: Std. 1028-1997, IEEE
Standard for Software Reviews, clause 3.7).

inspections and walkthroughs
These are formal techniques to evaluate the documentation form, interface require-
ments, and solution constraints as described in the previous section.

Checklists
These are oriented toward quality control and include questions to ensure the com-
pleteness of the requirements.

Methodology Checklist
This provides the methodology steps and tasks to ensure that the methodology
is followed.

If the review is totally successful with no outstanding issues or defects dis-
covered, the requirements specification is frozen, and any further refinements are
monitored rigorously. If the review is not totally successful and there are minor
issues during the review, the author corrects them. The corrections are reviewed by
the moderator and signed off. On the other hand, if major issues and defects are

© 2009 by Taylor & Francis Group, LLC

110 ◾ Software Testing and Continuous Quality Improvement

discovered during the requirements review process, the defects are corrected; a new
review then occurs with the same review members at a later time.

Each defect uncovered during the requirements phase review should be docu-
mented. Requirement defect trouble reports are designed to assist in the proper
recording of these defects. It includes the defect category and defect type. The
description of each defect is recorded under the missing, wrong, or extra columns.
At the conclusion of the requirements review, the defects are summarized and
totaled. Table 7.1 shows a partial requirements phase defect recording form (see
Appendix F1, “Requirements Phase Defect Checklist,” for more details).

requirements traceability Matrix
A requirements traceability matrix is a document that traces user requirements from
analysis through implementation. It can be used as a completeness check to verify
that all requirements are present or that there are no unnecessary/extra features,

table 7.1 requirements Phase defect recording

Defect Category Missing Wrong Extra Total

 1. Operating rules (or
information) are inadequate or
partially missing

 2. Performance criteria (or
information) are inadequate or
partially missing

 3. Environment information is
inadequate or partially missing

 4. System mission information is
inadequate or partially missing

 5. Requirements are incompatible

 6. Requirements are incomplete

 7. Requirements are missing

 8. Requirements are incorrect

 9. The accuracy specified does not
conform to the actual need

 10. The data environment is
inadequately described

© 2009 by Taylor & Francis Group, LLC

Static Testing the Requirements ◾ 111

and as a maintenance guide for new personnel. At each step in the development
cycle, the requirements, code, and associated test cases are recorded to ensure that
the user requirement is addressed in the final system. Both the user and developer
have the ability to easily cross-reference the requirements to the design specifica-
tions, programming, and test cases. (See Appendix E3, “Requirements Traceability
Matrix,” for more details.)

Building the System/acceptance test Plan
Acceptance testing verifies that a system satisfies the user’s acceptance criteria. The
acceptance test plan is based on the requirement specifications and is required in
a formal test environment. This test uses black-box techniques to test the system
against its specifications and is generally performed by the end user. During accep-
tance testing, it is important for the project team to coordinate the testing process
and update the acceptance criteria, as needed. Acceptance testing is often combined
with the system-level test plan, which is the case in this discussion.

The requirements phase is the first development phase that is completed before
proceeding to the logical design, physical design, program unit design, and coding
phases. During the requirements phase, it is not expected that all sections in the
test plan will be completed, because not enough information is available.

In the Introduction section of the test plan (see Appendix E2, “System/
Acceptance Test Plan”), the documentation of “first-cut” test activities begins.
Included are the system description, the overall system description, acceptance test
objectives, assumptions, risks, contingencies, and constraints. At this point, some
thought about the appropriate authorities for the approval signatures begins.

The key parts in the Test Approach and Strategy section include: (1) the scope
of testing, (2) test approach, (3) types of tests, (4) logistics, and (5) the regression
policy. The scope of testing defines the magnitude of the testing effort, for example,
whether to test the whole system or part of it. The testing approach documents the
basis of the test design approach, for example, black-box, white-box, gray-box test-
ing, incremental integration, and so on. The types of tests identify the test types,
such as unit, integration, system, or acceptance, that will be performed within the
testing scope. Details of the types of system-level tests may not be available at this
point because of the lack of details, but will be available during the next phase.
Logistics documents the working relationship between the development and test-
ing organizations and other interested parties. It defines such issues as how and
when the testing group will receive the software, and how defects will be recorded,
corrected, and verified. The regression policy determines whether previously tested
system functions perform properly after changes are introduced.

A major difficulty in testing the requirements document is that testers have
to determine whether the problem definition has been translated properly to the

© 2009 by Taylor & Francis Group, LLC

112 ◾ Software Testing and Continuous Quality Improvement

requirements document. This requires envisioning the final product and coming up
with what should be tested to determine that the requirement solves the problem.

A useful technique to help analyze, review, and document the initial cut at
the functional decomposition of the system in the Test Specifications section is
the requirement/test matrix (see Figure 7.2). This matrix defines the scope of the
testing for the project and ensures that tests are specified for each requirement as
documented in the requirements specification. It also helps identify the functions
to be tested as well as those not to be tested.

Some benefits of the requirements/test matrix are that it:

 1. Correlates the tests and scripts with the requirements
 2. Facilitates status of reviews
 3. Acts as a traceability mechanism throughout the development cycle, ex.

requirement, test case(s), defect(s) linkage

The requirement/test matrix in Figure 7.2 documents each requirement and cor-
relates it with the test cases and scripts to verify it. The requirements listed on the

Requirement
Functional

Performance

Security

Test Case

Comment

1
2
3

1
2
3
4

1
2
3
4

1 2 3 4

U – Users reviewed
Q – QA reviewed
T – Ready for testing

5 6 7 8 9

Q

Q

Q

Q

Q

Q

Q T

T

T

U

U

Test

figure 7.2 requirements/test matrix.

© 2009 by Taylor & Francis Group, LLC

Static Testing the Requirements ◾ 113

left side of the matrix can also aid in defining the types of system tests in the Test
Approach and Strategy section.

It is unusual to come up with a unique test case for each requirement and, there-
fore, it takes several test cases to test a requirement thoroughly. This enables reusability
of some test cases to other requirements. Once the requirement/test matrix has been
built, it can be reviewed, and test case design and script building can commence.

The status column is used to track the status of each test case as it relates to a
requirement. For example, “Q” in the status column can indicate that the require-
ment has been reviewed by QA, “U” can indicate that the users had reviewed the
requirement, and “T” can indicate that the test case specification has been reviewed
and is ready.

In the Test Specifications section of the test plan, information about the accep-
tance tests is available and can be documented. These tests must be passed for the
user to accept the system. A procedure is a series of related actions carried out using
an operational mode, that is, one that tells how to accomplish something. The fol-
lowing information can be documented in the Test Procedures section: test case,
script, data development, test execution, correction, version control, maintaining
test libraries, automated test tool usage, project management, monitoring, and sta-
tus reporting.

It is not too early to start thinking about the testing personnel resources that
will be needed. This includes the required testing skills, roles and responsibilities,
the numbers and time required, and the personnel training needs.

© 2009 by Taylor & Francis Group, LLC

115

8Chapter

Static testing the
logical design

The business requirements are defined during the requirements phase. The logical
design phase refines the business requirements in preparation for a system speci-
fication that can be used during physical design and coding. The logical design
phase further refines the business requirements that were defined in the require-
ment phase, from a functional and information model point of view.

data Model, Process Model, and the linkage
The logical design phase establishes a detailed system framework for building the
application. Three major deliverables from this phase are the data model, also
known as an entity relationship diagram, a process model, and the linkage between
the two.

A data model is a representation of the information needed or data object types
required by the application. It establishes the associations between people, places,
and entities of importance to the application and is used later in physical database
design, which is part of the physical design phase. A data model is a graphical tech-
nique used to define the entities and the relationships. An entity is something about
which we want to store data. It is a uniquely identifiable person, place, object, or
event of interest to the user, about which the application is to maintain and report
data. Examples of entities are customers, orders, offices, and purchase orders.

© 2009 by Taylor & Francis Group, LLC

116 ◾ Software Testing and Continuous Quality Improvement

Each entity is a table divided horizontally into rows and columns. Each row is
a specific occurrence of each entity, much like records in a file. Each column is an
attribute that helps describe the entity. Examples of attributes include size, date,
value, and address. Each entity in a data model does not exist by itself; it is linked
to other entities by relationships. A relationship is an association between two or
more entities of interest to the user, about which the application is to maintain and
report data. There are three types of relationships: a one-to-one relationship links
a single occurrence of an entity to zero or one occurrence of another entity; a one-
to-many relationship links one occurrence of an entity to zero or more occurrences
of an entity; and a many-to-many relationship links many occurrences of an entity
to many occurrences of an entity. The type of relationship defines the cardinality
of the entity relationships. See Appendix G10, “Database Testing,” for more details
about data modeling.

A process is a business activity together with the associated inputs and outputs.
Examples of processes are accept order, update inventory, ship orders, and schedule
class. A process model is a graphical representation and should describe what the
process does but not refer to why, how, or when the process is carried out. These are
physical attributes of a process that are defined in the physical design phase.

A process model is a decomposition of the business. Process decomposition is
the breakdown of the activities into successively more detail. It starts at the top
until elementary processes, the smallest unit of activity that has meaning to the
user, are defined.

A process decomposition diagram is used to illustrate processes in a hierarchi-
cal structure showing successive levels of detail. The diagram is built iteratively as
processes and nonelementary processes are decomposed. The root of a process is the
starting point of the decomposition. A parent is the process at a higher level than
lower levels. A child is the lower level that is joined to a higher level, or parent. A
data flow diagram is often used to verify the process decomposition. It shows all
the processes, data store accesses, and the incoming and outgoing data flows. It also
shows the flows of data to and from entities external to the processes.

An association diagram, often called a CRUD matrix or process/data matrix,
links data and process models (see Figure 8.1). It helps ensure that the data and
processes are discovered and assessed. It identifies and resolves matrix omissions
and conflicts, and helps refine the data and process models, as necessary. It maps
processes against entities, showing which processes create, read, update, or delete
the instances in an entity.

This is often called “entity life-cycle analysis.” It analyzes the birth and death
of an entity and is performed by process against the entity. The analyst first verifies
that there is an associated process to create instances in the entity. If there is an
entity that has no associated process that creates it, a process is missing and must
be defined. It is then verified that there are associated processes to update, read,
or delete instances in an entity. If there is an entity that is never updated, read, or

© 2009 by Taylor & Francis Group, LLC

Static Testing the Logical Design ◾ 117

deleted, perhaps the entity may be eliminated. See Appendix G9, “CRUD Testing,”
for more details of how this can be applied to software testing.

testing the logical design with technical reviews
The logical design phase is verified with static techniques, that is, nonexecution of
the application. As utilized in the requirements phase, these techniques check the
adherence to specification conventions and completeness of the models. The same
static testing techniques used to verify the requirements are used in the logical
design phase. The work products to be reviewed include the data model, the process
model, and CRUD matrix.

Each defect discovered during the logical design review should be documented.
A defect trouble report is designed to assist in the proper recording of these defects.
It includes the defect category and defect type. The description of each defect is
recorded under the missing, wrong, or extra columns. At the conclusion of the
logical design review, the defects are summarized and totaled. Table 8.1 shows
a sample logical design phase defect recording form (see Appendix F2, “Logical
Design Phase Defect Checklist,” for more details).

Entity Type

crud

crud

crud

crud

crud

crud

crud

crud

crud

crud

Entity

Process

Selling
Scheduling
Compensation
Shipping
Operations
Maintenance
Cost Planning
Purchasing
Forecasting
Receiving

Ordering
Research

1 2 3 4 5 6 7 8 9 Comment

cu

cu

cu

cu

cu

cu

cu
ud

ud

ud
d

d

d

d
d

d

Planning

c
c

c

c

c

c
c

c

c

c

c

u

figure 8.1 Crud matrix.

© 2009 by Taylor & Francis Group, LLC

118 ◾ Software Testing and Continuous Quality Improvement

refining the System/acceptance test Plan
System testing is a multifaceted test that evaluates the functionality, performance,
and fit of the whole application. It demonstrates whether the system satisfies the
original objectives. During the requirements phase, enough detail was not available
to define these types of tests. The logical design provides a great deal more informa-
tion with data and process models. The scope of testing and types of tests in the
Test Approach and Strategy section (see Appendix E2, “System/Acceptance Test
Plan”) can now be refined to include details concerning the types of system-level
tests to be performed. Examples of system-level tests to measure the fitness of use
include functional, performance, security, usability, and compatibility. The testing
approach, logistics, and regression policy are refined in this section. The rest of the
items in this section, such as the test facility, test procedures, test organization, test
libraries, and test tools, are begun. Preliminary planning for the software configu-
ration management elements, such as version and change control and configuration
building, can begin. This includes acquiring a software configuration management
tool if it does not already exist in the organization.

The Test Execution Setup section deals with those considerations for prepar-
ing for testing and includes the system test process, test facility, required testing
resources, the testing tool plan, and test organization.

In the Test Specifications section, more functional details are available from the
data and process models and added in the requirements/test matrix. At this point,

table 8.1 logical design Phase defect recording

Defect Category Missing Wrong Extra Total

 1. The data has not been
adequately defined

 2. Entity definition is incomplete

 3. Entity cardinality is incorrect

 4. Entity attribute is incomplete

 5. Normalization is violated

 6. Incorrect primary key

 7. Incorrect foreign key

 8. Incorrect compound key

 9. Incorrect entity subtype

 10. The process has not been
adequately defined

© 2009 by Taylor & Francis Group, LLC

Static Testing the Logical Design ◾ 119

system-level test case design is started. However, it is too early to complete detailed
test development, for example, test procedures, scripts, and the test case input/
output data values associated with each test case. Acceptance test cases should be
completed during this phase.

In the Test Procedures section, the items begun in the previous phase are refined.
Test items in the Test Tools and Test Schedule sections are begun.

© 2009 by Taylor & Francis Group, LLC

121

9Chapter

Static testing the
Physical design

The logical design phase translates the business requirements into system specifica-
tions that can be used by programmers during physical design and coding. The
physical design phase determines how the requirements can be automated. During
this phase a high-level design is created in which the basic procedural components
and their interrelationships and major data representations are defined.

The physical design phase develops the architecture, or structural aspects, of
the system. Logical design testing is functional; however, physical design testing is
structural. This phase verifies that the design is structurally sound and accomplishes
the intent of the documented requirements. It assumes that the requirements and
logical design are correct and concentrates on the integrity of the design itself.

testing the Physical design with technical reviews
The logical design phase is verified with static techniques, that is, nonexecution of
the application. As with the requirements and logical design phases, the static tech-
niques check the adherence to specification conventions and completeness, with a
focus on the architectural design. The basis for physical design verification is design
representation schemes used to specify the design. Example design representation
schemes include structure charts, Warnier–Orr diagrams, Jackson diagrams, data
navigation diagrams, and relational database diagrams, which have been mapped
from the logical design phase.

© 2009 by Taylor & Francis Group, LLC

122 ◾ Software Testing and Continuous Quality Improvement

Design representation schemes provide mechanisms for specifying algorithms
and their inputs and outputs to software modules. Various inconsistencies are pos-
sible in specifying the control flow of data objects through the modules. For exam-
ple, a module may need a particular data item that another module creates but is
not provided correctly. Static analysis can be applied to detect these types of control
flow errors.

Other errors made during the physical design can also be detected. Design
specifications are created by iteratively supplying detail. Although a hierarchical
specification structure is an excellent vehicle for expressing the design, it does not
allow for inconsistencies between levels of detail. For example, coupling measures
the degree of independence between modules. When there is little interaction
between two modules, the modules are described as loosely coupled. When there is
a great deal of interaction, they are tightly coupled. Loose coupling is considered a
good design practice.

Examples of coupling include content, common, control, stamp, and data cou-
pling. Content coupling occurs when one module refers to or changes the internals
of another module. Data coupling occurs when two modules communicate via a
variable or array (table) that is passed directly as a parameter between the two mod-
ules. Static analysis techniques can determine the presence or absence of coupling.

Static analysis of the design representations detects static errors and seman-
tic errors. Semantic errors involve information or data decomposition, functional
decomposition, and control flow. Each defect uncovered during the physical design
review should be documented, categorized, recorded, presented to the design team
for correction, and referenced to the specific document in which the defect was
noted. Table 9.1 shows a sample physical design phase defect recording form (see
Appendix F3, “Physical Design Phase Defect Checklist,” for more details).

Creating integration test Cases
Integration testing is designed to test the structure and the architecture of the soft-
ware and determine whether all software components interface properly. It does not
verify that the system is functionally correct, only that it performs as designed.

Integration testing is the process of identifying errors introduced by combining
individual program unit-tested modules. It should not begin until all units are known
to perform according to the unit specifications. Integration testing can start with test-
ing several logical units or can incorporate all units in a single integration test.

Because the primary concern in integration testing is that the units interface
properly, the objective of this test is to ensure that they integrate, that param-
eters are passed, and the file processing is correct. Integration testing techniques
include top-down, bottom-up, sandwich testing, and thread testing (see Appendix
G, “Software Testing Techniques,” for more details).

© 2009 by Taylor & Francis Group, LLC

Static Testing the Physical Design ◾ 123

Methodology for integration testing
The following describes a methodology for creating integration test cases.

Step 1: Identify Unit Interfaces

The developer of each program unit identifies and documents the unit’s interfaces
for the following unit operations:

External inquiry (responding to queries from terminals for information) N

External input (managing transaction data entered for processing) N

External filing (obtaining, updating, or creating transactions on computer files) N

Internal filing (passing or receiving information from other logical process- N

ing units)

table 9.1 Physical design Phase defect recording

Defect Category Missing Wrong Extra Total

 1. Logic or sequencing is
erroneous

 2. Processing is inaccurate

 3. Routine does not input or
output required parameters

 4. Routine does not accept all data
within the allowable range

 5. Limit and validity checks are
made on input data

 6. Recovery procedures are not
implemented or are not
adequate

 7. Required processing is missing
or inadequate

 8. Values are erroneous or
ambiguous

 9. Data storage is erroneous or
inadequate

 10. Variables are missing

© 2009 by Taylor & Francis Group, LLC

124 ◾ Software Testing and Continuous Quality Improvement

External display (sending messages to terminals) N
External output (providing the results of processing to some output device N
or unit)

Step 2: Reconcile Interfaces for Completeness

The information needed for the integration test template is collected for all program
units in the software being tested. Whenever one unit interfaces with another, those
interfaces are reconciled. For example, if program unit A transmits data to program
unit B, program unit B should indicate that it has received that input from program
unit A. Interfaces not reconciled are examined before integration tests are executed.

Step 3: Create Integration Test Conditions

One or more test conditions are prepared for integrating each program unit. After
the condition is created, the number of the test condition is documented in the
test template.

Step 4: Evaluate the Completeness of
Integration Test Conditions

The following list of questions will help guide evaluation of the completeness of
integration test conditions recorded on the integration testing template. This list
can also help determine whether test conditions created for the integration process
are complete.

Is an integration test developed for each of the following external inquiries? N
Record test −
File test −
Search test −
Match/merge test −
Attributes test −
Stress test −
Control test −

Are all interfaces between modules validated so that the output of one is N
recorded as input to another?
If file test transactions are developed, do the modules interface with all those N
indicated files?
Is the processing of each unit validated before integration testing? N
Do all unit developers agree that integration test conditions are adequate to N
test each unit’s interfaces?
Are all software units included in integration testing? N

© 2009 by Taylor & Francis Group, LLC

Static Testing the Physical Design ◾ 125

Are all files used by the software being tested included in integration testing? N
Are all business transactions associated with the software being tested N
included in integration testing?
Are all terminal functions incorporated in the software being tested included N
in integration testing?

The documentation of integration tests is started in the Test Specifications section
(see Appendix E2, “System/Acceptance Test Plan”). Also in this section, the func-
tional decomposition continues to be refined, but the system-level test cases should
be completed during this phase.

Test items in the Introduction section are completed during this phase. Items in
the Test Approach and Strategy, Test Execution Setup, Test Procedures, Test Tool,
Personnel Requirements, and Test Schedule continue to be refined.

© 2009 by Taylor & Francis Group, LLC

127

10Chapter

Static testing the
Program unit design

The design phase develops the physical architecture, or structural aspects, of the
system. The program unit design phase is refined to enable detailed design. The
program unit design is the detailed design in which specific algorithmic and data
structure choices are made. It is the specifying of the detailed flow of control that
will make it easily translatable to program code with a programming language.

testing the Program unit design
with technical reviews
A good detailed program unit design is one that can easily be translated to many
programming languages. It uses structured techniques such as while, for, repeat,
if, and case constructs. These are examples of the constructs used in structured
programming. The objective of structured programming is to produce programs
with high quality at low cost. A structured program is one in which only three basic
control constructs are used.

Sequence
Statements are executed one after another in the same order that they appear in the
source listing. An example of a sequence is an assignment statement.

© 2009 by Taylor & Francis Group, LLC

128 ◾ Software Testing and Continuous Quality Improvement

Selection

A condition is tested and, depending on whether the test is true or false, one or
more alternative execution paths are traversed. An example of a selection is an if-
then-else. With this structure, the condition is tested and, if found to be true, one
set of instructions is executed. If the condition is false, another set of instructions is
executed. Both sets join at a common point.

Iteration

Iteration is used to execute a set of instructions a number of times with a loop.
Examples of iteration are dountil and dowhile. A dountil loop executes a set of
instructions and then tests the loop termination condition. If it is true, the loop
terminates and continues to the next construct. If it is false, the set of instructions
is executed again until the termination logic is reached. A dowhile loop tests the
termination condition. If it is true, control passes to the next construct. If it is false,
a set of instructions is executed until control is unconditionally passed back to the
condition logic.

Static analysis of the detailed design detects semantic errors involving informa-
tion and logic control flow. Each defect uncovered during the program unit design
review should be documented, categorized, recorded, presented to the design team
for correction, and referenced to the specific document in which the defect was noted.
Table 10.1 shows a sample program unit design phase defect recording form (see
Appendix F4, “Program Unit Design Phase Defect Checklist,” for more details).

Creating unit test Cases
Unit testing is the process of executing a functional subset of the software system
to determine whether it performs its assigned function. It is oriented toward the
checking of a function or a module. White-box test cases are created and docu-
mented to validate the unit logic and black-box test cases to test the unit against
the specifications (see Appendix E8, “Test Case,” for a sample test case form). Unit
testing, along with the version control necessary during correction and retesting,
is typically performed by the developer. During unit test case development, it is
important to know which portions of the code have been subjected to test cases
and which have not. By knowing this coverage, the developer can discover lines
of code that are never executed or program functions that do not perform accord-
ing to the specifications. When coverage is inadequate, implementing the system
is risky because defects may be present in the untested portions of the code (see
Appendix G, “Software Testing Techniques,” for more unit test case development
techniques). Unit test case specifications are started and documented in the Test

© 2009 by Taylor & Francis Group, LLC

Static Testing the Program Unit Design ◾ 129

Specification section (see Appendix E2, “System/Acceptance Test Plan”), but all
other items in this section should have been completed.

All items in the Introduction, Test Approach and Strategy, Test Execution
Setup, Test Tools, and Personnel Resources should have been completed prior to
this phase. Items in the Test Procedures section, however, continue to be refined.
The functional decomposition, integration, system, and acceptance test cases
should be completed during this section. Refinement continues for all items in the
Test Procedures and Test Schedule sections.

table 10.1 Program unit design Phase defect recording

Defect Category Missing Wrong Extra Total

 1. Is the if-then-else construct
used incorrectly?

 2. Is the dowhile construct used
incorrectly?

 3. Is the dountil construct used
incorrectly?

 4. Is the case construct used
incorrectly?

 5. Are there infinite loops?

 6. Is it a proper program?

 7. Are there goto statements?

 8. Is the program readable?

 9. Is the program efficient?

 10. Does the case construct contain
all the conditions?

© 2009 by Taylor & Francis Group, LLC

131

11Chapter

Static testing and
dynamic testing
the Code

The program unit design is the detailed design in which specific algorithmic and
data structure choices are made. Specifying the detailed flow of control will make
it easily translatable to program code with a programming language. The coding
phase is the translation of the detailed design to executable code using a program-
ming language.

testing Coding with technical reviews
The coding phase produces executable source modules. The basis of good program-
ming is programming standards that have been defined. Some good standards
should include commenting, unsafe programming constructs, program layout,
defensive programming, and so on. Commenting refers to how a program should
be documented and to what level or degree. Unsafe programming constructions
are practices that can make the program hard to maintain. An example is goto
statements. Program layout refers to how a standard program should be laid out on
a page, indentation of control constructs, and initialization. A defensive program-
ming practice describes the mandatory components of the defensive programming
strategy. An example is error condition handling and transfer of control to a com-
mon error routine.

© 2009 by Taylor & Francis Group, LLC

132 ◾ Software Testing and Continuous Quality Improvement

Static analysis techniques, such as structured walkthroughs and inspections,
are used to ensure the proper form of the program code and documentation. This
is accomplished by checking adherence to coding and documentation conventions
and type checking.

Each defect uncovered during the coding phase review should be documented,
categorized, recorded, presented to the design team for correction, and referenced
to the specific document in which the defect was noted. Table 11.1 shows a sam-
ple coding phase defect recording form (see Appendix F5, “Coding Phase Defect
Checklist,” for more details).

executing the test Plan
By the end of this phase, all the items in each section of the test plan should have
been completed. The actual testing of software is accomplished through the test
data in the test plan developed during the requirements, logical design, physical

table 11.1 Coding Phase defect recording

Defect Category Missing Wrong Extra Total

 1. Decision logic or sequencing is
erroneous or inadequate

 2. Arithmetic computations are
erroneous or inadequate

 3. Branching is erroneous

 4. Branching or other testing is
performed incorrectly

 5. There are undefined loop
terminations

 6. Programming language rules
are violated

 7. Programming standards are
violated

 8. The programmer misinterprets
language constructs

 9. Typographical errors exist

 10. Main storage allocation errors
exist

© 2009 by Taylor & Francis Group, LLC

Static Testing and Dynamic Testing the Code ◾ 133

design, and program unit design phases. Because results have been specified in the
test cases and test procedures, the correctness of the executions is ensured from a
static test point of view; that is, the tests have been reviewed manually.

Dynamic testing, or time-dependent techniques, involves executing a specific
sequence of instructions with the computer. These techniques are used to study the
functional and computational correctness of the code.

Dynamic testing proceeds in the opposite order of the development life cycle.
It starts with unit testing to verify each program unit independently and then pro-
ceeds to integration, system, and acceptance testing. After acceptance testing has
been completed, the system is ready for operation and maintenance. Figure 11.1
briefly describes each testing type.

unit testing
Unit testing is the basic level of testing. Unit testing focuses separately on the
smaller building blocks of a program or system. It is the process of executing each
module to confirm that each performs its assigned function. The advantage of unit
testing is that it permits the testing and debugging of small units, thereby providing
a better way to manage the integration of the units into larger units. In addition,
testing a smaller unit of code makes it mathematically possible to fully test the
code’s logic with fewer tests. Unit testing also facilitates automated testing because
the behavior of smaller units can be captured and played back with maximized
reusability. A unit can be one of several types of application software. Examples
include the module itself as a unit, GUI components such as windows, menus, and
functions, batch programs, online programs, and stored procedures.

Verifies

Verifies

Verifies

Verifies

User
Requirement

Logical
Design

Physical
Design

Program
Unit Design

Acceptance
Testing

System
Testing

Integration
Testing

Unit
Testing

Coding

figure 11.1 executing the tests.

© 2009 by Taylor & Francis Group, LLC

134 ◾ Software Testing and Continuous Quality Improvement

integration testing
After unit testing is completed, all modules must be integration-tested. During inte-
gration testing, the system is slowly built up by adding one or more modules at a time
to the core of already-integrated modules. Groups of units are fully tested before sys-
tem testing occurs. Because modules have been unit-tested prior to integration testing,
they can be treated as black boxes, allowing integration testing to concentrate on mod-
ule interfaces. The goals of integration testing are to verify that each module performs
correctly within the control structure and that the module interfaces are correct.

Incremental testing is performed by combining modules in steps. At each step
one module is added to the program structure, and testing concentrates on exercising
this newly added module. When it has been demonstrated that a module performs
properly with the program structure, another module is added, and testing contin-
ues. This process is repeated until all modules have been integrated and tested.

System testing
After integration testing, the system is tested as a whole for functionality and fit-
ness of use based on the System/Acceptance Test Plan. Systems are fully tested in
the computer operating environment before acceptance testing occurs. The sources
of the system tests are the quality attributes that were specified in the Software
Quality Assurance Plan. System testing is a set of tests to verify these quality attri-
butes and ensure that the acceptance test occurs in a relatively trouble-free manner.
System testing verifies that the functions are carried out correctly. It also verifies
that certain nonfunctional characteristics are present. Some examples include
usability testing, performance testing, stress testing, compatibility testing, conver-
sion testing, and document testing.

Black-box testing is a technique that focuses on testing a program’s function-
ality against its specifications. White-box testing is a testing technique in which
paths of logic are tested to determine how well they produce predictable results.
Gray-box testing is a combination of these two approaches and is usually applied
during system testing. It is a compromise between the two and is a well-balanced
testing approach that is widely used during system testing.

acceptance testing
After systems testing, acceptance testing certifies that the software system satisfies
the original requirements. This test should not be performed until the software has
successfully completed systems testing. Acceptance testing is a user-run test that
uses black-box techniques to test the system against its specifications. The end users
are responsible for ensuring that all relevant functionality has been tested.

© 2009 by Taylor & Francis Group, LLC

Static Testing and Dynamic Testing the Code ◾ 135

The acceptance test plan defines the procedures for executing the acceptance
tests and should be followed as closely as possible. Acceptance testing continues
even when errors are found, unless an error itself prevents continuation. Some proj-
ects do not require formal acceptance testing. This is true when the customer or
user is satisfied with the other system tests, when timing requirements demand it, or
when end users have been involved continuously throughout the development cycle
and have been implicitly applying acceptance testing as the system is developed.

Acceptance tests are often a subset of one or more system tests. Two other ways
to measure acceptance testing are as follows:

 1. Parallel Testing—A business-transaction-level comparison with the existing
system to ensure that adequate results are produced by the new system.

 2. Benchmarks—A static set of results produced either manually or from an
existing system is used as expected results for the new system.

defect recording
Each defect discovered during the foregoing tests is documented to assist in the
proper recording of these defects. A problem report is generated when a test pro-
cedure gives rise to an event that cannot be explained by the tester. The problem
report documents the details of the event and includes at least these items (see
Appendix E12, “Defect Report,” for more details):

Problem identification N
Author N
Release/build number N
Open date N
Close date N
Problem area N
Defect or enhancement N
Test environment N
Defect type N
Who detected N
How detected N
Assigned to N
Priority N
Severity N
Status N

Other test reports to communicate the testing progress and results include a test
case log, test log summary report, and system summary report.

© 2009 by Taylor & Francis Group, LLC

136 ◾ Software Testing and Continuous Quality Improvement

A test case log documents the test cases for a test type to be executed. It also
records the results of the tests, which provides the detailed evidence for the test log
summary report and enables reconstructing testing, if necessary. (See Appendix E9,
“Test Case Log,” for more information.)

A test log summary report documents the test cases from the tester’s logs in
progress or completed for the status reporting and metric collection. (See Appendix
E10, “Test Log Summary Report.”)

A system summary report should be prepared for every major testing event.
Sometimes it summarizes all the tests. It typically includes the following major sec-
tions: general information (describing the test objectives, test environment, refer-
ences, etc.), test results and findings (describing each test), software functions and
findings, and analysis and test summary. (See Appendix E11, “System Summary
Report,” for more details.)

© 2009 by Taylor & Francis Group, LLC

3SPiral (agile)
Software
teSting
Methodology:
Plan, do, CheCk, aCt

Spiral development methodologies are a reaction to the traditional waterfall systems
development, in which the product evolves in sequential phases. A common problem
with the life-cycle development model is that the elapsed time to deliver the product
can be excessive, with user involvement only at the very beginning and very end. As
a result, the system that they are given is often not what they originally requested.

By contrast, spiral development expedites product delivery. A small but func-
tioning initial system is built and quickly delivered, and then enhanced in a series
of iterations. One advantage is that the users receive at least some functionality
quickly. Another advantage is that the product can be shaped by iterative feedback;
for example, users do not have to define every feature correctly and in full detail at
the beginning of the development cycle, but can react to each iteration.

Spiral testing is dynamic and may never be completed in the traditional sense
of a delivered system’s completeness. The term spiral refers to the fact that the tradi-
tional sequence of analysis–design–code–test phases is performed on a microscale
within each spiral or cycle in a short period of time, and then the phases are repeated
within each subsequent cycle.

© 2009 by Taylor & Francis Group, LLC

138 ◾ Spiral (Agile) Software Testing Methodology: Plan, Do, Check, Act

The objectives of this section are to:

Discuss the limitations of waterfall development. N
Describe the complications of client/server. N
Discuss the psychology of spiral testing. N
Describe the iterative/spiral development environment. N
Apply Deming’s continuous quality improvement to a spiral development N
environment in terms of:
Information gathering
Test planning
Test case design
Test development
Test execution/evaluation
Traceability/coverage matrix
Preparing for the next spiral
System testing
Acceptance testing
Summarizing/reporting spiral test results

© 2009 by Taylor & Francis Group, LLC

139

12Chapter

development
Methodology overview

limitations of life-Cycle development
In Section 2, “Waterfall Testing Review,” the waterfall development methodology
was reviewed along with the associated testing activities. The life-cycle development
methodology consists of distinct phases from requirements to coding. Life-cycle
testing means that testing occurs in parallel with the development life cycle and is a
continuous process. Although the life-cycle or waterfall development is very effec-
tive for many large applications requiring a lot of computer horsepower, for exam-
ple, DOD, financial, security-based, and so on, it has a number of shortcomings:

The end users of the system are only involved at the very beginning and the N
very end of the process. As a result, the system that they were given at the
end of the development cycle is often not what they originally visualized or
thought they requested.
The long development cycle and the shortening of business cycles lead to a N
gap between what is really needed and what is delivered.
End users are expected to describe in detail what they want in a system, N
before the coding phase. This may seem logical to developers; however, there
are end users who have not used a computer system before and are not certain
of its capabilities.

© 2009 by Taylor & Francis Group, LLC

140 ◾ Software Testing and Continuous Quality Improvement

When the end of a development phase is reached, it is often not quite com- N
plete, but the methodology and project plans require that development press
on regardless. In fact, a phase is rarely complete, and there is always more
work than can be done. This results in the “rippling effect”; sooner or later,
one must return to a phase to complete the work.
Often, the waterfall development methodology is not strictly followed. In the N
haste to produce something quickly, critical parts of the methodology are not
followed. The worst case is ad hoc development, in which the analysis and
design phases are bypassed and the coding phase is the first major activity.
This is an example of an unstructured development environment.
Software testing is often treated as a separate phase starting in the coding N
phase as a validation technique and is not integrated into the whole develop-
ment life cycle.
The waterfall development approach can be woefully inadequate for many N
development projects, even if it is followed. An implemented software sys-
tem is not worth very much if it is not the system the user wanted. If the
requirements are incompletely documented, the system will not survive user
validation procedures; that is, it is the wrong system. Another variation is
when the requirements are correct, but the design is inconsistent with the
requirements. Once again, the completed product will probably fail the sys-
tem validation procedures.
Because of the foregoing issues, experts began to publish methodologies based N
on other approaches, such as prototyping.

the Client/Server Challenge
The client/server architecture for application development divides functionality
between a client and server so that each performs its task independently. The client
cooperates with the server to produce the required results.

The client is an intelligent workstation used as a single user, and because it
has its own operating system, it can run other applications such as spreadsheets,
word processors, and file processors. The user and the server process client/server
application functions cooperatively. The server can be a PC, minicomputer, local
area network, or even a mainframe. The server receives requests from the clients
and processes them. The hardware configuration is determined by the application’s
functional requirements.

Some advantages of client/server applications include reduced costs, improved
accessibility of data, and flexibility. However, justifying a client/server approach
and ensuring quality are difficult and present additional difficulties not necessarily
found in mainframe applications. Some of these problems include the following:

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ◾ 141

The typical graphical user interface has more possible logic paths, and thus the N
large number of test cases in the mainframe environment is compounded.
Client/server technology is complicated and, often, new to the organization. N
Furthermore, this technology often comes from multiple vendors and is used
in multiple configurations and in multiple versions.
The fact that client/server applications are highly distributed results in a N
large number of failure sources and hardware/software configuration control
problems.
A short- and long-term cost–benefit analysis must be performed to justify client/ N
server technology in terms of the overall organizational costs and benefits.
Successful migration to a client/server depends on matching migration plans N
to the organization’s readiness for client/server technology.
The effect of client/server technology on the user’s business may be substantial. N
Choosing which applications will be the best candidates for a client/server N
implementation is not straightforward.
An analysis needs to be performed of which development technologies and N
tools enable a client/server.
Availability of client/server skills and resources, which are expensive, needs N
to be considered.
Although client/server technology is more expensive than mainframe com- N
puting, cost is not the only issue. The function, business benefit, and the
pressure from end users have to be balanced.

Integration testing in a client/server environment can be challenging. Client and
server applications are built separately. When they are brought together, conflicts
can arise no matter how clearly defined the interfaces are. When integrating appli-
cations, defect resolutions may have single or multiple solutions, and there must be
open communication between quality assurance and development.

In some circles there exists a belief that the mainframe is dead and the client/
server prevails. The truth of the matter is that applications using mainframe archi-
tecture are not dead, and client/server technology is not necessarily the panacea for
all applications. The two will continue to coexist and complement each other in the
future. Mainframes will certainly be part of any client/server strategy.

Psychology of Client/Server Spiral testing
The New School of Thought
The psychology of life-cycle testing encourages testing by individuals outside
the development organization. The motivation for this is that with the life-cycle
approach, there typically exist clearly defined requirements, and it is more efficient

© 2009 by Taylor & Francis Group, LLC

142 ◾ Software Testing and Continuous Quality Improvement

for a third party to verify these. Testing is often viewed as a destructive process
designed to break development’s work.

The psychology of spiral testing, on the other hand, encourages cooperation
between quality assurance and the development organization. The basis of this
argument is that, in a rapid application development environment, requirements
may or may not be available, to varying degrees. Without this cooperation, the test-
ing function would have a difficult task defining the test criteria. The only possible
alternative is for testing and development to work together.

Testers can be powerful allies to development and, with a little effort, they can
be transformed from adversaries into partners. This is possible because most testers
want to be helpful; they just need a little consideration and support. To achieve
this, however, an environment needs to be created to bring out the best of a tester’s
abilities. The tester and development manager must set the stage for cooperation
early in the development cycle and communicate throughout the cycle.

Tester/Developer Perceptions
To understand some of the inhibitors to a good relationship between the testing
function and development, it is helpful to understand how each views his or her
role and responsibilities.

Testing is a difficult effort. It is a task that is both infinite and indefinite. No
matter what testers do, they cannot be sure they will find all the problems, or even
all the important ones.

Many testers are not really interested in testing and do not have the proper
training in basic testing principles and techniques. Testing books or conferences
typically treat the testing subject too rigorously and employ deep mathematical
analysis. The insistence on formal requirement specifications as a prerequisite to
effective testing is not realistic in the real world of a software development project.

It is hard to find individuals who are good at testing. It takes someone who is a
critical thinker motivated to produce a quality software product, likes to evaluate
software deliverables, and is not caught up in the assumption held by many devel-
opers that testing has a lesser job status than development. A good tester is a quick
learner and eager to learn, is a good team player, and can effectively communicate
both verbally and in writing.

The output from development is something that is real and tangible. A pro-
grammer can write code and display it to admiring customers, who assume it is
correct. From a developer’s point of view, testing results in nothing more tangible
than an accurate, useful, and all-too-fleeting perspective on quality. Given these
perspectives, many developers and testers often work together in an uncooperative,
if not hostile, manner.

In many ways the tester and developer roles are in conflict. A developer is com-
mitted to building something successful. A tester tries to minimize the risk of fail-
ure and tries to improve the software by detecting defects. Developers focus on

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ◾ 143

technology, which takes a lot of time and energy when producing software. A good
tester, on the other hand, is motivated to provide the user with the best software to
solve a problem.

Testers are typically ignored until the end of the development cycle when the
application is “completed.” Testers are always interested in the progress of develop-
ment and realize that quality is only achievable when they take a broad point of
view and consider software quality from multiple dimensions.

Project Goal: Integrate QA and Development

The key to integrating the testing and developing activities is for testers to avoid
giving the impression that they are out to “break the code” or destroy development’s
work. Ideally, testers are human meters of product quality and should examine a
software product, evaluate it, and discover if the product satisfies the customer’s
requirements. They should not be out to embarrass or complain, but inform devel-
opment how to make their product even better. The impression they should foster
is that they are the “developer’s eyes to improved quality.”

Development needs to be truly dedicated to quality and view the test team as an
integral player on the development team. They need to realize that no matter how
much work and effort has been expended by development, if the software does not
have the correct level of quality, it is destined to fail. The testing manager needs to
remind the project manager of this throughout the development cycle. The project
manager needs to instill this perception in the development team.

Testers must coordinate with the project schedule and work in parallel with
development. They need to be informed about what is going on in development,
and so should be included in all planning and status meetings. This lessens the risk
of introducing new bugs, known as “side effects,” near the end of the development
cycle and also reduces the need for time-consuming regression testing.

Testers must be encouraged to communicate effectively with everyone on the
development team. They should establish a good relationship with the software
users, who can help them better understand acceptable standards of quality. In this
way, testers can provide valuable feedback directly to development.

Testers should intensively review online help and printed manuals whenever they
are available. It will relieve some of the communication burden to get writers and
testers to share notes rather than saddle development with the same information.

Testers need to know the objectives of the software product, how it is intended
to work, how it actually works, the development schedule, any proposed changes,
and the status of reported problems.

Developers need to know what problems were discovered, what part of the
software is or is not working, how users perceive the software, what will be tested,
the testing schedule, the testing resources available, what the testers need to know
to test the system, and the current status of the testing effort.

© 2009 by Taylor & Francis Group, LLC

144 ◾ Software Testing and Continuous Quality Improvement

When quality assurance starts working with a development team, the testing
manager needs to interview the project manager and show an interest in working
in a cooperative manner to produce the best software product possible. The next
section describes how to accomplish this.

Iterative/Spiral Development Methodology
Spiral methodologies are a reaction to the traditional waterfall methodology of sys-
tems development, a sequential solution development approach. A common prob-
lem with the waterfall model is that the elapsed time for delivering the product can
be excessive.

By contrast, spiral development expedites product delivery. A small but func-
tioning initial system is built and quickly delivered, and then enhanced in a series
of iterations. One advantage is that the clients receive at least some functional-
ity quickly. Another is that the product can be shaped by iterative feedback; for
example, users do not have to define every feature correctly and in full detail at the
beginning of the development cycle, but can react to each iteration.

With the spiral approach, the product evolves continually over time; it is not
static and may never be completed in the traditional sense. The term spiral refers to
the fact that the traditional sequence of analysis–design–code–test phases is per-
formed on a microscale within each spiral or cycle, in a short period of time, and
then the phases are repeated within each subsequent cycle. The spiral approach is
often associated with prototyping and rapid application development.

Traditional requirements-based testing expects that the product definition will
be finalized and even frozen prior to detailed test planning. With spiral develop-
ment, the product definition and specifications continue to evolve indefinitely; that
is, there is no such thing as a frozen specification. A comprehensive requirements
definition and system design probably never will be documented.

The only practical way to test in the spiral environment, therefore, is to “get
inside the spiral.” Quality assurance must have a good working relationship with
development. The testers must be very close to the development effort, and test each
new version as it becomes available. Each iteration of testing must be brief, in order
not to disrupt the frequent delivery of the product iterations. The focus of each
iterative test must be first to test only the enhanced and changed features. If time
within the spiral allows, an automated regression test also should be performed;
this requires sufficient time and resources to update the automated regression tests
within each spiral.

Clients typically demand very fast turnarounds on change requests; there may
be neither formal release nor a willingness to wait for the next release to obtain a
new system feature. Ideally, there should be an efficient, automated regression test
facility for the product, which can be used for at least a brief test prior to the release
of the new product version (see Section 6, “Modern Software Testing Tools,” for
more details).

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ◾ 145

Spiral testing is a process of working from a base and building a system incre-
mentally. Upon reaching the end of each phase, developers reexamine the entire
structure and revise it. Drawing the four major phases of system development—
planning/analysis, design, coding, and test/deliver—into quadrants, as shown in
Figure 12.1, represents the spiral approach. The respective testing phases are test
planning, test case design, test development, and test execution/evaluation.

The spiral process begins with planning and requirements analysis to determine
the functionality. Then a design is made for the base components of the system and
the functionality determined in the first step. Next, the functionality is constructed
and tested. This represents a complete iteration of the spiral.

Having completed this first spiral, users are given the opportunity to examine the
system and enhance its functionality. This begins the second iteration of the spiral.
The process continues, looping around and around the spiral until the users and devel-
opers agree the system is complete; the process then proceeds to implementation.

The spiral approach, if followed systematically, can be effective in ensuring that
the users’ requirements are being adequately addressed and that the users are closely
involved with the project. It can allow for the system to adapt to any changes in
business requirements that occurred after the system development began. However,
there is one major flaw with this methodology: there may never be any firm com-
mitment to implement a working system. One can go around and around the quad-
rants, never actually bringing a system into production. This is often referred to as
“spiral death.”

Test Case Design
(DO)

Test Development
(DO)

Test Execution/ Evaluation
(Do, Check, Act)

Test Planning
(Plan)

Design Coding

Planning/Analysis Test/ Deliver

figure 12.1 Spiral testing process.

© 2009 by Taylor & Francis Group, LLC

146 ◾ Software Testing and Continuous Quality Improvement

Although the waterfall development has often proved itself to be too inflexible,
the spiral approach can produce the opposite problem. Unfortunately, the flexibil-
ity of the spiral methodology often results in the development team ignoring what
the user really wants, and thus, the product fails the user verification. This is where
quality assurance is a key component of a spiral approach. It will ensure that user
requirements are being satisfied.

A variation to the spiral methodology is the iterative methodology, in which the
development team is forced to reach a point where the system will be implemented.
The iterative methodology recognizes that the system is never truly complete, but
is evolutionary. However, it also realizes that there is a point at which the system is
close enough to completion to be of value to the end user.

The point of implementation is decided upon prior to the start of the system,
and a certain number of iterations will be specified, with goals identified for each
iteration. Upon completion of the final iteration, the system will be implemented
in whatever state it may be.

role of jads
During the first spiral, the major deliverables are the objectives, an initial func-
tional decomposition diagram, and a functional specification. The functional speci-
fication also includes an external (user) design of the system. It has been shown that
errors defining the requirements and external design are the most expensive to fix
later in development. It is, therefore, imperative to get the design as correct as pos-
sible the first time.

A technique that helps accomplish this is joint application design sessions (see
Appendix G19, “JADs,” for more details). Studies show that JADs increase pro-
ductivity over traditional design techniques. In JADs, users and IT professionals
jointly design systems in facilitated group sessions. JADs go beyond the one-on-one
interviews to collect information. They promote communication, cooperation, and
teamwork among the participants by placing the users in the drivers’ seats.

JADs are logically divided into phases: customization, session, and wrap-up.
Regardless of what activity one is pursuing in development, these components will
always exist. Each phase has its own objectives.

role of Prototyping
Prototyping is an iterative approach often used to build systems that users ini-
tially are unable to describe precisely (see Appendix G24, “Prototyping,” for more
details). The concept is made possible largely through the power of fourth-genera-
tion languages (4GLs) and application generators.

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ◾ 147

Prototyping is, however, as prone to defects as any other development effort,
maybe more so if not performed in a systematic manner. Prototypes need to be
tested as thoroughly as any other system. Testing can be difficult unless a system-
atic process has been established for developing prototypes.

There are various types of software prototypes, ranging from simple printed
descriptions of input, processes, and output to completely automated versions. An
exact definition of a software prototype is impossible to find; the concept is made
up of various components. Among the many characteristics identified by MIS pro-
fessionals are the following:

Comparatively inexpensive to build (i.e., less than 10 percent of the full sys- N
tem’s development cost).
Relatively quick development so that it can be evaluated early in the life cycle. N
Provides users with a physical representation of key parts of the system N
before implementation.
Prototypes: N
Do not eliminate or reduce the need for comprehensive analysis and specifi-

cation of user requirements.
Do not necessarily represent the complete system.
Perform only a subset of the functions of the final product.
Lack the speed, geographical placement, or other physical characteristics of

the final system.

Basically, prototyping is the building of trial versions of a system. These early ver-
sions can be used as the basis for assessing ideas and making decisions about the
complete and final system. Prototyping is based on the premise that, in certain
problem domains (particularly in online interactive systems), users of the proposed
application do not have a clear and comprehensive idea of what the application
should do or how it should operate.

Often, errors or shortcomings overlooked during development appear after a
system becomes operational. Application prototyping seeks to overcome these prob-
lems by providing users and developers with an effective means of communicating
ideas and requirements before a significant amount of development effort has been
expended. The prototyping process results in a functional set of specifications that
can be fully analyzed, understood, and used by users, developers, and management
to decide whether an application is feasible and how it should be developed.

Fourth-generation languages have enabled many organizations to undertake
projects based on prototyping techniques. They provide many of the capabilities
necessary for prototype development, including user functions for defining and
managing the user–system interface, data management functions for organizing
and controlling access, and system functions for defining execution control and
interfaces between the application and its physical environment.

© 2009 by Taylor & Francis Group, LLC

148 ◾ Software Testing and Continuous Quality Improvement

In recent years, the benefits of prototyping have become increasingly recog-
nized. Some include the following:

Prototyping emphasizes active physical models. The prototype looks, feels, N
and acts like a real system.
Prototyping is highly visible and accountable. N
The burden of attaining performance, optimum access strategies, and com- N
plete functioning is eliminated in prototyping.
Issues of data, functions, and user–system interfaces can be readily addressed. N
Users are usually satisfied, because they get what they see. N
Many design considerations are highlighted, and a high degree of design flex- N
ibility becomes apparent.
Information requirements are easily validated. N
Changes and error corrections can be anticipated and, in many cases, made N
on the spur of the moment.
Ambiguities and inconsistencies in requirements become visible and correctable. N
Useless functions and requirements can be quickly eliminated. N

Methodology for developing Prototypes
The following describes a methodology to reduce development time through reuse
of the prototype and knowledge gained in developing and using the prototype.
It does not include how to test the prototype within spiral development. This is
included in the next part.

Step 1: Develop the Prototype
In the construction phase of spiral development, the external design and screen
design are translated into real-world windows using a 4GL tool such as Visual Basic
or PowerBuilder. The detailed business functionality is not built into the screen
prototypes, but a “look and feel” of the user interface is produced so the user can
see how the application will look.

Using a 4GL, the team constructs a prototype system consisting of data entry
screens, printed reports, external file routines, specialized procedures, and proce-
dure selection menus. These are based on the logical database structure developed
in the JAD data modeling sessions. The sequence of events for performing the task
of developing the prototype in a 4GL is iterative and is described as follows.

Define the basic database structures derived from logical data modeling. The data
structures will be populated periodically with test data as required for specific tests.

Define printed report formats. These may initially consist of query commands
saved in an executable procedure file on disk. The benefit of a query language is
that most of the report formatting can be done automatically by the 4GL. The

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ◾ 149

prototyping team needs only to define what data elements to print and what selec-
tion and ordering criteria to use for individual reports.

Define interactive data entry screens. Whether each screen is well designed is
immaterial at this point. Obtaining the right information in the form of prompts,
labels, help messages, and validation of input is more important. Initially, defaults
should be used as often as possible.

Define external file routines to process data that is to be submitted in batches to
the prototype or created by the prototype for processing by other systems. This can
be done in parallel with other tasks.

Define algorithms and procedures to be implemented by the prototype and the fin-
ished system. These may include support routines solely for the use of the prototype.

Define procedure selection menus. The developers should concentrate on the func-
tions as the user would see them. This may entail combining seemingly disparate proce-
dures into single functions that can be executed with a single command from the user.

Define test cases to ascertain that:

Data entry validation is correct. N
Procedures and algorithms produce expected results. N
System execution is clearly defined throughout a complete cycle of operation. N

Repeat this process, adding report and screen formatting options, corrections of
errors discovered in testing, and instructions for the intended users. This process
should end after the second or third iteration or when changes become predomi-
nantly cosmetic rather than functional.

At this point, the prototyping team should have a good understanding of the
overall operation of the proposed system. If time permits, the team must now
describe the operation and underlying structure of the prototype. This is most eas-
ily accomplished through the development of a draft user manual. A printed copy
of each screen, report, query, database structure, selection menu, and catalogued
procedure or algorithm must be included. Instructions for executing each proce-
dure should include an illustration of the actual dialogue.

Step 2: Demonstrate Prototypes to Management
The purpose of this demonstration is to give management the option of making
strategic decisions about the application on the basis of the prototype’s appearance
and objectives. The demonstration consists primarily of a short description of each
prototype component and its effects, and a walkthrough of the typical use of each
component. Every person in attendance at the demonstration should receive a copy
of the draft user manual, if one is available.

The team should emphasize the results of the prototype and its impact on devel-
opment tasks still to be performed. At this stage, the prototype is not necessarily a
functioning system, and management must be made aware of its limitations.

© 2009 by Taylor & Francis Group, LLC

150 ◾ Software Testing and Continuous Quality Improvement

Step 3: Demonstrate Prototype to Users

There are arguments for and against letting the prospective users actually use the
prototype system. There is a risk that users’ expectations will be raised to an unre-
alistic level with regard to delivery of the production system and that the prototype
will be placed in production before it is ready. Some users have actually refused
to give up the prototype when the production system was ready for delivery. This
may not be a problem if the prototype meets the users’ expectations and the envi-
ronment can absorb the load of processing without affecting others. On the other
hand, when users exercise the prototype, they can discover the problems in proce-
dures and unacceptable system behavior very quickly.

The prototype should be demonstrated before a representative group of users.
This demonstration should consist of a detailed description of the system operation,
structure, data entry, report generation, and procedure execution. Above all, users
must be made to understand that the prototype is not the final product, that it is flex-
ible, and that it is being demonstrated to find errors from the users’ perspective.

The results of the demonstration include requests for changes, correction of
errors, and overall suggestions for enhancing the system. Once the demonstra-
tion has been held, the prototyping team cycles through the steps in the prototype
process to make the changes, corrections, and enhancements deemed necessary
through consensus of the prototyping team, the end users, and management.

For each iteration through prototype development, demonstrations should be
held to show how the system has changed as a result of feedback from users and
management. The demonstrations increase the users’ sense of ownership, especially
when they can see the results of their suggestions. The changes should therefore be
developed and demonstrated quickly.

Requirements uncovered in the demonstration and use of the prototype may
cause profound changes in the system scope and purpose, the conceptual model
of the system, or the logical data model. Because these modifications occur in the
requirements specification phase rather than in the design, code, or operational
phases, they are much less expensive to implement.

Step 4: Revise and Finalize Specifications

At this point, the prototype consists of data entry formats, report formats, file for-
mats, a logical database structure, algorithms and procedures, selection menus,
system operational flow, and possibly a draft user manual.

The deliverables from this phase consist of formal descriptions of the system
requirements, listings of the 4GL command files for each object programmed (i.e.,
screens, reports, and database structures), sample reports, sample data entry screens,
the logical database structure, data dictionary listings, and a risk analysis. The risk
analysis should include the problems and changes that could not be incorporated

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ◾ 151

into the prototype and the probable impact that they would have on development
of the full system and subsequent operation.

The prototyping team reviews each component for inconsistencies, ambiguities, and
omissions. Corrections are made, and the specifications are formally documented.

Step 5: Develop the Production System
At this point, development can proceed in one of three directions:

 1. The project is suspended or canceled because the prototype has uncovered
insurmountable problems or the environment is not ready to mesh with the
proposed system.

 2. The prototype is discarded because it is no longer needed or because it is too
inefficient for production or maintenance.

 3. Iterations of prototype development are continued, with each iteration add-
ing more system functions and optimizing performance until the prototype
evolves into the production system.

The decision on how to proceed is generally based on such factors as:

The actual cost of the prototype N
Problems uncovered during prototype development N
The availability of maintenance resources N
The availability of software technology in the organization N
Political and organizational pressures N
The amount of satisfaction with the prototype N
The difficulty in changing the prototype into a production system N
Hardware requirements N

Continuous improvement “Spiral” testing approach
The purpose of software testing is to identify the differences between existing and
expected conditions, that is, to detect software defects. Testing identifies the require-
ments that have not been satisfied and the functions that do not work properly. The
most commonly recognized test objective is to identify bugs, but this is a limited
definition of the aim of testing. Not only must bugs be identified, but they must be
put into a framework that enables testers to predict how the software will perform.

In the spiral and rapid application development testing environment, there may
be no final functional requirements for the system. They are probably informal
and evolutionary. Also, the test plan may not be completed until the system is
released for production. The relatively long lead-time to create test plans based on a
good set of requirement specifications may not be available. Testing is an ongoing

© 2009 by Taylor & Francis Group, LLC

152 ◾ Software Testing and Continuous Quality Improvement

improvement process that occurs frequently as the system changes. The product
evolves over time and is not static.

The testing organization needs to get inside the development effort and work
closely with development. Each new version needs to be tested as it becomes avail-
able. The approach is to first test the new enhancements or modified software to
resolve defects reported in the previous spiral. If time permits, regression testing is
then performed to ensure that the rest of the system has not regressed.

In the spiral development environment, software testing is again described as a
continuous improvement process that must be integrated into a rapid application
development methodology. Testing as an integrated function prevents development
from proceeding without testing. Deming’s continuous improvement process using the
PDCA model (see Figure 12.2) will again be applied to the software testing process.

Before the continuous improvement process begins, the testing function needs
to perform a series of information-gathering planning steps to understand the
development project objectives, current status, project plans, function specifica-
tion, and risks.

Once this is completed, the formal Plan step of the continuous improvement
process commences. A major step is to develop a software test plan. The test plan
is the basis for accomplishing testing and should be considered an ongoing docu-
ment; that is, as the system changes, so does the plan. The outline of a good test
plan includes an introduction, the overall plan, testing requirements, test proce-
dures, and test plan details. These are further broken down into business functions,
test scenarios and scripts, function/test matrix, expected results, test case checklists,
discrepancy reports, required software, hardware, data, personnel, test schedule,
test entry criteria, exit criteria, and summary reports.

The more definitive a test plan is, the easier the Plan step will be. If the sys-
tem changes between development of the test plan and when the tests are to be
executed, the test plan should be updated accordingly.

The Do step of the continuous improvement process consists of test case design,
test development, and test execution. This step describes how to design test cases
and execute the tests included in the test plan. Design includes the functional tests,
GUI tests, and fragment system and acceptance tests. Once an overall test design

Act Plan

Check Do

figure 12.2 Spiral testing and continuous improvement.

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ◾ 153

is completed, test development starts. This includes building test scripts and proce-
dures to provide test case details.

The test team is responsible for executing the tests and must ensure that they are
executed according to the test design. The Do step also includes test setup, regres-
sion testing of old and new tests, and recording any defects discovered.

The Check step of the continuous improvement process includes metric mea-
surements and analysis. As discussed in Section 1, Chapter 5, “Quality through
Continuous Improvement Process,” crucial to the Deming method is the need to
base decisions as much as possible on accurate and timely data. Metrics are key to
verifying if the work effort and test schedule are on schedule, and to identify any
new resource requirements.

During the Check step, it is important to publish intermediate test reports.
This includes recording of the test results and relating them to the test plan and
test objectives.

The Act step of the continuous improvement process involves preparation for the
next spiral iteration. It entails refining the function/GUI tests, test suites, test cases,
test scripts, and fragment system and acceptance tests, and modifying the defect-
tracking system and the version and control system, if necessary. It also includes
devising measures for appropriate actions relating to work that was not performed
according to the plan or unanticipated results. Examples include a reevaluation of
the test team, test procedures, and technology dimensions of testing. All these are
fed back to the test plan, which is updated.

Once several testing spirals have been completed and the application has been
verified as functionally stable, full system and acceptance testing starts. These tests
are often optional. Respective system and acceptance test plans are developed,
defining the test objects and the specific tests to be completed.

The final activity in the continuous improvement process is summarizing and
reporting the spiral test results. A major test report should be written at the end of
all testing. The process used for report writing is the same whether it is an interim
or a final report, and, similar to other tasks in testing, report writing is also subject
to quality control. However, the final test report should be much more comprehen-
sive than interim test reports. For each type of test, it should describe a record of
defects discovered, data reduction techniques, root cause analysis, the development
of findings, and follow-on recommendations for current and/or future projects.

Figure 12.3 provides an overview of the spiral testing methodology by relating
each step to the PDCA quality model. Appendix A, “Spiral Testing Methodology,”
provides a detailed representation of each part of the methodology. The methodol-
ogy provides a framework for testing in this environment. The major steps include
information gathering, test planning, test design, test development, test execution/
evaluation, and preparing for the next spiral. It includes a set of tasks associated
with each step or a checklist from which the testing organization can choose based
on its needs. The spiral approach flushes out the system functionality. When this

© 2009 by Taylor & Francis Group, LLC

154 ◾ Software Testing and Continuous Quality Improvement

has been completed, it also provides for classical system testing, acceptance testing,
and summary reports.

© 2009 by Taylor & Francis Group, LLC

Information
Gathering

Test
Planning

Test
Case

Design

Test
Development

Test
Evaluation/
Execution

Prepare
for Next

Spiral

System
Testing

Acceptance
Testing

Summary
Report

(STEPS)

Continuous Process Improvement

PLAN DO CHECK ACT

(INTERIM
REPORTS)

figure 12.3 Spiral testing methodology.

155

13Chapter

information
gathering (Plan)

You will recall that, in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model (see Figure 13.1) is applied to the software testing process.
We are now in the Plan part of the spiral model.

Figure 13.2 outlines the steps and tasks associated with information gathering
within the Plan part of spiral testing. Each step and task is described along with
valuable tips and techniques.

The purpose of gathering information is to obtain information relevant to the
software development project and organize it, to understand the scope of the devel-
opment project and start building a test plan. Other interviews may occur during
the development project, as necessary.

Proper preparation is critical to the success of the interview. Before the inter-
view, it is important to clearly identify the objectives of the interview and com-
municate them to all parties, identify the quality assurance representative who will
lead the interview, and identify the scribe; schedule a time and place; prepare any
required handouts; and communicate what is required from development.

Although many interviews are unstructured, the interviewing steps and tasks
shown in Figure 13.2 will be helpful.

© 2009 by Taylor & Francis Group, LLC

156 ◾ Software Testing and Continuous Quality Improvement

Step 1: Prepare for the interview
Task 1: Identify the Participants
It is recommended that there be no more than two interviewers representing qual-
ity assurance. It is helpful for one of these to assume the role of questioner, with the
other taking detailed notes. This will allow the interviewer to focus on soliciting
information. Ideally, the interviewer should be the manager responsible for the
project-testing activities. The scribe, or note taker, should be a test engineer or lead
tester assigned to the project; the scribe supports the interviewer and records each
pertinent piece of information and lists the issues, the assumptions, and questions.

The recommended development participants attending include the project
sponsor, development manager, or a senior development team member. Although
members of the development team can take notes, this is the responsibility of the
scribe. Having more than one scribe can result in confusion, because multiple sets
of notes will eventually have to be consolidated. The most efficient approach is for
the scribe to take notes, and summarize at the end of the interview. (See Appendix
F20, “Project Information Gathering Checklist,” which can be used to verify the
information available and required at the beginning of the project.)

Task 2: Define the Agenda
The key factor for a successful interview is a well-thought-out agenda. It should be
prepared by the interviewer ahead of time and agreed upon by the development
leader. The agenda should include an introduction, specific points to cover, and
a summary section. The main purpose of an agenda is to enable the testing man-
ager to gather enough information to scope out the quality assurance activities and
begin a test plan. Table 13.1 depicts a sample agenda (details are described in “Step
2: Conduct the Interview”).

Step 2: Conduct the interview
A good interview contains certain elements. The first is defining what will be dis-
cussed, or “talking about what we are going to talk about.” The second is discussing

Act Plan

Check Do

figure 13.1 Spiral testing and continuous improvement.

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ◾ 157

Identify
Participants

(STEPS) (TASKS)

Prepare
for

Interview
Define
Agenda

Understand
Project

Objectives

Understand
Project

Understand
Project
Status

Understand
Project
Plans

Understand Project
Development
Methodology

Identify High-
Level Business
Requirements

Perform
Risk

Analysis

Summarize
Interview

Confirm
Interview
Findings

Summarize
Findings

Conduct
Interview

figure 13.2 information gathering (steps/tasks).
© 2009 by Taylor & Francis Group, LLC

158 ◾ Software Testing and Continuous Quality Improvement

the details, or “talking about it.” The third is summarizing, or “talking about what
we talked about.” The final element is timeliness. The interviewer should state up
front the estimated duration of the interview and set the ground rule that if the
allotted time expires before completing all items on the agenda, a follow-on inter-
view will be scheduled. This is difficult, particularly when the interview is into the
details, but nonetheless it should be followed.

Task 1: Understand the Project

Before getting into the project details, the interviewer should state the objectives
of the interview and present the agenda. As with any type of interview, he or she
should indicate that only one individual should speak, no interruptions should
occur until the speaker acknowledges a request, and the focus should be on the
material being presented.

The interviewer should then introduce himself or herself, introduce the scribe,
and ask the members of the development team to introduce themselves. Each should
indicate name, title, specific roles and job responsibilities, as well as expectations of
the interview. The interviewer should point out that the purpose of this task is to
obtain general project background information.

The following general questions should be asked to solicit basic information:

What is the name of the project? N

What are the high-level project objectives? N

Who is the audience (users) of the system to be developed? N

When was the project started? N

When is it anticipated to be complete? N

table 13.1 interview agenda

I. Introductions

II. Project Overview

III. Project Objectives

IV. Project Status

V. Project Plans

VI. Development Methodology

VII. High-Level Requirements

VIII. Project Risks and Issues

IX. Summary

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ◾ 159

What is the status of the project? N
What is the projected effort in person-months? N
Is this a new, maintenance, or package development project? N
What are the major problems, issues, and concerns? N
Are there plans to address problems and issues? N
Is the budget on schedule? N
Is the budget too tight, too loose, or about right? N
What organizational units are participating in the project? N
Is there an established organization chart? N
What resources are assigned to each unit? N
What is the decision-making structure; that is, who makes the decisions? N
What are the project roles and the responsibilities associated with each role? N
Who is the resource with whom the test team will communicate on a N
daily basis?
Has a quality management plan been developed? N
Has a periodic review process been set up? N
Has a representative from the user community been appointed to repre- N
sent quality?

Task 2: Understand the Project Objectives

To develop a test plan for a development project, it is important to understand the
objectives of the project. The purpose of this task is to understand the scope, needs,
and high-level requirements of this project.

The following questions should be asked to solicit basic information:

Purpose: N
What type of system is being developed, for example, payroll, order entry, −
inventory, or accounts receivable/payable?
Why is the system being developed? −
What subsystems are involved? −
What are the subjective requirements, for example, ease of use, efficiency, −
morale, flexibility?

Scope: N
Who are the users of the system? −
What are the users’ job titles and roles? −
What are the major functions and subfunctions of the system? −
What functions will not be implemented? −
What business procedures are within the scope of the system? −
Are there analysis diagrams, such as business flow diagrams, data flow −
diagrams, or data models, to describe the system?
Have project deliverables been defined along with completeness criteria? −

© 2009 by Taylor & Francis Group, LLC

160 ◾ Software Testing and Continuous Quality Improvement

Benefits: N
What are the anticipated benefits that will be provided to the user with −
this system?

Increased productivity•	
Improved quality•	
Cost savings•	
Increased revenue•	
More competitive advantage•	

Strategic: N
What are the strategic or competitive advantages? −
What impact will the system have on the organization, customers, legal, −
government, and so on?

Constraints: N
What are the financial, organizational, personnel, technological con- −
straints, or limitations of the system?
What business functions and procedures are out of the scope of the system? −

Task 3: Understand the Project Status
The purpose of this task is to understand where the project is at this point, which will
help define how to plan the testing effort. For example, if this is the first interview and
the project is at the stage of coding the application, the testing effort is already behind
schedule. The following questions should be asked to solicit basic information:

Has a detailed project work plan, including activities, tasks, dependencies, N
resource assignments, work effort estimates, and milestones, been developed?
Is the project on schedule? N
Is the completion time too tight? N
Is the completion time too loose? N
Is the completion time about right? N
Have there been any major slips in the schedule that will have an impact on N
the critical path?
How far is the project from meeting its objectives? N
Are the user functionality and quality expectations realistic and being met? N
Are the project work effort hours trends on schedule? N
Are the project costs trends within the budget? N
What development deliverables have been delivered? N

Task 4: Understand the Project Plans
Because the testing effort needs to track development, it is important to under-
stand the project work plans. The following questions should be asked to solicit
basic information:

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ◾ 161

Work breakdown: N
Has a Microsoft Project (or other tool) plan been developed? −
How detailed is the plan; for example, how many major and bottom-level −
tasks have been identified?
What are the major project milestones (internal and external)? −

Assignments: N
Have appropriate resources been assigned to each work plan? −
Is the work plan well balanced? −
What is the plan to stage resources? −

Schedule: N
Is the project plan on schedule? −
Is the project plan behind schedule? −
Is the plan updated periodically? −

Task 5: Understand the Project Development Methodology
The testing effort must integrate with the development methodology. If considered
a separate function, it may not receive the appropriate resources and commitment.
When testing is integrated with development, the latter should not proceed without
the former. Testing steps and tasks need to be integrated into the systems develop-
ment methodology through addition or modification of tasks. Specifically, the test-
ing function needs to know when in the development methodology test design can
start. It also needs to know when the system will be available for execution and the
recording and correction of defects.

The following questions should be asked to solicit basic information:

What is the methodology? N
What development and project management methodology does the develop- N
ment organization use?
How well does the development organization follow the development N
methodology?
Is there room for interpretation or flexibility? N
Standards: N

Are standards and practices documented? −
Are the standards useful or do they hinder productivity? −
How well does the development organization enforce standards? −

Task 6: Identify the High-Level Business Requirements
A software requirements specification defines the functions of a particular software
product in a specific environment. Depending on the development organization, it
may vary from a loosely defined document with a generalized definition of what

© 2009 by Taylor & Francis Group, LLC

162 ◾ Software Testing and Continuous Quality Improvement

the application will do to a very detailed specification, as shown in Appendix C,
“Requirements Specification.” In either case, the testing manager must assess the
scope of the development project to start a test plan.

The following questions should be asked to solicit basic information:

What are the high-level functions? N The functions at a high level should be
enumerated. Examples include order processing, financial processing,
reporting capability, financial planning, purchasing, inventory control, sales
administration, shipping, cash flow analysis, payroll, cost accounting, and
recruiting. This list defines what the application is supposed to do and gives
the testing manager an idea of the level of test design and implementation
required. The interviewer should solicit as much detail as possible, including
a detailed breakdown of each function. If this detail is not available during
the interview, a request for a detailed functional decomposition should be
made, and it should be pointed out that this information is essential for
preparing a test plan.
What are the system (minimum) requirements? N A description of the operating
system version (Windows, etc.) and minimum microprocessor, disk space,
RAM, and communications hardware should be provided.
What are the Windows or external interfaces? N The specification should define
how the application should behave from an external viewpoint, usually by
defining the inputs and outputs. It also includes a description of any inter-
faces to other applications or subsystems.
What are the performance requirements? N This includes a description of the
speed, availability, data volume throughput rate, response time, and recovery
time of various functions, stress, and so on. This serves as a basis for under-
standing the level of performance and stress testing that may be required.
What other testing attributes are required? N This includes such attributes as
portability, maintainability, security, and usability. This serves as a basis for
understanding the level of other system-level testing that may be required.
Are there any design constraints? N This includes a description of any limitation
on the operating environments, database integrity, resource limits, imple-
mentation language standards, and so on.

Task 7: Perform Risk Analysis

The purpose of this task is to measure the degree of business risk in an application
system to improve testing. This is accomplished in two ways: high-risk applications
can be identified and subjected to more extensive testing, and risk analysis can help
identify the error-prone components of an individual application so that testing
can be directed at those components. This task describes how to use risk assessment
techniques to measure the risk of an application under testing.

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ◾ 163

Computer Risk Analysis

Risk analysis is a formal method for identifying vulnerabilities (i.e., areas of poten-
tial loss). Any weakness that could be misused, intentionally or accidentally, and
result in a loss to the organization is a vulnerability. Identification of risks allows
the testing process to measure the potential effect of those vulnerabilities (e.g., the
maximum loss that could occur if the risk or vulnerability were exploited).

Risk has always been a testing consideration. Individuals naturally try to antici-
pate problems and then test to determine whether additional resources and atten-
tion need to be directed at those problems. Often, however, risk analysis methods
are both informal and ineffective.

Through proper analysis, the test manager should be able to predict the prob-
ability of such unfavorable consequences as the following:

Failure to obtain all, or even any, of the expected benefits N
Cost and schedule overruns N
An inadequate system of internal control N
Technical performance of the resulting system that is significantly below N
the estimate
Incompatibility of the system with the selected hardware and software N

The following reviews the various methods used for risk analysis and the dimen-
sions of computer risk, and then describes the various approaches to assigning risk
priorities. There are three methods of performing risk analysis.

Method 1: Judgment and Instinct

This method of determining how much testing to perform enables the tester to com-
pare the project with past projects to estimate the magnitude of the risk. Although
this method can be effective, the knowledge and experience it relies on are not
transferable but must be learned over time.

Method 2: Dollar Estimation

Risk is the probability of incurring loss. That probability is expressed through
this formula:

 (Frequency of occurrence) × (loss per occurrence) = (annual loss expectation)

Business risk based on this formula can be quantified in dollars. Often, however,
the concept, not the formula, is used to estimate how many dollars might be
involved if problems were to occur. The disadvantages of projecting risks in dollars
are that such numbers (i.e., frequency of occurrence and loss per occurrence) are

© 2009 by Taylor & Francis Group, LLC

164 ◾ Software Testing and Continuous Quality Improvement

difficult to estimate and the method implies a greater degree of precision than may
be realistic.

Method 3: Identifying and Weighting Risk Attributes

Experience has demonstrated that the major attributes causing potential risks are
the project size, experience with the technology, and project structure. The larger
the project is in dollar expense, staffing levels, elapsed time, and number of depart-
ments affected, the greater the risk.

Because of the greater likelihood of unexpected technical problems, project risk
increases as the project team’s familiarity with the hardware, operating systems,
database, and application languages decreases. A project that has a slight risk for a
leading-edge, large systems development department may carry a very high risk for
a smaller, less technically advanced group. The latter group, however, can reduce its
risk by purchasing outside skills for an undertaking that involves a technology in
general commercial use.

In highly structured projects, the nature of the task defines the output com-
pletely, from the beginning. Such output is fixed during the life of the project.
These projects carry much less risk than those whose output is more subject to the
manager’s judgment and changes.

The relationship among these attributes can be determined through weighting,
and the testing manger can use weighted scores to rank application systems accord-
ing to their risk. For example, this method can show application A is a higher risk
than application B.

Risk assessment is applied by first weighting the individual risk attributes. For
example, if an attribute is twice as important as another, it can be multiplied by the
weight of two. The resulting score is compared with other scores developed for the
same development organization and is used to determine a relative risk measure-
ment among applications, but it is not used to determine an absolute measure.

Table 13.2 compares three projects using the weighted risk attribute method.
Project size has a weight factor of 2, experience with technology has a weight factor

table 13.2 identifying and weighting risk attributes

Weighting Factor

Project A
(Score ×
Weight)

Project B
(Score ×
Weight)

Project C
(Score ×
Weight)

Project size (2) 5 × 2 = 10 3 × 2 = 6 2 × 2 = 4

Experience with technology (3) 7 × 3 = 21 1 × 3 = 3 5 × 3 = 15

Project structure (1) 4 × 1 = 4 6 × 1 = 6 3 × 1 = 3

Total score 35 15 22

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ◾ 165

of 3, and project structure has a weight factor of 1. When the project scores are each
multiplied by each of the three weight factors, it becomes clear that project A has
the highest risk.

Information gathered during risk analysis can be used to allocate test resources
to test application systems. For example, high-risk applications should receive
extensive testing; medium-risk systems, less testing; and low-risk systems, minimal
testing. The area of testing can be selected on the basis of high-risk characteristics.
For example, if computer technology is a high-risk characteristic, the testing man-
ager may want to spend more time testing how effectively the development team is
using that technology.

Step 3: Summarize the findings
Task 1: Summarize the Interview
After the interview is completed, the interviewer should review the agenda and out-
line the main conclusions. If a follow-up session is needed, one should be scheduled
at this point while the members are present.

Typically, during the interview, the notes are unstructured and hard to follow
by anyone except the note taker. However, the notes should have at least followed
the agenda. After the interview concludes, the notes should be formalized into a
summary report. This should be performed by the scribe note taker. The goal is
to make the results of the session as clear as possible for quality assurance and the
development organization. However, the interview leader may have to embellish the
material or expand certain areas. (See Appendix E16, “Minutes of the Meeting,”
which can be used to document the results and follow-up actions for the project
information-gathering session).

Task 2: Confirm the Interview Findings
The purpose of this task is to bring about agreement between the interviewer and
the development organization, to ensure an understanding of the project. After the
interview notes are formalized, it is important to distribute the summary report
to the other members who attended the interview. A sincere invitation for their
comments or suggestions should be communicated. The interviewer should then
actively follow up interview agreements and disagreements. Any changes should
then be implemented. Once there is full agreement, the interviewer should provide
a copy of the summary report.

© 2009 by Taylor & Francis Group, LLC

167

14Chapter

test Planning (Plan)

The purpose of the test project plan is to provide the basis for accomplishing testing
in an organized manner. From a managerial point of view, it is the most important
document, because it helps manage the test project. If a test plan is comprehensive
and carefully thought out, test execution and analysis should proceed smoothly.
(See Appendix E1 for a sample unit test plan, Appendix E4 for a sample system test
plan, and Appendix F24 for a unit testing checklist, which can be used to verify
that unit testing has been thorough and comprehensive.)

The test project plan is an ongoing document, particularly in the spiral environ-
ment, because the system is constantly changing. As the system changes, so does
the test plan. A good test plan is one that:

Has a good chance of detecting a majority of the defects N
Provides test coverage for most of the code N
Is flexible N
Is executed easily and automatically, and is repeatable N
Defines the types of tests to be performed N
Clearly documents the expected results N
Provides for defect reconciliation when a defect is discovered N
Clearly defines the test objectives N
Clarifies the test strategy N
Clearly defines the test exit criteria N
Is not redundant N
Identifies the risks N
Documents the test requirements N
Defines the test deliverables N

© 2009 by Taylor & Francis Group, LLC

168 ◾ Software Testing and Continuous Quality Improvement

Although there are many ways a test plan can be created, Figure 14.1 provides a
framework that includes most of the essential planning considerations. It can be
treated as a checklist of test items to consider. Some of the items, such as defining
the test requirements and test team, are obviously required; however, others may
not be. It depends on the nature of the project and the time constraints.

The planning test methodology includes three steps: building the test project
plan, defining the metrics, and reviewing/approving the test project plan. Each of
these is then broken down into its respective tasks, as shown in Figure 14.1.

Step 1: Build a test Plan
Task 1: Prepare an Introduction
The first bit of test plan detail is a description of the problems to be solved by the
application of the associated opportunities. This defines the summary background,
describing the events or current status leading up to the decision to develop the
application. Also, the application’s risks, purpose, objectives, and benefits, and the
organization’s critical success factors should be documented in the introduction. A
critical success factor is a measurable item that will have a major influence on whether
a key function meets its objectives. An objective is a measurable end state that the
organization strives to achieve. Examples of objectives include the following:

New product opportunity N
Improved efficiency (internal and external) N
Organizational image N
Growth (internal and external) N
Financial (revenue, cost profitability, etc.) N
Competitive position N
Market leadership N

The introduction should also include an executive summary description. The exec-
utive sponsor (often called the project sponsor) is the individual who has ultimate
authority over the project. This individual has a vested interest in the project in
terms of funding, project results, and resolving project conflicts, and is respon-
sible for the success of the project. An executive summary describes the proposed
application from an executive’s point of view. It should describe the problems to be
solved, the application goals, and the business opportunities. The objectives should
indicate whether the application is a replacement of an old system and document
the impact the application will have, if any, on the organization in terms of man-
agement, technology, and so on.

Any available documentation should be listed and its status described.
Examples include requirements specifications, functional specifications, project

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 169

(TASKS)

Establish Defect Recording/
Tracking Procedures

Select Test
Tools

Create Test
Schedule

Define
Dependencies

Establish Test
Environment

Organize
Test Team

Define
Deliverables

Establish Regression
Test Strategy

Identify Test
Exit Criteria

Identify Types
of Tests

Define High-Level
Functional Requirements

Prepare
Introduction

Establish Change
Request Procedures

Establish Version
Control Procedures

Define Configuration
Build Procedures

Define Project Issue
Resolution Procedures

Establish Reporting
Procedures

Define Approval
Procedures

Define
Metrics

Define Metric
Points

Schedule/Conduct
Review

Obtain
Approvals

Define
Metrics

Objectives

Review/
Approve

Plan

Build
Test
Plan

(STEPS)

figure 14.1 test planning (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

170 ◾ Software Testing and Continuous Quality Improvement

plan, design specification, prototypes, user manual, business model/flow dia-
grams, data models, and project risk assessments. In addition to project risks,
which are the potential adverse effects on the development project, the risks relat-
ing to the testing effort should be documented. Examples include the lack of
testing skills, scope of the testing effort, lack of automated testing tools, and the
like. See Appendix E4, “Test Plan (Client/Server and Internet Spiral Testing),”
for more details.

Task 2: Define the High-Level Functional
Requirements (in Scope)
A functional specification consists of the hierarchical functional decomposition,
the functional window structure, the window standards, and the minimum system
requirements of the system to be developed. An example of window standards is the
Windows 95 GUI Standards. An example of a minimum system requirement could
be Windows 95, a Pentium II microprocessor, 24 MB RAM, 3 GB disk space, and
a modem. At this point in development, a full functional specification may not
have been defined. However, a list of at least the major business functions of the
basic window structure should be available.

A basic functional list contains the main functions of the system with each
function named and described with a verb–object paradigm. This list serves as the
basis for structuring functional testing (see Figure 14.2).

A functional window structure describes how the functions will be implemented
in the windows environment. At this point, a full functional window structure may
not be available, but a list of the major windows should be (see Figure 14.3).

Order processing (ex. create new order, edit order, etc.)
Customer processing (create new customer, edit customer, etc.)
Financial processing (receive payment, deposit payment, etc.)
Inventory processing (acquire products, adjust product price, etc.)
Reports (create order report, create account receivable report, etc.)

figure 14.2 high-level business functions.

The Main-Window (menu bar, customer order window, etc.)
The Customer-Order-Window (order summary list, etc.)
The Edit-Order-Window (create order, edit order, etc.)
The Menu Bar (File, Order, View, etc.)
The Tool Bar with icons (FileNew, OrderCreate)

figure 14.3 functional window structure.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 171

Task 3: Identify Manual/Automated Test Types
The types of tests that need to be designed and executed depend only on the objec-
tives of the application, that is, the measurable end state the organization is striving
to achieve. For example, if the application is a financial application used by a large
number of individuals, special security and usability tests need to be performed.
However, three types of tests that are nearly always required are function, user
interface, and regression testing. Function testing comprises the majority of the
testing effort and is concerned with verifying that the functions work properly. It is
a black-box-oriented activity in which the tester is completely unconcerned with the
internal behavior and structure of the application. User interface testing, or GUI
testing, checks the user’s interaction or functional window structure. It ensures that
object state dependencies work properly and provide useful navigation through the
functions. Regression testing tests the application in light of changes made during
debugging, maintenance, or the development of a new release.

Other types of tests that need to be considered include system and acceptance
testing. System testing is the highest level of testing and evaluates functionality
as a total system, its performance, and overall fitness of use. Acceptance testing is
an optional user-run test that demonstrates the ability of the application to meet
the user’s requirements. This test may or may not be performed, depending on the
formality of the project. Sometimes the system test suffices.

Finally, the tests that can be automated with a testing tool need to be identi-
fied. Automated tests provide three benefits: repeatability, leverage, and increased
functionality. Repeatability enables automated tests to be executed more than once,
consistently. Leverage comes from repeatability, from tests previously captured and
tests that can be programmed with the tool, which may not have been possible
without automation. As applications evolve, more and more functionality is added.
With automation, the functional coverage is maintained with the test library.

Task 4: Identify the Test Exit Criteria
One of the most difficult and political problems is deciding when to stop testing,
because it is impossible to know when all the defects have been detected. There are
at least four criteria for exiting testing:

 1. Scheduled testing time has expired—This criterion is very weak, inasmuch as it
has nothing to do with verifying the quality of the application. This does not
take into account that there may be an inadequate number of test cases or the
fact that there may not be any more defects that are easily detectable.

 2. Some predefined number of defects discovered—The problems with this is
knowing the number of errors to detect and also overestimating the num-
ber of defects. If the number of defects is underestimated, testing will be
incomplete. Potential solutions include experience with similar applications

© 2009 by Taylor & Francis Group, LLC

172 ◾ Software Testing and Continuous Quality Improvement

developed by the same development team, predictive models, and industry-
wide averages. If the number of defects is overestimated, the test may never
be completed within a reasonable time frame. A possible solution is to esti-
mate completion time, plotting defects detected per unit of time. If the rate
of defect detection is decreasing dramatically, there may be “burnout,” an
indication that a majority of the defects have been discovered.

 3. All the formal tests execute without detecting any defects—A major problem
with this is that the tester is not motivated to design destructive test cases
that force the tested program to its design limits; for example, the tester’s
job is completed when the test program fields no more errors. The tester is
motivated to not find errors and may subconsciously write test cases that
show the program is error free. This criterion is only valid if there is a rigorous
and totally comprehensive test case suite created that approaches 100 percent
coverage. The problem with this is determining when there is a comprehen-
sive suite of test cases. If it is felt that this is the case, a good strategy at this
point is to continue with ad hoc testing. Ad hoc testing is a black-box testing
technique in which the tester lets his or her mind run freely to enumerate as
many test conditions as possible. Experience has shown that this technique
can be a very powerful supplemental or add-on technique.

 4. Combination of the foregoing criteria—Most testing projects utilize a combi-
nation of the foregoing exit criteria. It is recommended that all the tests be
executed, but any further ad hoc testing will be constrained by time.

Task 5: Establish Regression Test Strategy
Regression testing tests the application in light of changes made during a develop-
ment spiral, debugging, maintenance, or the development of a new release. This test
must be performed after functional improvements or repairs have been made to a
system to confirm that the changes have no unintended side effects. Correction of
errors relating to logic and control flow, computational errors, and interface errors
are examples of conditions that necessitate regression testing. Cosmetic errors gen-
erally do not affect other capabilities and do not require regression testing.

It would be ideal if all the tests in the test suite were rerun for each new spiral;
however, owing to time constraints, this is probably not realistic. A good regression
strategy during spiral development is for some regression testing to be performed
during each spiral to ensure that previously demonstrated capabilities are not
adversely affected by later development spirals or error corrections. During system
testing, after the system is stable and the functionality has been verified, regression
testing should consist of a subset of the system tests. Policies need to be created to
decide which tests to include. (See Appendix E21, “Test Strategy.”)

A retest matrix is an excellent tool that relates test cases to functions (or pro-
gram units), as shown in Table 14.1. A check entry in the matrix indicates that the
test case is to be retested when the function (or program unit) has been modified

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 173

table 14.1 retest Matrix

Test Case

1 2 3 4 5

Business function

Order processing

Create new order √ √ √ √

Fulfill order

Edit order √ √

Delete order

Customer processing

Create new customer

Edit customer

Delete customer √

Financial processing

Receive customer payment √ √ √

Deposit payment

Pay vendor

Write a check √ √ √ √ √

Display register

Inventory processing

Acquire vendor products

Maintain stock

Handle back orders √ √ √ √ √

Audit inventory

Adjust product price

Reports

Create order report

Create account receivables report √ √ √ √ √

Create account payables report

Create inventory report

© 2009 by Taylor & Francis Group, LLC

174 ◾ Software Testing and Continuous Quality Improvement

due to enhancements or corrections. An empty cell means that the test does not
need to be retested. The retest matrix can be built before the first testing spiral, but
needs to be maintained during subsequent spirals. As functions (or program units)
are modified during a development spiral, existing or new test cases need to be cre-
ated and checked in the retest matrix in preparation for the next test spiral. Over
time, with subsequent spirals, some functions (or program units) may remain sta-
ble with no recent modifications. Consideration to selectively remove their check
entries should be undertaken between testing spirals. (Also see Appendix E14,
“Retest Matrix.”)

Other considerations of regression testing are as follows:

Regression tests are potential candidates for test automation when they are N
repeated over and over in every testing spiral.
Regression testing needs to occur between releases after the initial release of N
the system.
A test that uncovers an original defect should be rerun after the defect has N
been corrected.
An in-depth effort should be made to ensure that the original defect was cor- N
rected, and not just the symptoms.
Regression tests that repeat other tests should be removed. N
Other test cases in the functional (or program unit) area where a defect is N
uncovered should be included in the regression test suite.
Client-reported defects should have high priority and should be regression- N
tested thoroughly.

Task 6: Define the Test Deliverables
Test deliverables result from test planning, test design, test development, and test
defect documentation. Some spiral test deliverables from which you can choose
include the following:

Test plan: Defines the objectives, scope, strategy, types of tests, test environment, N
test procedures, exit criteria, and so on (see Appendix E4, “Sample Template”).
Test design: Tests for the application’s functionality, performance, and appro- N
priateness for use. The tests demonstrate that the original test objectives are
satisfied.
Change request: A documented request to modify the current software sys- N
tem, usually supplied by the user (see Appendix D, “Change Request Form,”
for more details). It is typically different from a defect report, which reports
an anomaly in the system.
Metrics: The measurable indication of some quantitative aspect of a system. N
Examples include the number of severe defects, and the number of defects
discovered as a function of the number of testers.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 175

Test case: A specific set of test data and associated procedures developed for a N
particular objective. It provides a detailed blueprint for conducting individual
tests and includes specific input data values and the corresponding expected
results (see Appendix E8, “Test Case,” for more details).
Test log summary report: Specifies the test cases from the tester’s individual N
test logs that are in progress or completed for status reporting and metric col-
lection (see Appendix E10, “Test Log Summary Report”).
Test case log: Specifies the test cases for a particular testing event to be exe- N
cuted during testing. It is also used to record the results of the test performed,
to provide the detailed evidence for the summary of test results, and to pro-
vide a basis for reconstructing the testing event if necessary (see Appendix E9,
“Test Case Log”).
Interim test report: A report published between testing spirals, indicating the N
status of the testing effort (see Part 18, Step 3, Publish Interim Report).
System summary report: A comprehensive test report after all spiral testing N
has been completed (see Appendix E11, “System Summary Report”).
Defect report: Documents defects discovered during spiral testing (see N
Appendix E12, “Defect Report”).

Task 7: Organize the Test Team
The people component includes human resource allocations and the required skill
sets. The test team should comprise the highest-caliber personnel possible. They
are usually extremely busy and are in great demand because of their talents, and it
therefore is vital to build the best case possible for using these individuals for test
purposes. A test team leader and test team need to have the right skills and experi-
ence, and be motivated to work on the project. Ideally, they should be professional
quality assurance specialists, but can represent the executive sponsor, users, techni-
cal operations, database administration, computer center, independent parties, and
so on. In any event, they should not represent the development team, for they may
not be as unbiased as an outside party. This is not to say that developers should not
test; they should unit and function test their code extensively before handing it over
to the test team.

There are two areas of responsibility in testing: testing the application, which
is the responsibility of the test team, and the overall testing processes, which is
handled by the test manager. The test manager directs one or more testers, is the
interface between quality assurance and the development organization, and man-
ages the overall testing effort. Responsibilities include the following:

Setting up the test objectives N
Defining test resources N
Creating test procedures N

© 2009 by Taylor & Francis Group, LLC

176 ◾ Software Testing and Continuous Quality Improvement

Developing and maintaining the test plan N
Designing test cases N
Designing and executing automated testing tool scripts N
Test case development N
Providing test status N
Writing reports N
Defining the roles of the team members N
Managing the test resources N
Defining standards and procedures N
Ensuring quality of the test process N
Training the team members N
Maintaining test statistics and metrics N

The test team must be a set of team players and have these responsibilities:

Executing test cases according to the plan N
Evaluating the test results N
Reporting errors N
Designing and executing automated testing tool scripts N
Recommending application improvements N
Recording defects N

The main function of a team member is to test the application and report defects
to the development team by documenting them in a defect-tracking system. Once
the development team corrects the defects, the test team reexecutes the tests that
discovered the original defects.

It should be pointed out that the roles of the test manager and team members
are not mutually exclusive. Some of the team leader’s responsibilities are shared
with the team members, and vice versa.

The basis for allocating dedicated testing resources is the scope of the function-
ality and the development time frame; for example, a medium development project
will require more testing resources than a small one. If project A of medium com-
plexity requires a testing team of five, project B with twice the scope would require
ten testers (given the same resources).

Another rule of thumb is that the testing costs approach 25 percent of the total
budget. Because the total project cost is known, the testing effort can be calculated
and translated to tester headcount.

The best estimate is a combination of the project scope, test team skill levels,
and project history. A good measure of required testing resources for a particular
project is the histories of multiple projects, that is, testing resource levels and per-
formance compared to similar projects.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 177

Task 8: Establish a Test Environment
The purpose of the test environment is to provide a physical framework necessary
for the testing activity. For this task, the test environment needs are established and
reviewed before implementation.

The main components of the test environment include the physical test facility,
technologies, and tools. The test facility component includes the physical setup.
The technologies component includes the hardware platforms, physical network
and all its components, operating system software, and other software such as util-
ity software. The tools component includes any specialized testing software such as
automated test tools, testing libraries, and support software.

The testing facility and workplace need to be established. This may range from
an individual workplace configuration to a formal testing laboratory. In any event,
it is important that the testers be together and in close proximity to the develop-
ment team. This facilitates communication and the sense of a common goal. The
testing tools that were acquired need to be installed.

The hardware and software technologies need to be set up. This includes the
installation of test hardware and software, and coordination with vendors, users,
and information technology personnel. It may be necessary to test the hardware
and coordinate with hardware vendors. Communication networks need to be
installed and tested.

Task 9: Define the Dependencies
A good source of information is previously produced test plans on other projects. If
available, the sequence of tasks in the project work plans can be analyzed for activ-
ity and task dependencies that apply to this project.

Examples of test dependencies include the following:

Code availability N
Tester availability (in a timely fashion) N
Test requirements (reasonably defined) N
Test tools availability N
Test group training N
Technical support N
Defects fixed in a timely manner N
Adequate testing time N
Computers and other hardware N
Software and associated documentation N
System documentation (if available) N
Defined development methodology N
Test laboratory space availability N
Agreement with development (procedures and processes) N

© 2009 by Taylor & Francis Group, LLC

178 ◾ Software Testing and Continuous Quality Improvement

The support personnel need to be defined and committed to the project. This
includes members of the development group, technical support staff, network sup-
port staff, and database administrator support staff.

Task 10: Create a Test Schedule
A test schedule should be produced that includes the testing steps (and perhaps
tasks), target start and end dates, and responsibilities. It should also describe how it
will be reviewed, tracked, and approved. A simple test schedule format, as shown in
Table 14.2, follows the spiral methodology.

Also, a project management tool such as Microsoft Project can format a Gantt
chart to emphasize the tests and group them into test steps. A Gantt chart consists
of a table of task information and a bar chart that graphically displays the test
schedule. It also includes task time duration and links the task dependency rela-
tionships graphically. People resources can also be assigned to tasks for workload
balancing. See Appendix E13, “Test Schedule,” and template file Gantt spiral test-
ing methodology template.

Another way to schedule testing activities is with “relative scheduling,” in
which testing steps or tasks are defined by their sequence or precedence. It does
not state a specific start or end date but does have a duration, such as days. (Also
see Appendix E18, “Test Execution Plan,” which can be used to plan the activities
for the Execution phase, and Appendix E20, “PDCA Test Schedule,” which can be
used to plan and track the Plan–Do–Check–Act test phases.)

It is also important to define major external and internal milestones. External
milestones are events that are external to the project but may have a direct impact
on the project. Examples include project sponsorship approval, corporate funding,
and legal authorization. Internal milestones are derived for the schedule work plan
and typically correspond to key deliverables that need to be reviewed and approved.
Examples include test plan, design, and development completion approval by the proj-
ect sponsor and the final spiral test summary report. Milestones can be documented
in the test plan in table format as shown in Table 14.3. (Also see Appendix E19, “Test
Project Milestones,” which can be used to identify and track the key test milestones.)

Task 11: Select the Test Tools
Test tools range from relatively simple to sophisticated software. New tools are being
developed to help provide the high-quality software needed for today’s applications.

Because test tools are critical to effective testing, those responsible for testing
should be proficient in using them. The tools selected should be most effective for
the environment in which the tester operates and the specific types of software
being tested. The test plan needs to name specific test tools and their vendors. The
individual who selects the test tool should also conduct the test and be familiar
enough with the tool to use it effectively. The test team should review and approve

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 179

table 14.2 test Schedule

Test Step Begin Date End Date
Responsible Staff

Member

first Spiral

Information gathering

Prepare for interview 6/1/04 6/2/04 Smith, test manager

Conduct interview 6/3/04 6/3/04 Smith, test manager

Summarize findings 6/4/04 6/5/04 Smith, test manager

Test planning

Build test plan 6/8/04 6/12/04 Smith, test manager

Define the metric objectives 6/15/04 6/17/04 Smith, test manager

Review/approve plan 6/18/04 6/18/04 Smith, test manager

Test case design

Design function tests 6/19/04 6/23/04 Smith, test manager

Design GUI tests 6/24/04 6/26/04 Smith, test manager

Define the system/acceptance

Tests 6/29/04 6/30/04 Smith, test manager

Review/approve design 7/3/04 7/3/04 Smith, test manager

Test development

Develop test scripts 7/6/04 7/16/04 Jones, Baker,
Brown, testers

Review/approve test
development

7/17/04 7/17/04 Jones, Baker,
Brown, testers

Test execution/evaluation

Setup and testing 7/20/04 7/24/04 Smith, Jones, Baker,
Brown, testers

Evaluation 7/27/04 7/29/04 Smith, Jones, Baker,
Brown, testers

Continued

© 2009 by Taylor & Francis Group, LLC

180 ◾ Software Testing and Continuous Quality Improvement

table 14.2 test Schedule (Continued)

Test Step Begin Date End Date
Responsible Staff

Member

Prepare for the next Spiral

Refine the tests 8/3/04 8/5/04 Smith, test manager

Reassess team, procedures,
and test environment

8/6/04 8/7/04 Smith, test manager

Publish interim report 8/10/04 8/11/04 Smith, test manager

•

•

•

last Spiral…

Test execution/evaluation

Setup and testing 10/5/04 10/9/04 Jones, Baker,
Brown, testers

Evaluation 10/12/04 10/14/04 Smith, test manager

•

•

•

Conduct system testing

Complete system test plan 10/19/04 10/21/04 Smith, test manager

Complete system test cases 10/22/04 10/23/04 Smith, test manager

Review/approve system tests 10/26/04 10/30/04 Jones, Baker,
Brown, testers

Execute the system tests 11/2/04 11/6/04 Jones, Baker,
Brown, testers

Conduct acceptance testing

Complete acceptance test
plan

11/9/04 11/10/04 Smith, test manager

Complete acceptance test
cases

11/11/04 11/12/04 Smith, test manager

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 181

table 14.2 test Schedule (Continued)

Test Step Begin Date End Date
Responsible Staff

Member

Review/approve acceptance

Test plan 11/13/04 11/16/04 Jones, Baker,
Brown, testers

Execute the acceptance tests 11/17/04 11/20/04

Summarize/report spiral test results

Perform data reduction 11/23/04 11/26/04 Smith, test manager

Prepare final test report 11/27/04 11/27/04 Smith, test manager

Review/approve the final

Test report 11/28/04 11/29/04 Smith, test manager
Baylor, sponsor

table 14.3 Project Milestones

Project Milestone Due Date

Sponsorship approval 7/1/04

First prototype available 7/20/04

Project test plan 6/18/04

Test development complete 7/1704

Test execution begins 7/20/04

Final spiral test summary report published 11/27/04

System ship date 12/1/04

© 2009 by Taylor & Francis Group, LLC

182 ◾ Software Testing and Continuous Quality Improvement

the use of each test tool, because the tool selected must be consistent with the objec-
tives of the test plan.

The selection of testing tools may be based on intuition or judgment. However,
a more systematic approach should be taken. Section 6, “Modern Software Testing
Tools,” provides a comprehensive methodology for acquiring testing tools. It also
provides an overview of the types of modern testing tools available.

Task 12: Establish Defect Recording/Tracking Procedures
During the testing process, when a defect is discovered, it needs to be recorded. A
defect is related to individual tests that have been conducted, and the objective is
to produce a complete record of those defects. The overall motivation for record-
ing defects is to correct them and record metric information about the application.
Development should have access to the defects reports, which they can use to evalu-
ate whether there is a defect and how to reconcile it. The defect form can either be
manual or electronic, with the latter being preferred. Metric information such as
the number of defects by type or open time for defects can be very useful in under-
standing the status of the system.

Defect control procedures need to be established to control this process from
initial identification to reconciliation. Table 14.4 shows some possible defect states,
from open to closed with intermediate states. The testing department initially
opens a defect report and also closes it. A “Yes” in a cell indicates a possible transi-
tion from one state to another. For example, an “Open” state can change to “Under
Review,” “Returned by Development,” or “Deferred by Development.” The transi-
tions are initiated by either the testing department or by development.

A defect report form also needs to be designed. The major fields of a defect form
include (see Appendices E12 and E27, “Defect Report,” for more details) the following:

Identification of the problem, for example, functional area, problem type, N
and so on
Nature of the problem, for example, behavior N
Circumstances that led to the problem, for example, inputs and steps N
Environment in which the problem occurred, for example, platform, and so on N
Diagnostic information, for example, error code, and so on N
Effect of the problem, for example, consequence N

It is quite possible that a defect report and a change request form are the same.
The advantage of this approach is that it is not always clear whether a change
request is a defect or an enhancement request. The differentiation can be made
with a form field that indicates whether it is a defect or enhancement request. On
the other hand, a separate defect report can be very useful during the maintenance
phase when the expected behavior of the software is well known and it is easier to
distinguish between a defect and an enhancement.

© 2009 by Taylor & Francis Group, LLC

Test Plan
n

in
g (Plan)

◾
183

table 14.4 defect States

Open
Under
Review

Returned by
Development

Ready for
Testing

Returned
by QA

Deferred by
Development Closed

Open — Yes Yes — — Yes —

Under review — — Yes Yes — Yes Yes

Returned by development — — — — Yes — Yes

Ready for testing — — — — Yes — Yes

Returned by QA — — Yes — — Yes Yes

Deferred by development — Yes Yes Yes — — Yes

Closed Yes — — — — — —

© 2009 by Taylor & Francis Group, LLC

184 ◾ Software Testing and Continuous Quality Improvement

Task 13: Establish Change Request Procedures
If it were a perfect world, a system would be built and there would be no future
changes. Unfortunately, it is not a perfect world and after a system is deployed,
there are change requests.

Some of the reasons for change are the following:

The requirements change. N
The design changes. N
The specification is incomplete or ambiguous. N
A defect is discovered that was not discovered during reviews. N
The software environment changes, for example, platform, hardware, and so on. N

Change control is the process by which a modification to a software component is
proposed, evaluated, approved or rejected, scheduled, and tracked. It is a decision
process used in controlling the changes made to software. Some proposed changes are
accepted and implemented during this process. Others are rejected or postponed, and
are not implemented. Change control also provides for impact analysis to determine
the dependencies (see Appendix D, “Change Request Form,” for more details).

Each software component has a life cycle. A life cycle consists of states and
allowable transitions between those states. Any time a software component is
changed, it should always be reviewed. During the review, it is frozen from fur-
ther modifications and the only way to change it is to create a new version. The
reviewing authority must approve the modified software component or reject it. A
software library should hold all components as soon as they are frozen and also act
as a repository for approved components.

The formal title of the organization that manages changes is a configuration
control board, or CCB. The CCB is responsible for the approval of changes and
for judging whether a proposed change is desirable. For a small project, the CCB
can consist of a single person, such as a project manager. For a more formal devel-
opment environment, it can consist of several members from development, users,
quality assurance, management, and the like.

All components controlled by software configuration management are stored
in a software configuration library, including work products such as business data
and process models, architecture groups, design units, tested application software,
reusable software, and special test software. When a component is to be modified,
it is checked out of the repository into a private workspace. It evolves through many
states that are temporarily outside the scope of configuration management control.

When a change is completed, the component is checked into the library and
becomes a new component version. The previous component version is also retained.

Change control is based on the following major functions of a development
process: requirements analysis, system design, program design, testing, and imple-
mentation. At least six control procedures are associated with these functions and

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 185

need to be established for a change control system (see Appendix B, “Software
Quality Assurance Plan,” for more details):

 1. Initiation procedures—This includes procedures for initiating a change request
through a change request form, which serves as a communication vehicle.
The objective is to gain consistency in documenting the change request docu-
ment and routing it for approval.

 2. Technical assessment procedures—This includes procedures for assessing the
technical feasibility and technical risks, and scheduling a technical evaluation
of a proposed change. The objectives are to ensure integration of the proposed
change, the testing requirements, and the ability to install the change request.

 3. Business assessment procedures—This includes procedures for assessing the
business risk, effect, and installation requirements of the proposed change.
The objectives are to ensure that the timing of the proposed change is not
disruptive to the business goals.

 4. Management review procedures—This includes procedures for evaluating the
technical and business assessments through management review meetings.
The objectives are to ensure that changes meet technical and business require-
ments and that adequate resources are allocated for testing and installation.

 5. Test tracking procedures—This includes procedures for tracking and docu-
menting test progress and communication, including steps for scheduling
tests, documenting the test results, deferring change requests based on test
results, and updating test logs. The objectives are to ensure that testing stan-
dards are utilized to verify the change, including test plans and test design,
and that test results are communicated to all parties.

 6. Installation tracking procedures—This includes procedures for tracking and
documenting the installation progress of changes. It ensures that proper
approvals have been completed, adequate time and skills have been allocated,
installation and backup instructions have been defined, and proper commu-
nication has occurred. The objectives are to ensure that all approved changes
have been made, including scheduled dates, test durations, and reports.

Task 14: Establish Version Control Procedures
A method for uniquely identifying each software component needs to be estab-
lished via a labeling scheme. Every software component must have a unique name.
Software components evolve through successive revisions, and each needs to be
distinguished. A simple way to distinguish component revisions is with a pair of
integers, 1.1, 1.2, …, that define the release number and level number. When a
software component is first identified, it is revision 1 and subsequent major revi-
sions are 2, 3, and so on.

In a client/server environment, it is highly recommended that the development
environment be different from the test environment. This requires the application

© 2009 by Taylor & Francis Group, LLC

186 ◾ Software Testing and Continuous Quality Improvement

software components to be transferred from the development environment to the
test environment. Procedures need to be set up.

Software needs to be placed under configuration control so that no changes are
being made to the software while testing is being conducted. This includes source
and executable components. Application software can be periodically migrated into
the test environment. This process must be controlled to ensure that the latest ver-
sion of software is tested. Versions will also help control the repetition of tests to
ensure that previously discovered defects have been resolved.

For each release or interim change between versions of a system configuration, a ver-
sion description document should be prepared to identify the software components.

Task 15: Define Configuration Build Procedures
Assembling a software system involves tools to transform the source components,
or source code, into executable programs. Examples of tools are compilers and link-
age editors.

Configuration build procedures need to be defined to identify the correct com-
ponent versions and execute the component build procedures. The configuration
build model addresses the crucial question of how to control the way components
are built.

A configuration typically consists of a set of derived software components. An
example of derived software components is executable object programs derived from
source programs. Derived components must be correctly associated with each source
component to obtain an accurate derivation. The configuration build model addresses
the crucial question of how to control the way derived components are built.

The inputs and outputs required for a configuration build model include pri-
mary inputs and primary outputs. The primary inputs are the source components,
which are the raw materials from which the configuration is built; the version selec-
tion procedures; and the system model, which describes the relationship between
the components. The primary outputs are the target configuration and derived soft-
ware components.

Different software configuration management environments use different
approaches for selecting versions. The simplest approach to version selection is to
maintain a list of component versions. Other automated approaches allow for the
most recently tested component versions to be selected, or those updated on a spe-
cific date. Operating system facilities can be used to define and build configura-
tions, including the directories and command files.

Task 16: Define Project Issue Resolution Procedures
Testing issues can arise at any point in the development process and must be
resolved successfully. The primary responsibility of issue resolution is with the proj-
ect manager, who should work with the project sponsor to resolve those issues.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 187

Typically, the testing manager will document test issues that arise during the test-
ing process. The project manager or project sponsor should screen every issue that
arises. An issue can be rejected or deferred for further investigation, but should be
considered relative to its impact on the project. In any case, a form should be cre-
ated that contains the essential information. Examples of testing issues include lack
of testing tools, lack of adequate time to test, inadequate knowledge of the require-
ments, and so on.

Issue management procedures need to be defined before the project starts. The
procedures should address how to:

Submit an issue N
Report an issue N
Screen an issue (rejected, deferred, merged, or accepted) N
Investigate an issue N
Approve an issue N
Postpone an issue N
Reject an issue N
Close an issue N

Task 17: Establish Reporting Procedures
Test reporting procedures are critical to manage the testing progress and manage
the expectations of the project team members. This will keep the project manager
and sponsor informed of the testing project progress and minimize the chance
of unexpected surprises. The testing manager needs to define who needs the test
information, what information they need, and how often the information is to be
provided. The objectives of test status reporting are to report the progress of the
testing toward its objectives and report test issues, problems, and concerns.

Two key reports that need to be published are:

 1. Interim Test Report—An interim test report is a report published between
testing spirals indicating the status of the testing effort.

 2. System Summary Report—A test summary report is a comprehensive test
report after all spiral testing has been completed.

Task 18: Define Approval Procedures
Approval procedures are critical in a testing project. They help provide the nec-
essary agreement between members of the project team. The testing manager
should define who needs to approve a test deliverable, when it will be approved,
and what the backup plan is if an approval cannot be obtained. The approval pro-
cedure can vary from a formal sign-off of a test document to an informal review
with comments. Table 14.5 shows test deliverables for which approvals are required

© 2009 by Taylor & Francis Group, LLC

188 ◾ Software Testing and Continuous Quality Improvement

or recommended, and by whom. (Also see Appendix E17, “Test Approvals,” for
a matrix that can be used to formally document management approvals for test
deliverables.)

Step 2: define the Metric objectives
“You can’t control what you can’t measure.” This is a quote from Tom DeMarco’s
book, Controlling Software Projects, in which he describes how to organize and
control a software project so that it is measurable in the context of time and cost
projections. Control is the extent to which a manager can ensure minimum sur-
prises. Deviations from the plan should be signaled as early as possible for timely
corrective action. Another quote from DeMarco’s book, “The only unforgivable
failure is the failure to learn from past failure,” stresses the importance of estimat-
ing and measurement. Measurement is a recording of past effects to quantitatively
predict future effects.

Task 1: Define the Metrics
Software testing as a test development project has deliverables such as test plans, test
design, test development, and test execution. The objective of this task is to apply the
principles of metrics to control the testing process. A metric is a measurable indica-
tion of some quantitative aspect of a system and has the following characteristics:

table 14.5 deliverable approvals

Test Deliverable Approval Status Suggested Approver

Test plan Required Project Manager, Development
Manager, Sponsor

Test design Required Development Manager

Change request Required Development Manager

Metrics Recommended Development Manager

Test case Required Development Manager

Test log summary report Recommended Development Manager

Interim test report Required Project Manager, Development
Manager

System summary report Required Project Manager, Development
Manager, Sponsor

Defect report Required Development Manager

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 189

Measurability N —A metric point must be measurable for it to be a metric, by
definition. If the phenomenon cannot be measured, there is no way to apply
management methods to control it.
Independence N —Metrics need to be independent of human influence. There
should be no way of changing the measurement other than by changing the
phenomenon that produced the metric.
Accountability N —Any analytical interpretation of the raw metric data rests on
the data itself and it is, therefore, necessary to save the raw data and the
methodical audit trail of the analytical process.
Precision N —Precision is a function of accuracy. The key to precision is, there-
fore, that a metric be explicitly documented as part of the data collection
process. If a metric varies, it can be measured as a range or tolerance.

A metric can be a “result” or a “predictor.” A result metric measures a completed
event or process. Examples include actual total elapsed time to process a business
transaction or total test costs of a project. A predictor metric is an early-warning
metric that has a strong correlation to some later result. An example is the predicted
response time through statistical regression analysis when more terminals are added
to a system when the number of terminals has not yet been measured. A result or
predictor metric can also be a derived metric. A derived metric is one that is derived
from a calculation or graphical technique involving one or more metrics.

The motivation for collecting test metrics is to make the testing process more
effective. This is achieved by carefully analyzing the metric data and taking the
appropriate action to correct problems. The starting point is to define the metric
objectives of interest. Some examples include the following:

Defect analysis N —Every defect must be analyzed to answer such questions as
the root causes, how it was detected, when it was detected, who detected it,
and so on.
Test effectiveness N —How well is testing doing, for example, return on investment?
Development effectiveness N —How well is development fixing defects?
Test automation N —How much effort is expended on test automation?
Test cost N —What are the resources and time spent on testing?
Test status N —Another important metric is status tracking, or where are we in
the testing process?
User involvement N —How much is the user involved in testing?

Task 2: Define the Metric Points

Table 14.6 lists some metric points associated with the general metrics selected in
the previous task and the corresponding actions to improve the testing process.
Also shown is the source, or derivation, of the metric point.

© 2009 by Taylor & Francis Group, LLC

190 ◾ Software Testing and Continuous Quality Improvement

table 14.6 Metric Points

Metric Metric Point Derivation

Defect analysis Distribution of defect causes Histogram, Pareto

Number of defects by cause
over time

Multiline graph

Number of defects by how
found over time

Multiline graph

Distribution of defects by
module

Histogram, Pareto

Distribution of defects by
priority (critical, high,
medium, low)

Histogram

Distribution of defects by
functional area

Histogram

Distribution of defects by
environment (platform)

Histogram, Pareto

Distribution of defects by type
(architecture, connectivity,
consistency, database
integrity, documentation, GUI,
installation, memory,
performance, security,
standards and conventions,
stress, usability, bad fixes)

Histogram, Pareto

Distribution of defects by who
detected (external customer,
internal customer,
development, QA, other)

Histogram, Pareto

Distribution by how detected
(technical review,
walkthroughs, JAD,
prototyping, inspection, test
execution)

Histogram, Pareto

Distribution of defects by
severity (high, medium, low
defects)

Histogram

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 191

table 14.6 Metric Points (Continued)

Metric Metric Point Derivation

Development
effectiveness

Average time for development
to repair defect

Total repair time ÷
number of repaired
defects

Test automation Percentage of manual versus
automated testing

Cost of manual test
effort ÷ total test cost

Test cost Distribution of cost by cause Histogram, Pareto

Distribution of cost by
application

Histogram, Pareto

Percentage of costs for testing Test testing cost ÷ total
system cost

Total costs of testing over time Line graph

Average cost of locating a
defect

Total cost of testing ÷
number of defects
detected

Anticipated costs of testing
versus actual cost

Comparison

Average cost of locating a
requirements defect with
requirements reviews

Requirements review
costs ÷ number of
defects uncovered
during requirement
reviews

Average cost of locating a
design defect with design
reviews

Design review costs ÷
number of defects
uncovered during
design reviews

Average cost of locating a code
defect with reviews

Code review costs ÷
number of defects
uncovered during
code reviews

Average cost of locating a
defect with test execution

Test execution costs ÷
number of defects
uncovered during test
execution

Continued

© 2009 by Taylor & Francis Group, LLC

192 ◾ Software Testing and Continuous Quality Improvement

table 14.6 Metric Points (Continued)

Metric Metric Point Derivation

Number of testing resources
over time

Line plot

Test effectiveness Percentage of defects
discovered during
maintenance

Number of defects
discovered during
maintenance ÷ total
number of defects
uncovered

Percentage of defects
uncovered due to testing

Number of detected
errors through testing
÷ total system defects

Average effectiveness of a test Number of tests ÷ total
system defects

Value returned while reviewing
requirements

Number of defects
uncovered during
requirements review ÷
requirements test
costs

Value returned while reviewing
design

Number of defects
uncovered during
design review ÷
design test costs

Value returned while reviewing
programs

Number of defects
uncovered during
program review ÷
program test costs

Value returned during test
execution

Number of defects
uncovered during
testing ÷ test costs

Effect of testing changes Number of tested
changes ÷ problems
attributable to the
changes

People’s assessment of
effectiveness of testing

Subjective scaling
(1–10)

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ◾ 193

table 14.6 Metric Points (Continued)

Metric Metric Point Derivation

Average time for QA to verify
fix

Total QA verification
time ÷ total number of
defects to verify

Number of defects over time Line graph

Cumulative number of defects
over time

Line graph

Number of application defects
over time

Multiline graph

Test extent Percentage of statements
executed

Number of statements
executed ÷ total
statements

Percentage of logical paths
executed

Number of logical
paths ÷ total number
of paths

Percentage of acceptance
criteria tested

Acceptance criteria
tested ÷ total
acceptance criteria

Number of requirements
tested over time

Line plot

Number of statements
executed over time

Line plot

Number of data elements
exercised over time

Line plot

Number of decision statements
executed over time

Line plot

Test status Number of tests ready to run
over time

Line plot

Number of tests run over time Line plot

Number of tests run without
defects uncovered

Line plot

Number of defects corrected
over time

Line plot

User involvement Percentage of user testing User testing time ÷ total
test time

© 2009 by Taylor & Francis Group, LLC

194 ◾ Software Testing and Continuous Quality Improvement

Step 3: review/approve the Plan
Task 1: Schedule/Conduct the Review
The test plan review should be scheduled well in advance of the actual review, and
the participants should have the latest copy of the test plan.

As with any interview or review, it should contain certain elements. The first is
defining what will be discussed, or “talking about what we are going to talk about.”
The second is discussing the details, or “talking about it.” The third is summariza-
tion, or “talking about what we talked about.” The final element is timeliness. The
reviewer should state up front the estimated duration of the review and set the
ground rule that if time expires before completing all items on the agenda, a follow-
on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the test plan. If there are any suggested changes to the test plan during the
review, they should be incorporated into the test plan.

Task 2: Obtain Approvals
Approval is critical in a testing effort, for it helps provide the necessary agreements
between testing, development, and the sponsor. The best approach is with a formal
sign-off procedure of a test plan. If this is the case, use the management approval
sign-off forms. However, if a formal agreement procedure is not in place, send a
memo to each key participant, including at least the project manager, development
manager, and sponsor. In the document, attach the latest test plan and point out
that all their feedback comments have been incorporated and that if you do not
hear from them, it is assumed that they agree with the plan. Finally, indicate that
in a spiral development environment, the test plan will evolve with each iteration
but that you will include them in any modification.

© 2009 by Taylor & Francis Group, LLC

195

15Chapter

test Case design (do)

You will recall that in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model is applied to the software testing process. We are now in
the Do part of the spiral model (see Figure 15.1).

Figure 15.2 outlines the steps and tasks associated with the Do part of spiral test-
ing. Each step and task are described, and valuable tips and techniques are provided.

Step 1: design function tests
Task 1: Refine the Functional Test Requirements
At this point, the functional specification should have been completed. It consists
of the hierarchical functional decomposition, the functional window structure, the
window standards, and the minimum system requirements of the system to be devel-
oped. An example of windows standards is the Windows 2000 GUI Standards. A
minimum system requirement could be the following: Windows 2000, a Pentium
IV microprocessor, 1 GB RAM, 40 GB disk space, and a 56 kbps modem.

A functional breakdown consists of a list of business functions, hierarchical
listing, group of activities, or set of user profiles defining the basic functions of the
system and how the user will use it. A business function is a discrete controllable
aspect of the business and the smallest component of a system. Each should be
named and described with a verb–object paradigm. The criteria used to determine
the successful execution of each function should be stated. The functional hierar-
chy serves as the basis for function testing, in which there will be at least one test

© 2009 by Taylor & Francis Group, LLC

196 ◾ Software Testing and Continuous Quality Improvement

case for each lowest-level function. Examples of functions include the following:
approve customer credit, handle order, create invoice, order components, receive
revenue, pay bill, purchase items, and so on. Taken together, the business functions
constitute the total application including any interfaces. A good source of these
functions (in addition to the interview itself) is a process decomposition or data
flow diagram, or CRUD matrix, which should be requested during the informa-
tion-gathering interview.

The requirements serve as the basis for creating test cases. The following qual-
ity assurance test checklists can be used to ensure that the requirements are clear
and comprehensive:

Appendix E22: Clarification Request, which can be used to document ques- N
tions that may arise while the tester analyzes the requirements.
Appendix F25: Ambiguity Review Checklist, which can be used to assist in N
the review of a functional specification of structural ambiguity (not to be
confused with content reviews).
Appendix F26: Architecture Review Checklist, which can be used to review N
the architecture for completeness and clarity.
Appendix F27: Data Design Review Checklist, which can be used to review N
the logical and physical design for clarity and completeness.
Appendix F28: Functional Specification Review Checklist, which can be N
used in functional specification for content completeness and clarity (not to
be confused with ambiguity reviews).
Appendix F29: Prototype Review Checklist, which can be used to review a N
prototype for content completeness and clarity.
Appendix F30: Requirements Review Checklist, which can be used to verify N
that the testing project requirements are comprehensive and complete.
Appendix F31: Technical Design Review Checklist, which can be used to N
review the technical design for clarity and completeness.

A functional breakdown is used to illustrate the processes in a hierarchical struc-
ture showing successive levels of detail. It is built iteratively as processes and non-
elementary processes are decomposed (see Figure 15.3).

Act Plan

Check Do

figure 15.1 Spiral testing and continuous improvement.

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) ◾ 197

Identify
Participants

(STEPS) (TASKS)

Prepare
for

Interview
Define
Agenda

Understand
Project

Objectives

Understand
Project

Understand
Project
Status

Understand
Project
Plans

Understand Project
Development
Methodology

Identify High-
Level Business
Requirements

Perform
Risk

Analysis

Summarize
Interview

Confirm
Interview
Findings

Summarize
Findings

Conduct
Interview

figure 15.2 test design (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

198 ◾ Software Testing and Continuous Quality Improvement

A data flow diagram shows processes and the flow of data among these processes.
It is used to define the overall data flow through a system and consists of external
agents that interface with the system, processes, data flow, and stores depicting where
the data is stored or retrieved. A data flow diagram should be reviewed, and each
major and leveled function should be listed and organized into a hierarchical list.

A CRUD matrix, or association matrix, links data and process models. It iden-
tifies and resolves matrix omissions and conflicts and helps refine the data and
process models, as necessary.

A functional window structure describes how the functions will be implemented
in the windows environment. Figure 15.4 shows a sample functional window struc-
ture for order processing.

Functional Breakdown

Functional Test Requirements (Breakdown)

Order Processing
Create new order
Fulfill order
Edit order
Delete order

Customer Processing
Create new customer
Edit customer
Delete customer

Financial Processing
Receive customer payment
Deposit payment
Pay vendor
Write a check
Display register

Inventory Processing
Acquire vendor products
Maintain stock
Handle back orders
Audit inventory
Adjust product price

Reports
Create order report
Create account receivable report
Create account payable report
Create inventory report

figure 15.3 functional breakdown.

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) ◾ 199

Functional Window Structure

The Main Window
a. The top line of the main window has the standard title bar with Min/Max controls.
b. The next line contains the standard Windows menu bar.
c. The next line contains the standard Windows tool bar.
d. The rest of the Main-Application Window is filled with the Customer-Order
 Window.

The Customer-Order Window
a. This window shows a summary of each previously entered order.
b. Several orders will be shown at one time (sorted by order number and customer
 name). For each customer order, this window will show:
 1. Order Number
 2. Customer Name
 3. Customer Number
 4. Date
 5. Invoice Number
 6. Model Number
 7. Product Number
 8. Quantity Shipped
 9. Price
c. The scroll bar will be used to select which orders are to be viewed.
d. This window is read-only for viewing.
e. Double-clicking an order will display the Edit-Order Dialog where the order can be
 modified.

The Edit-Order Window
a. This dialog is used to create new orders or for making changes to previously
 created orders.
b. This dialog will be centered over the Customer-Order Window. The layout of this
 dialog will show the following:
 1. Order Number (automatically filled in)
 2. Edit field for: Customer Name
 3. Edit field for: Customer Number
 4. Date (initialized)
 5. Edit field for: Invoice Number
 6. Edit field for: Model Number
 7. Edit field for: Product Number
 8. Edit field for: Quantity Shipped
 9. Price (automatically filled in)
 10. Push buttons for: OK and Cancel

The Menu Bar Will Include the Following Menus:
File:
 New:
 Used to create a new order file
 Open:
 Used to open the order file

figure 15.4 functional window structure.

© 2009 by Taylor & Francis Group, LLC

200 ◾ Software Testing and Continuous Quality Improvement

Task 2: Build a Function/Test Matrix
The function/test matrix cross-references the tests to the functions. This matrix pro-
vides proof of the completeness of the test strategies, illustrating in graphic format
which tests exercise which functions. (See Table 15.1 and Appendix E5, “Function/
Test Matrix,” for more details.)

The matrix is used as a control sheet during testing and can also be used during
maintenance. For example, if a function is to be changed, the maintenance team can
refer to the function/test matrix to determine which tests need to be run or changed.
The business functions are listed vertically, and the test cases are listed horizontally. The
test case name is recorded on the matrix along with the number. (Also see Appendix
E24, “Test Condition versus Test Case,” Matrix I, which can be used to associate a
requirement with each condition that is mapped to one or more test cases.)

It is also important to differentiate those test cases that are manual from those
that are automated. One way to accomplish this is to come up with a naming stan-
dard that will highlight an automated test case; for example, the first character of
the name is “A.”

Table 15.1 shows an example of a function/test matrix.

Step 2: design gui tests
The goal of a good graphical user interface (GUI) design should be consistency in
“look and feel” for the users of the application. Good GUI design has two key com-
ponents: interaction and appearance. Interaction relates to how the user interacts
with the application. Appearance relates to how the interface looks to the user.

GUI testing involves confirming that the navigation is correct; for example,
when an icon, menu choice, or radio button is clicked, the desired response occurs.
The following are some good GUI design principles the tester should look for while
testing the application.

Ten Guidelines for Good GUI Design
 1. Involve users.
 2. Understand the user’s culture and experience.
 3. Prototype continuously to validate the requirements.
 4. Let the user’s business workflow drive the design.
 5. Do not overuse or underuse GUI features.
 6. Create the GUI, help files, and training concurrently.
 7. Do not expect users to remember secret commands or functions.
 8. Anticipate mistakes, and do not penalize the user for making them.
 9. Continually remind the user of the application status.
 10. Keep it simple.

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) ◾ 201

table 15.1 functional/test Matrix

Business Function

Test Case

1 2 3 4 5

Order processing

Create new order CNO01 CNO02

Fulfill order AO01

Edit order EO01 EO02 EO03 EO04

Delete order DO01 DO02 DO03 DO04 DO05

Customer processing

Create new customer ANC01 ANC02 ANC03

Edit customer EC01 EC02 EC03 EC04 EC05

Delete customer DC01 DC02

Financial processing

Receive customer payment RCP01 RCP02 RCP03 RCP04

Deposit payment AP01 AP02

Pay vendor PV01 PV02 PV03 PV04 PV05

Write a check WC01 WC02

Display register DR01 DR02

Inventory processing

Acquire vendor products AP01 AP02 AP03

Maintain stock MS01 MS02 MS03 MS04 MS05

Handle back orders HB01 HB02 HB03

Audit inventory AI0l AI02 AI03 AI04

Adjust product price AC0l AC02 AC03

Reports

Create order report CO0l CO02 CO03 CO04 CO05

Create account receivables
report

CA0l CA02 CA03

Create account payables AY0l AY02 AY03

Create inventory report CI0l CI02 CI03 CI04

© 2009 by Taylor & Francis Group, LLC

202 ◾ Software Testing and Continuous Quality Improvement

Task 1: Identify the Application GUI Components
GUI provides multiple channels of communication using words, pictures, anima-
tion, sound, and video. Five key foundation components of the user interface are
windows, menus, forms, icons, and controls.

 1. Windows—In a windowed environment, all user interaction with the appli-
cation occurs through the windows. These include a primary window, along
with any number of secondary windows generated from the primary one.

 2. Menus—Menus come in a variety of styles and forms. Examples include
action menus (push button, radio button), pull-down menus, pop-up menus,
option menus, and cascading menus.

 3. Forms—Forms are windows or screens into which the user can add information.
 4. Icons—Icons, or “visual push buttons,” are valuable for instant recognition,

ease of learning, and ease of navigation through the application.
 5. Controls—A control component appears on a screen that allows the user to inter-

act with the application, and is indicated by its corresponding action. Controls
include menu bars, pull-down menus, cascading menus, pop-up menus, push
buttons, check boxes, radio buttons, list boxes, and drop-down list boxes.

A design approach to GUI test design is to first define and name each GUI com-
ponent by name within the application, as shown in Table 15.2. In the next step, a
GUI component checklist is developed that can be used to verify each component
in this table. (Also see Appendix E6, “GUI Component Test Matrix.”)

Task 2: Define the GUI Tests
In the previous task, the application GUI components were defined, named, and
categorized in the GUI component test matrix. In the present task, a checklist is
developed against which each GUI component is verified. The list should cover
all possible interactions and may or may not apply to a particular component.
Table 15.3 is a partial list of the items to check. (See Appendix E23, “Screen Data
Mapping,” which can be used to document the properties of the screen data, and
Appendix F32, “Test Case Preparation Review Checklist,” which can be used to
ensure that test cases have been prepared as per specifications.)

In addition to the GUI component checks, if there is a GUI design standard,
it should be verified as well. GUI standards are essential to ensure that the internal
rules of construction are followed to achieve the desired level of consistency. Some
of the typical GUI standards that should be verified include the following:

Forms “enterable” and display-only formats N
Wording of prompts, error messages, and help features N
Use of color, highlight, and cursors N

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) ◾ 203

Screen layouts N
Function and shortcut keys, or “hot keys” N
Consistently locating screen elements on the screen N
Logical sequence of objects N
Consistent font usage N
Consistent color usage N

It is also important to differentiate manual from automated GUI test cases. One
way to accomplish this is to use an additional column in the GUI component
matrix that indicates if the GUI test is manual or automated.

Step 3: define the System/acceptance tests
Task 1: Identify Potential System Tests
System testing is the highest level of testing and evaluates the functionality as a
total system, its performance, and overall fitness of use. This test is usually per-
formed by the internal organization and is oriented to systems’ technical issues
rather than acceptance, which is a more user-oriented test.

Systems testing consists of one or more tests that are based on the original
objectives of the system that were defined during the project interview. The purpose
of this task is to select the system tests that will be performed, not how to imple-
ment the tests. Some common system test types include the following:

Performance testing N —Verifies and validates that the performance require-
ments have been met; measures response times, transaction rates, and other
time-sensitive requirements.

table 15.2 gui Component test Matrix

Name

GUI Type

Window Menu Form ICON Control P/F Date Tester

Main
window

√

Customer-
order
window

√

Edit-order
window

√

Menu bar √

Tool bar √

© 2009 by Taylor & Francis Group, LLC

204 ◾ Software Testing and Continuous Quality Improvement

Security testing N —Evaluates the presence and appropriate functioning of the secu-
rity of the application to ensure the integrity and confidentiality of the data.
Volume testing N —Subjects the application to heavy volumes of data to deter-
mine if it can handle the volume of data.
Stress testing N —Investigates the behavior of the system under conditions that
overload its resources. Of particular interest is the impact that this has on
system processing time.

table 15.3 gui Component Checklist

Access via Double-Click
Multiple Windows

Open Tabbing Sequence

Access via menu Ctrl menu (move) Push buttons

Access via toolbar Ctrl + function keys Pull-down menu and

submenus options

Right-mouse options Color Dialog controls

Help links Accelerators and hot
keys

Labels

Context-sensitive help Cancel Chevrons

Button bars Close Ellipses

Open by double-click Apply Gray-out unavailability

Screen images and
graphics

Exit Check boxes

Open by menu OK Filters

Open by toolbar Tile horizontal/vertical Spin boxes

Icon access Arrange icons Sliders

Access to DOS Toggling Fonts

Access via single-click Expand/contract tree Drag/drop

Resize window panels Function keys Horizontal/vertical
scrolling

Fields accept allowable
values

Minimize the window
Maximize the window

Cascade Window open

Fields handle invalid
values

Tabbing sequence

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) ◾ 205

Compatibility testing N —Tests the compatibility of the application with other
applications or systems.
Conversion testing N —Verifies the conversion of existing data and loads a
new database.
Usability testing N —Determines how well the user will be able to use and under-
stand the application.
Documentation testing N —Verifies that the user documentation is accurate and
ensures that the manual procedures work correctly.
Backup testing N —Verifies the ability of the system to back up its data in the
event of a software or hardware failure.
Recovery testing N —Verifies the system’s ability to recover from a software or
hardware failure.
Installation testing N —Verifies the ability to install the system successfully.

Task 2: Design System Fragment Tests
System fragment tests are sample subsets of full system tests that can be performed
during each spiral loop. The objective of doing a fragment test is to provide early
warning of pending problems that would arise in the full system test. Candidate
fragment system tests include function, performance, security, usability, documen-
tation, and procedure. Some of these fragment tests should have formal tests per-
formed during each spiral, whereas others should be part of the overall testing
strategy. Nonfragment system tests include installation, recovery, conversion, and
the like, which are probably going to be performed until the formal system test.

Function testing on a system level occurs during each spiral as the system is
integrated. As new functionality is added, test cases need to be designed, imple-
mented, and tested during each spiral.

Typically, security mechanisms are introduced fairly early in the development.
Therefore, a set of security tests should be designed, implemented, and tested dur-
ing each spiral as more features are added.

Usability is an ongoing informal test during each spiral and should always be
part of the test strategy. When a usability issue arises, the tester should document it
in the defect-tracking system. A formal type of usability test is the end user’s review
of the prototype, which should occur during each spiral.

Documentation (such as online help) and procedures are also ongoing informal
tests. These should be developed in parallel with formal system development during
each spiral and not be put off until a formal system test. This will avoid last-minute
surprises. As new features are added, documentation and procedure tests should be
designed, implemented, and tested during each spiral.

Some performance testing should occur during each spiral at a noncontended
unit level, that is, one user. Baseline measurements should be performed on all key
functions as they are added to the system. A baseline measurement is a measure-
ment taken for the specific purpose of determining the initial value of the state

© 2009 by Taylor & Francis Group, LLC

206 ◾ Software Testing and Continuous Quality Improvement

or performance measurement. During subsequent spirals, the performance mea-
surements can be repeated and compared to the baseline. Table 15.4 provides an
example of baseline performance measurements.

Task 3: Identify Potential Acceptance Tests
Acceptance testing is an optional user-run test that demonstrates the ability of
the application to meet the user’s requirements. The motivation for this test is to
demonstrate rather than be destructive, that is, to show that the system works.
Less emphasis is placed on technical issues, and more is placed on the question of
whether the system is a good business fit for the end user. The test is usually per-
formed by users, if performed at all. Typically, 20 percent of the time, this test is
rolled into the system test. If performed, acceptance tests typically are a subset of
the system tests. However, the users sometimes define “special tests,” such as inten-
sive stress or volume tests, to stretch the limits of the system even beyond what was
tested during the system test.

Step 4: review/approve design
Task 1: Schedule/Prepare for Review
The test design review should be scheduled well in advance of the actual review, and
the participants should have the latest copy of the test design.

As with any interview or review, it should contain certain elements. The first is
defining what will be discussed, or “talking about what we are going to talk about.”
The second is discussing the details, or “talking about it.” The third is summariza-
tion, or “talking about what we talked about.” The final element is timeliness. The
reviewer should state up front the estimated duration of the review and set the
ground rule that if time expires before completing all items on the agenda, a follow-
on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the test design. If there are any suggested changes to the test design during
the review, they should be incorporated into the design.

Task 2: Obtain Approvals
Approval is critical in a testing effort, because it helps provide the necessary agree-
ments among testing, development, and the sponsor. The best approach is with a
formal sign-off procedure of a test design. If this is the case, use the management
approval sign-off forms. However, if a formal agreement procedure is not in place,
send a memo to each key participant, including at least the project manager, devel-
opment manager, and sponsor. In the document, attach the latest test design and

© 2009 by Taylor & Francis Group, LLC

Test C
ase D

esign
 (D

o
)

◾
207

table 15.4 Baseline Performance Measurements

Business
Function

Baseline
Seconds—Rel
1.0 (1/1/2004)

Seconds—Rel
1.1 (2/1/2004)

Measure and
Delta

Seconds—Rel
1.2 (2/15/2004)

Measure and
Delta

Seconds—Rel
1.3 (3/1/2004)

Measure and
Delta

Seconds—Rel
1.4 (3/15/2004)

Measure and
Delta

Seconds—Rel
1.5 (4/1/2004)

Order processing

Create new order 1.0 1.5 1.3 1.0 .9 .75

(+50%) (−13%) (−23%) (−10%) (−17%)

Fulfill order 2.5 2.0 1.5 1.0 1.0 1.0

(−20%) (−25%) (−33%) (0%) (0%)

Edit order 1.76 2.0 2.5 1.7 1.5 1.2

(+14%) (+25%) (−32%) (−12%) (−20%)

Delete order 1.1 1.1 1.4 1.0 .8 .75

(0%) (+27%) (−29%) (−20%) (−6%)

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

• • • • • • •

© 2009 by Taylor & Francis Group, LLC

208 ◾ Software Testing and Continuous Quality Improvement

point out that all their feedback comments have been incorporated and that if you
do not hear from them, it is assumed that they agree with the design. Finally, indi-
cate that in a spiral development environment, the test design will evolve with each
iteration but that you will include them in any modification.

© 2009 by Taylor & Francis Group, LLC

209

16Chapter

test development (do)

Figure 16.1 outlines the steps and tasks associated with the Do part of spiral testing.
Each step and task is described, and valuable tips and techniques are provided.

Step 1: develop test Scripts
Task 1: Script the Manual/Automated GUI/Function Tests
In Chapter 15, a GUI/Function Test Matrix was built that cross-references the tests
to the functions. The business functions are listed vertically, and the test cases are
listed horizontally. The test case name is recorded on the matrix along with the
number.

In the current task, the functional test cases are documented and transformed
into reusable test scripts with test data created. To aid in the development of the
script of the test cases, the GUI-based Function Test Matrix template in Table 16.1
can be used to document function test cases that are GUI-based (see Appendix E7,
“GUI-Based Functional Test Matrix,” for more details).

Consider the script in Table 16.1, which uses the template to create a new cus-
tomer order. The use of this template shows the function, the case number within
the test case (a variation of a specific test), the requirement identification cross-ref-
erence, the test objective, the case steps, the expected results, the pass/fail status, the
tester name, and the date the test was performed. Within a function, the current
GUI component is also documented. In Table 16.1, a new customer order is created
by first invoking the menu bar to select the function, followed by the Edit-Order
Window to enter the order number, customer number, model number, product
number, and quantity.

© 2009 by Taylor & Francis Group, LLC

210 ◾ Software Testing and Continuous Quality Improvement

Task 2: Script the Manual/Automated System Fragment Tests

In a previous task, the system fragment tests (Chapter 15) were designed. They are
sample subsets of full system tests, which can be performed during each spiral loop.

In this task, the system fragment tests can be scripted using the GUI-based
Function Test Matrix discussed in the previous task. The test objective description
is probably more broad than the Function/GUI tests, as they involve more global
testing issues such as performance, security, usability, documentation, procedure,
and so on.

Step 2: review/approve test development
Task 1: Schedule/Prepare for Review

The test development review should be scheduled well in advance of the actual
review and the participants should have the latest copy of the test design.

As with any interview or review, it should contain certain elements. The first is
defining what will be discussed, or “talking about what we are going to talk about.”
The second is discussing the details, or “talking about it.” The third is summariza-
tion, or “talking about what we talked about.” The final element is timeliness. The
reviewer should state up front the estimated duration of the review and set the
ground rule that if time expires before completing all items on the agenda, a follow-
on review will be scheduled.

Script
GUI/Function

Tests

Script
System

Fragment Tests

Schedule/
Prepare

For Review

Obtain
Approvals

Develop
Test

Scripts

Review/
Approve Test
Development

(STEPS) (TASKS)

figure 16.1 test development (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

Test D
evelo

p
m

en
t (D

o
)

◾
211

table 16.1 function/gui test Script

Function (Create a New Customer Order)

Case
No.

Req.
No. Test Objective Case Steps Expected Results (P/F) Tester Date

Menu Bar

15 67 Create a valid new
customer order

Select File/Create Order
from the menu bar

Edit-Order Window appears Passed Jones 7/21/2004

edit-order window

 1. Enter order number Order validated Passed Jones 7/21/2004

 2. Enter customer number Customer validated Passed Jones 7/21/2004

 3. Enter model number Model validated Passed Jones 7/21/2004

 4. Enter product number Product validated Passed Jones 7/21/2004

 5. Enter quantity Quantity validated date,
invoice number, and total
price generated

Passed Jones 7/21/2004

 6. Select OK Customer is created
successfully

Passed Jones 7/21/2004

© 2009 by Taylor & Francis Group, LLC

212 ◾ Software Testing and Continuous Quality Improvement

The purpose of this task is for development and the project sponsor to agree and
accept the test development. If there are any suggested changes to the test develop-
ment during the review, they should be incorporated into the test development.

Task 2: Obtain Approvals
Approval is critical in a testing effort, because it helps provide the necessary agree-
ments among the testing, development, and the sponsor. The best approach is with a
formal sign-off procedure of a test development. If this is the case, use the manage-
ment approval sign-off forms. However, if a formal agreement procedure is not in
place, send a memo to each key participant, including at least the project manager,
development manager, and sponsor. In the document, attach the latest test develop-
ment, and point out that all their feedback comments have been incorporated and
that if you do not hear from them, it is assumed that they agree with the development.
Finally, indicate that in a spiral development environment, the test development will
evolve with each iteration but that you will include them in any modification.

© 2009 by Taylor & Francis Group, LLC

213

17Chapter

test Coverage through
traceability

Most businesses will tolerate a certain number of defects until the software has sta-
bilized. However, the system cannot go live with critical defects unresolved. Many
of the companies have started stating their acceptance criteria in the test strategy
document. It may range from nonexistence of critical and medium defects to busi-
ness flow acceptance by the end users. The ultimate aim of final testing is to prove
that the software delivers what the client requires. A trace between the different test
deliverables should ensure that the test covers the requirements comprehensively so
that all requirements are tested without any omission.

The business requirement document (BRD), functional specification documents
(FS), test conditions/cases, test data, and defects identified during testing are some key
components of the traceability matrix. The following discussion illustrates how these
components are integrated through the traceability matrix, as shown in Figure 17.1.

The requirements specified by the users in the business requirement document
may not be exactly translated into a functional specification document. Therefore, a
trace on specifications between functional specification and business requirements is
done on a one-to-one basis. This helps in identifying the gaps between the documents.
These gaps are then closed by the author of the functional specifications, or deferred
to the next release after discussion. The final FS may vary from the original, as defer-
ring or taking in a gap may have a ripple effect on the application. Sometimes, these
ripple effects may not be properly documented. This is the first-level traceability.

The functional specification documents are divided into smaller modules, func-
tions, and test conditions to percolate down to the test case where various data values
are input to the test conditions for validating them. A test condition is an abstract

© 2009 by Taylor & Francis Group, LLC

214 ◾ Software Testing and Continuous Quality Improvement

extraction of the testable requirements from the functional specification documents.
The test conditions may be explicitly or implicitly in the requirement documents.
A test condition has one or more associated test cases. Each of the test conditions is
traced back to its originating requirements. The second level of trace is thus between
the functional specification documents and the test condition documents.

A test case is a set of test inputs, execution conditions, and expected results devel-
oped for a particular objective, to validate a specific functionality in the application
under test. The number of test cases for each test condition may vary from multiple to
one. Each of these test cases can be traced back to its test conditions and through test
conditions to their originating requirements. The third level of traceability is between
the test cases and test conditions and, ultimately, to the baseline requirements.

The final phase of traceability is with the defects identified in the test execu-
tion phase. Tracing the defect to the test condition and the specification will lead
us to introspection on the reason why the requirements or the test condition has
failed. If the requirements have not been stated clearly or the test conditions have
not been extracted properly from the requirements, they can be corrected in future
assignments. Table 17.1 illustrates how the foregoing deliverables are traced using
a traceability matrix.

use Cases and traceability
A use case is a scenario that describes the use of a system by an actor to accomplish
a specific goal. An actor is a user playing a role with respect to the system. Actors
are generally people, although other computer systems may be actors. A scenario is

Requirements

Specifications

Test Conditions

Test Cases

Defects

figure 17.1 traceability tree diagram.

© 2009 by Taylor & Francis Group, LLC

Test Coverage through Traceability ◾ 215

table 17.1 traceability Matrix

Item
No.

Ref. No.

Application/
Module
Name

Test
Condition

Test
Cases

Test
Script

ID
Defect

ID

BRD
Ref.
No.

FS
Ref.
No.

© 2009 by Taylor & Francis Group, LLC

216 ◾ Software Testing and Continuous Quality Improvement

a sequence of steps that describe the interactions between an actor and the system.
Figure 17.2 shows a use case diagram that consists of the collection of all actors and
all use cases. Use cases:

Capture the system’s functional requirements from the users’ perspective N
Actively involve users in the requirements-gathering process N
Provide the basis for identifying major classes and their relationships N
Serve as the foundation for developing system test cases N

The use cases should be traced back to the functional specification document and
traced forward to the test conditions and test cases documents. The following have
to be considered while deriving traceability:

Whether the use cases unfold from highest to lowest levels N
Whether all the system’s functional requirements are reflected in the use cases N
Whether we can trace each use case back to its requirements N

Summary
As the project progresses, new requirements are brought in owing to the client’s
additional requirements or as a result of the review process. These additional
requirements should be appropriately traced to the test conditions and cases.

Similarly, a change request raised during the course of testing the application
should be handled in the traceability matrix. Requirements present in the traceabil-
ity matrix document should not be deleted at any time even when the requirement
is moved for the next release. All the requirements present in the traceability matrix
should be covered with at least one test case.

Thus, traceability serves as an effective tool to ensure that the testware is com-
prehensive. This instills confidence in the client that the test team has tested all the
requirements. Various modern testing tools such as Test Director from Mercury
Interactive can create traceability documents.

Use Case

Actor

<<include>>

Use Case z

Included
Use Case

figure 17.2 use case diagram.

© 2009 by Taylor & Francis Group, LLC

217

18Chapter

test execution/evaluation
(do/Check)

You will recall that in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model was applied to the software testing process. We are now in
the Do/Check part of the spiral model (see Figure 18.1).

Figure 18.2 outlines the steps and tasks associated with the Do/Check part of
spiral testing. Each step and task are described along, and valuable tips and tech-
niques are provided.

Step 1: Setup and testing
Task 1: Regression Test the Manual/Automated Spiral Fixes
The purpose of this task is to retest the tests that discovered defects in the previous
spiral. The technique used is regression testing. Regression testing is a technique
that detects spurious errors caused by software modifications or corrections. (See

A set of test cases must be maintained and made available throughout the entire
life of the software. The test cases should be complete enough so that all the soft-
ware’s functional capabilities are thoroughly tested. The question arises as to how
the test cases to test defects discovered during the previous test spiral can be located.
An excellent mechanism is the retest matrix.

© 2009 by Taylor & Francis Group, LLC

Appendix G27, “Regression Testing,” for more details.)

218 ◾ Software Testing and Continuous Quality Improvement

As described earlier, a retest matrix relates test cases to functions (or program
units). A check entry in the matrix indicates that the test case is to be retested
when the function (or program unit) has been modified due to enhancements or
corrections. No entry means that the test case does not need to be retested. The
retest matrix can be built before the first testing spiral, but needs to be maintained
during subsequent spirals. As functions (or program units) are modified during a
development spiral, existing or new test cases need to be created and checked in
the retest matrix in preparation for the next test spiral. Over time with subsequent
spirals, some functions (or program units) may be stable with no recent modifica-
tions. Consideration to selectively remove their check entries should be undertaken
between testing spirals.

(STEPS) (TASKS)

Setup
and

Testing

Evaluation

Regression Test
Spiral Fixes

Document Spiral
Defects

Analyze
Metrics

Refine
Test Schedule

Identify Requirement
Changes

Execute New
Spiral Tests

figure 18.2 test execution/evaluation (steps/tasks).

Act Plan

Check Do

figure 18.1 Spiral testing and continuous improvement.

© 2009 by Taylor & Francis Group, LLC

Test Execution/Evaluation (Do/Check) ◾ 219

If a regression test passes, the status of the defect report should be changed
to “closed.”

Task 2: Execute the Manual/Automated New Spiral Tests
The purpose of this task is to execute new tests that were created at the end of the
previous testing spiral. In the previous spiral, the testing team updated the test
plan, GUI-based function test matrix, scripts, the GUI, the system fragment tests,
and acceptance tests in preparation for the current testing spiral. During this task
those tests are executed.

Task 3: Document the Spiral Test Defects
During spiral test execution, the results of the testing must be reported in the defect-
tracking database. These defects are typically related to individual tests that have
been conducted. However, variations to the formal test cases often uncover other
defects. The objective of this task is to produce a complete record of the defects.
If the execution step has been recorded properly, the defects have already been
recorded on the defect-tracking database. If the defects are already recorded, the
objective of this step becomes to collect and consolidate the defect information.

Tools can be used to consolidate and record defects depending on the test exe-
cution methods. If the defects are recorded on paper, the consolidation involves
collecting and organizing the papers. If the defects are recorded electronically,
search features can easily locate duplicate defects. A sample defect report is given
in Appendix E27, “Defect Report,” which can be used to report the details of a
specific defect.

Step 2: evaluation
Task 1: Analyze the Metrics
Metrics are used so that we can help make decisions more effectively and support
the development process. The objective of this task is to apply the principles of met-
rics to control the testing process.

In a previous task, the metrics and metric points were defined for each spiral to
be measured. During the present task, the metrics that were measured are analyzed.
This involves quantifying the metrics and putting them into a graphical format.

The following is the key information a test manager needs to know at the end
of a spiral:

Test case execution status N —How many test cases were executed, how many were
not executed, and how many discovered defects? This provides an indication

© 2009 by Taylor & Francis Group, LLC

220 ◾ Software Testing and Continuous Quality Improvement

of the tester’s productivity. If the test cases are not being executed in a timely
manner, more personnel may need to be assigned to the project.
Defect gap analysis N —What is the gap between the number of defects that have
been uncovered and the number that have been corrected? This provides an
indication of development’s ability to correct defects in a timely manner. If
there is a relatively large gap, perhaps more developers need to be assigned to
the project.
Defect severity status N —The distribution of the defect severity (e.g., critical,
major, and minor) provides an indication of the quality of the system. If there
is a large percentage of defects in the critical category, there probably exist a
considerable number of design and architecture issues.
Test burnout tracking N —Shows the cumulative and periodic number of defects
being discovered. The cumulative number, for example, the running total
number of defects, and defects by time period help predict when fewer and
fewer defects are being discovered. This is indicated when the cumulative
curve “bends” and the defects by time period approach zero. If the cumu-
lative curve shows no indication of bending, the implication is that defect
discovery is still very robust and that many more still exist to be discovered
in other spirals.

Graphical examples of the foregoing metrics can be seen in Chapter 19, “Prepare for
the Next Spiral (or Agile Iteration).”

Step 3: Publish interim report

Report,” which can be used to report the detailed defect status of the testing project

which is an Excel spreadsheet that provides a comprehensive and test cycle view of the
number of test cases that passed/failed, the number of defects discovered by applica-
tion area, the status of the defects, percentage completed, and the defect severities by
defect type. The template is located on the CD at the back of the book.

Task 1: Refine the Test Schedule

In a previous task, a test schedule was produced that includes the testing steps (and
perhaps tasks), target start dates and end dates, and responsibilities. During the
course of development, the testing schedule needs to be continually monitored. The
objective of the current task is to update the test schedule to reflect the latest status.
It is the responsibility of the test manager to:

© 2009 by Taylor & Francis Group, LLC

See Appendix E25, “Project Status Report,” which can be used to report the status
of the testing project for all key process areas; Appendix E26, “Test Defect Details

for all key process areas; and Appendix E28, “Test Execution Tracking Manager,”

Test Execution/Evaluation (Do/Check) ◾ 221

Compare the actual progress to the planned progress. N
Evaluate the results to determine the testing status. N
Take appropriate action based on the evaluation. N

If the testing progress is behind schedule, the test manager needs to determine the
factors causing the slip. A typical cause is an underestimation of the test effort.
Another factor could be that an inordinate number of defects are being discovered,
causing a lot of the testing effort to be devoted to retesting old corrected defects. In
either case, more testers may be needed or over time may be required to compensate
for the slippage.

Task 2: Identify Requirement Changes
In a previous task, the functional requirements were initially analyzed by testing
function, which consisted of hierarchical functional decomposition, functional
window structure, window standards, and minimum system requirements.

Between spirals, new requirements may be introduced into the development
process. They can consist of the following:

New GUI interfaces or components N
New functions N
Modified functions N
Eliminated functions N
New system requirements, for example, hardware N
Additional system requirements N
Additional acceptance requirements N

Each new requirement needs to be identified, recorded, analyzed, and updated in
the test plan, test design, and test scripts.

© 2009 by Taylor & Francis Group, LLC

223

19Chapter

Prepare for the
next Spiral (act)

You will recall that in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model is applied to the software testing process. We are now in the
Act part of the spiral model (see Figure 19.1), which prepares for the next spiral.

Figure 19.2 outlines the steps and tasks associated with the Act part of spiral
testing. Each step and task are described, and valuable tips and techniques are
provided.

Step 1: refine the tests

the impacts of changes to the system.

Task 1: Update the Function/GUI Tests
The objective of this task is to update the test design to reflect the new functional
requirements. The Test Change Function Test Matrix, which cross-references the
tests to the functions, needs to be updated. The new functions are added in the
vertical list, and the respective test cases are added to the horizontal list. The test

“Function/Test Matrix.”)

© 2009 by Taylor & Francis Group, LLC

See Appendix F21, “Impact Analysis Checklist,” which can be used to help analyze

case name is recorded on the matrix along with the number. (See Appendix E5,

224 ◾ Software Testing and Continuous Quality Improvement

Next, any new GUI/function test cases in the matrix need to be documented
or scripted. The conceptual test cases are then transformed into reusable test scripts
with test data created. Also, any new GUI requirements are added to the GUI tests.

Finally, the tests that can be automated with a testing tool need to be updated.
Automated tests provide three benefits: repeatability, leverage, and increased

(STEPS) (TASKS)

Refine
Tests

Reassess
Team, Procedures,
Test Environment

Publish Interim
Test Report

Update Function/GUI Tests

Update System Fragment
Tests

Update Acceptance Tests

Evaluate Test Team

Review Test
Control Procedures

Update Test
Environment

Publish Metric
Graphics

figure 19.2 Prepare for the next spiral (steps/tasks).

Act Plan

Check Do

figure 19.1 Spiral testing and continuous improvement.

© 2009 by Taylor & Francis Group, LLC

(See Appendix E7, “GUI-Based Functional Test Matrix.”)

Prepare for the Next Spiral (Act) ◾ 225

functionality. Repeatability enables automated tests to be executed more than once,
consistently. Leverage comes from repeatability from tests previously captured and
tests that can be programmed with the tool, which might not have been possible
without automation. As applications evolve, more and more functionality is added.
With automation, the functional coverage is maintained with the test library.

Task 2: Update the System Fragment Tests
In a prior task, the system fragment tests were defined. System fragment tests are
sample subsets of full system tests that can be performed during each spiral loop.
The objective of performing a fragment test is to provide early warning of pending
problems that would arise in the full system test.

Candidate fragment system tests include function, performance, security,
usability, documentation, and procedure. Some of these fragment tests should have
formal tests performed during each spiral, whereas others should be part of the
overall testing strategy. The objective of the present task is to update the system
fragment tests defined earlier based on new requirements. New baseline measure-
ments are defined.

Finally, the fragment system tests that can be automated with a testing tool
need to be updated.

Task 3: Update the Acceptance Tests
In Chapter 15, the initial list of acceptance tests was defined. Acceptance testing
is an optional user-run test that demonstrates the ability of the application to meet
the user’s requirements. The motivation for this test is to demonstrate rather than
be destructive, that is, to show that the system works. If performed, acceptance tests
typically are a subset of the system tests. However, the users sometimes define “spe-
cial tests,” such as intensive stress or volume tests, to stretch the limits of the system
even beyond what was tested during the system test. The objective of the present task
is to update the acceptance tests defined earlier on the basis of new requirements.

Finally, the acceptance tests that can be automated with a testing tool need to
be updated.

Step 2: reassess the team, Procedures,
and test environment
Task 1: Evaluate the Test Team
Between each spiral, the performance of the test team needs to be evaluated in terms
of its quality and productivity. The test team leader directs one or more testers to
ensure that the right skill level is on the project. He or she makes sure that the test

© 2009 by Taylor & Francis Group, LLC

226 ◾ Software Testing and Continuous Quality Improvement

cases are being executed according to the plan, the defects are being reported and
retested, and the test automation is successful. The basis for allocating dedicated
testing resources is the scope of the functionality and the development time frame.
If the testing is not being completed satisfactorily, the team leader needs to counsel
one or more team members or request additional testers. On the other hand, if the
test is coming to a conclusion, the testing manager needs to start thinking about
reassigning testers to other projects.

Task 2: Review the Test Control Procedures
In Chapter 14, the test control procedures were set up before the first spiral. The
objective of this task is to review those procedures and make appropriate modifica-
tions. The predefined procedures include the following:

Defect recording/tracking procedures N
Change request procedures N
Version control procedures N
Configuration build procedures N
Project issue resolution procedures N
Reporting procedures N

The purpose of defect recording/tracking procedures is to record and correct defects
and record metric information about the application. As the project progresses,
these procedures may need tuning. Examples include new status codes or new fields
in the defect-tracking form, an expanded defect distribution list, and the addition
of more verification checks.

The purpose of change request procedures is to allow new change requests to
be communicated to the development and testing team. Examples include a new
change control review board process, a new sponsor who has ideas of how the
change request process should be implemented, a new change request database, and
a new software configuration management tool.

The purpose of version control procedures is to uniquely identify each soft-
ware component via a labeling scheme and allow for successive revisions. Examples
include a new software configuration management tool with a new versioning
scheme or new labeling standards.

The purpose of configuration build procedures is to provide an effective means
of assembling a software system from the software source components into execut-
able components. Examples include the addition of a new 4GL language, a new
software configuration management tool, or a new delta build approach.

The purpose of project issue resolution procedures is to record and process testing
issues that arise during the testing process. Examples include a new project manager
who requests a Lotus Notes approach, a newly formed issue review committee, an
updated issue priority categorization scheme, and a new issue submission process.

© 2009 by Taylor & Francis Group, LLC

Prepare for the Next Spiral (Act) ◾ 227

The purpose of reporting procedures is to facilitate the communication process and
reporting. Examples include a new project manager who requires weekly testing status
reports, a new interim test report structure, or an expanded reporting distribution.

Task 3: Update the Test Environment
In Chapter 15, the test environment was defined. A test environment provides a
physical framework for testing necessary for the testing activity. During the present

“Environment Readiness Checklist,” which can be used to verify the readiness of
the environment for testing before starting test execution.)

The main components of the test environment include the physical test facility,
technologies, and tools. The test facility component includes the physical setup.
The technologies component includes hardware platforms, the physical network
and all its components, operating system software, and other software, such as util-
ity software. The tools component includes any specialized testing software, such as
automated test tools, testing libraries, and support software. Examples of changes
to the test environment include the following:

Expanded test laboratory N
New testing tools required N
Additional test hardware required N
Additional network facilities N
Additional test database space required N
New Lotus Notes log-ons N
Additional software to support testing N

Step 3: Publish interim test report
Task 1: Publish the Metric Graphics
Each spiral should produce an interim report to describe the status of the testing.
These tests are geared to the testing team, the test manager, and the development
manager, and will help them make adjustments for the next spiral. The following
minimal graphical reports are recommended between each spiral test.

Test Case Execution Status

Figure 19.3 shows the status of testing and predicts when the testing and develop-
ment group will be ready for production. Test cases run with errors have not yet
been corrected.

If there are a relatively large number of test cases that have not been run, the
testing group needs to increase its productivity or resources. If there are a large

© 2009 by Taylor & Francis Group, LLC

task, the test environment needs are reviewed and updated. (See Appendix F22,

228 ◾ Software Testing and Continuous Quality Improvement

number of test cases run with errors that have not been corrected, the development
team also needs to be more productive.

Defect Gap Analysis

Figure 19.4 shows the gap between the number of defects that has been uncovered
compared to the number that has been corrected. A large gap indicates that devel-
opment needs to increase effort and resources to correct defects more quickly.

Defect Severity Status

Figure 19.5 shows the distribution of the three severity categories: critical, major,
and minor. A large percentage of defects in the critical category indicates that a
problem with the design or architecture of the application may exist.

Test Burnout Tracking

Figure 19.6 indicates the rate of uncovering defects. The cumulative, for example,
running total number of defects and defects by time period help predict when fewer
defects are being discovered. This is indicated when the cumulative curve “bends,”
and the defects by time period approach zero.

Test Cases Completed

Test Cases Run with Errors

Test Cases Not Run
Pe

rc
en

t

50

40

30

20

10

0

figure 19.3 test execution status.

© 2009 by Taylor & Francis Group, LLC

Prepare for the Next Spiral (Act) ◾ 229

50

40

30

20

10

0

Cu
m

ul
at

iv
e N

um
be

r o
f D

ef
ec

ts

Time

Uncovered

Corrected

Gap

figure 19.4 defect gap analysis.

© 2009 by Taylor & Francis Group, LLC

230 ◾ Software Testing and Continuous Quality Improvement

60

50

40

30

20

10

0

Pe
rc

en
t

Critical

Major

Minor

Severity

figure 19.5 defect severity status.

© 2009 by Taylor & Francis Group, LLC

Prepare for the Next Spiral (Act) ◾ 231

Cumulative

By Time Period

Burnout

Time Periods

To
ta

l D
ef

ec
ts

300

200

150

250

100

50

0

figure 19.6 test burnout tracking.

© 2009 by Taylor & Francis Group, LLC

233

20Chapter

Conduct the System
test (act)

System testing evaluates the functionality and performance of the whole application
and consists of a variety of tests including the following: performance, usability,
stress, documentation, security, volume, recovery, and so on. Figure 20.1 describes
how to extend fragment system testing. It includes discussions of how to prepare
for the system tests, design and script them, execute them, and report anomalies
discovered during the test.

Step 1: Complete System test Plan
Task 1: Finalize the System Test Types
In a previous task, a set of system fragment tests was selected and executed during
each spiral. The purpose of the current task is to finalize the system test types that
will be performed during system testing.

You will recall that systems testing consists of one or more tests that are based
on the original objectives of the system, which were defined during the project
interview. The purpose of this task is to select the system tests to be performed, not
to implement the tests. Our initial list consisted of the following system test types:

Performance N
Security N
Volume N

© 2009 by Taylor & Francis Group, LLC

234 ◾ Software Testing and Continuous Quality Improvement

Design/Script Performance Tests

Finalize System Test Types

Finalize System Test Schedule

Organize System Test Team

Estsblish System
Test Environment

Install System Test Tools

Design/Script Security Tests

Design/Script Volume Tests

Design/Script Stress Tests

Design/Script Compatibility Tests

Design/Script Conversion Tests

Design/Script Usability Tests

Design/Script Documentation Tests

Design/Script Backup Tests

Design/Script Recovery Tests

Design/Script Installation Tests

Design/Script Other Types
of System Tests

Schedule/Conduct Review

Obtain Approvals

Regression Test System Fixes

Execute New System Tests

Document System Defects

Complete
System

Test Plan

Complete
System

Test Cases

Review/Approve
System
Tests

Execute
System
Tests

(STEPS) (TASKS)

figure 20.1 Conduct system test (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 235

Stress N
Compatibility N
Conversion N
Usability N
Documentation N
Backup N
Recovery N
Installation N

The sequence of system test-type execution should also be defined in this task. For
example, related tests such as performance, stress, and volume might be clustered
together and performed early during system testing. Security, backup, and recovery
are also logical groupings, and so on.

Finally, the system tests that can be automated with a testing tool need to
be finalized. Automated tests provide three benefits: repeatability, leverage, and
increased functionality. Repeatability enables automated tests to be executed more
than once, consistently. Leverage comes from repeatability, from tests previously
captured and tests that can be programmed with the tool, which might not have
been possible without automation. As applications evolve, more and more func-
tionality is added. With automation, the functional coverage is maintained with
the test library.

Task 2: Finalize System Test Schedule
In this task, the system test schedule should be finalized; this includes the testing
steps (and perhaps tasks), target start and target end dates, and responsibilities. It
should also describe how it will be reviewed, tracked, and approved. A sample sys-
tem test schedule is shown in Table 20.1.

Task 3: Organize the System Test Team
With all testing types, the system test team needs to be organized. The system test team
is responsible for designing and executing the tests, evaluating the results and report-
ing any defects to development, and using the defect-tracking system. When develop-
ment corrects defects, the test team retests the defects to verify the correction.

The system test team is led by a test manager whose responsibilities include
the following:

Organizing the test team N
Establishing the test environment N
Organizing the testing policies, procedures, and standards N
Assurance test readiness N

© 2009 by Taylor & Francis Group, LLC

236 ◾ Software Testing and Continuous Quality Improvement

table 20.1 final System test Schedule

Test Step
Begin
Date

End
Date

Responsible Staff
Member

general Setup

Organize the system test
team

12/1/2004 12/7/2004 Smith, test manager

Establish the system test
environment

12/1/2004 12/7/2004 Smith, test manager

Establish the system test tools 12/1/2004 12/10/2004 Jones, tester

Performance testing

Design/script the tests 12/11/2004 12/15/2004 Jones, tester

Test review 12/16/2004 12/16/2004 Smith, test manager

Execute the tests 12/17/2004 12/22/2004 Jones, tester

Retest system defects 12/23/2004 12/25/2004 Jones, tester

Stress testing

Design/script the tests 12/26/2004 12/30/2004 Jones, tester

Test review 12/31/2004 12/31/2004 Smith, test manager

Execute the tests 1/1/2004 1/6/2004 Jones, tester

Retest system defects 1/7/2004 1/9/2004 Jones, tester

volume testing

Design/script the tests 1/10/2004 1/14/2004 Jones, tester

Test review 1/15/2004 1/15/2004 Smith, test manager

Execute the tests 1/16/2004 1/21/2004 Jones, tester

Retest system defects 1/22/2004 1/24/2004 Jones, tester

Security testing

Design/script the tests 1/25/2004 1/29/2004 Jones, tester

Test review 1/30/2004 1/31/2004 Smith, test manager

Execute the tests 2/1/2004 2/6/2004 Jones, tester

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 237

table 20.1 final System test Schedule (Continued)

Test Step
Begin
Date

End
Date

Responsible Staff
Member

Retest system defects 2/7/2004 2/9/202004 Jones, tester

Backup testing

Design/script the tests 2/10/2004 2/14/2004 Jones, tester

Test review 2/15/2004 2/15/2004 Smith, test manager

Execute the tests 2/16/2004 1/21/2004 Jones, tester

Retest system defects 2/22/2004 2/24/2004 Jones, tester

recovery testing

Design/script the tests 2/25/2004 2/29/2004 Jones, tester

Test review 2/30/2004 2/31/2004 Smith, test manager

Execute the tests 3/1/2004 3/6/2004 Jones, tester

Retest system defects 3/7/2004 3/9/2004 Jones, tester

Compatibility testing

Design/script the tests 3/10/2004 3/14/2004 Jones, tester

Test review 3/15/2004 3/15/2004 Smith, test manager

Execute the tests 3/16/2004 3/21/2004 Jones, tester

Retest system defects 3/22/2004 3/24/2004 Jones, tester

Conversion testing

Design/script the tests 4/10/2004 4/14/2004 Jones, tester

Test review 4/15/2004 4/15/2004 Smith, test manager

Execute the tests 4/16/2004 4/21/2004 Jones, tester

Retest system defects 4/22/2004 4/24/2004 Jones, tester

usability testing

Design/script the tests 5/10/2004 5/14/2004 Jones, tester

Test review 5/15/2004 5/15/2004 Smith, test manager

Continued

© 2009 by Taylor & Francis Group, LLC

238 ◾ Software Testing and Continuous Quality Improvement

Working the test plan and controlling the project N
Tracking test costs N
Ensuring test documentation is accurate and timely N
Managing the team members N

Task 4: Establish the System Test Environment

During this task, the system test environment is also finalized. The purpose of the
test environment is to provide a physical framework for the testing activity. The test
environment needs are established and reviewed before implementation.

The main components of the test environment include the physical test facility,
technologies, and tools. The test facility component includes the physical setup.
The technologies component includes the hardware platforms, physical network
and all its components, operating system software, and other software. The tools
component includes any specialized testing software, such as automated test tools,
testing libraries, and support software.

The testing facility and workplace need to be established. These may range from
an individual workplace configuration to a formal testing laboratory. In any event,
it is important that the testers be together and near the development team. This

table 20.1 final System test Schedule (Continued)

Test Step
Begin
Date

End
Date

Responsible Staff
Member

Execute the tests 5/16/2004 5/21/2004 Jones, tester

Retest system defects 5/22/2004 5/24/2004 Jones, tester

documentation testing

Design/script the tests 6/10/2004 6/14/2004 Jones, tester

Test review 6/15/2004 6/15/2004 Smith, test manager

Execute the tests 6/16/2004 6/21/2004 Jones, tester

Retest system defects 6/22/2004 6/24/2004 Jones, tester

installation testing

Design/script the tests 7/10/2004 7/14/2004 Jones, tester

Test review 7/15/2004 7/15/2004 Smith, test manager

Execute the tests 7/16/2004 7/21/2004 Jones, tester

Retest system defects 7/22/2004 7/24/2004 Jones, tester

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 239

facilitates communication and the sense of a common goal. The system testing tools
need to be installed.

The hardware and software technologies need to be set up. This includes the
installation of test hardware and software and coordination with vendors, users,
and information technology personnel. It may be necessary to test the hardware
and coordinate with hardware vendors. Communication networks need to be
installed and tested.

Task 5: Install the System Test Tools
During this task, the system test tools are installed and verified for readiness. A trial
run of tool test cases and scripts should be performed to verify that the test tools
are ready for the actual acceptance test. Some other tool readiness considerations
include the following:

Test team tool training N
Tool compatibility with operating environment N
Ample disk space for the tools N
Maximizing the tool potentials N
Vendor tool help hotline N
Test procedures modified to accommodate tools N
Installing the latest tool changes N
Verifying the vendor contractual provisions N

Step 2: Complete System test Cases
During this step, the system test cases are designed and scripted. The conceptual
system test cases are transformed into reusable test scripts with test data created.

To aid in developing the script test cases, the GUI-based Function Test Matrix
template in Appendix E7 can be used to document system-level test cases, with the
“function” heading replaced with the system test name.

Task 1: Design/Script the Performance Tests
The objective of performance testing is to measure the system against predefined
objectives. The required performance levels are compared against the actual perfor-
mance levels and discrepancies are documented.

Performance testing is a combination of black-box and white-box testing. From
a black-box point of view, the performance analyst does not have to know the inter-
nal workings of the system. Real workloads or benchmarks are used to compare one
system version with another for performance improvements or degradation. From
a white-box point of view, the performance analyst needs to know the internal

© 2009 by Taylor & Francis Group, LLC

240 ◾ Software Testing and Continuous Quality Improvement

workings of the system and define specific system resources to investigate, such as
instructions, modules, and tasks.

Some of the performance information of interest includes the following:

CPU utilization N
IO utilization N
Number of IOs per instruction N
Channel utilization N
Main storage memory utilization N
Secondary storage memory utilization N
Percentage of execution time per module N
Percentage of time a module is waiting for IO completion N
Percentage of time module spent in main storage N
Instruction trace paths over time N
Number of times control is passed from one module to another N
Number of waits encountered for each group of instructions N
Number of pages-in and pages-out for each group of instructions N
System response time, for example, last key until first key time N
System throughput, that is, number of transactions per time unit N
Unit performance timings for all major functions N

Baseline performance measurements should first be taken on all major functions
in a noncontention mode, for example, unit measurements of functions when a
single task is in operation. This can be easily done with a simple stopwatch, as
was done earlier for each spiral. The next set of measurements should be made
in a system-contended mode in which multiple tasks are operating, and queuing
results in demands on common resources such as CPU, memory, storage, channel,
network, and so on. Contended system execution time and resource utilization
performance measurements are performed by monitoring the system to identify
potential areas of inefficiency.

There are two approaches to gathering system execution time and resource uti-
lization. With the first approach, samples are taken while the system is executing
in its typical environment with the use of external probes, performance monitors,
or a stopwatch. With the other approach, probes are inserted into the system code,
for example, calls to a performance monitor program that gathers the performance
information. The following is a discussion of each approach, followed by a discus-
sion of test drivers, which are support techniques used to generate data for the
performance study.

Monitoring Approach
This approach involves monitoring a system by determining its status at periodic
time intervals, and is controlled by an elapsed time facility in the testing tool or

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 241

operating system. Samples taken during each time interval indicate the status of the
performance criteria during the interval. The smaller the time interval, the more
precise the sampling accuracy.

Statistics gathered by the monitoring are collected and summarized in
performance.

Probe Approach
This approach involves inserting probes or program instructions into the system
programs at various locations. To determine, for example, the CPU time neces-
sary to execute a sequence of statements, a problem execution results in a call to
the data collection routine that records the CPU clock at that instant. A second
probe execution results in a second call to the data collection routine. Subtracting
the first CPU time from the second yields the net CPU time used. Reports can be
produced showing execution time breakdowns by statement, module, and state-
ment type.

The value of these approaches is their use as performance requirements valida-
tion tools. However, formally defined performance requirements must be stated,
and the system should be designed so that the performance requirements can be
traced to specific system modules.

Test Drivers
In many cases test drivers and test harnesses are required to make system perfor-
mance measurements. A test driver provides the facilities needed to execute a system,
for example, inputs. The input data files for the system are loaded with data values
representing the test situation to yield recorded data to evaluate against the expected
results. Data are generated in an external form and presented to the system.

Performance test cases need to be defined, using one or more of the test tem-
plates located in the appendices, and test scripts need to be built. Before any perfor-
mance test is conducted, however, the performance analyst must make sure that the
target system is relatively bug-free. Otherwise, a lot of time will be spent document-
ing and fixing defects rather than analyzing the performance.

The following are the five recommended steps for any performance study:

 1. Document the performance objectives; for example, exactly what the measur-
able performance criteria are must be verified.

 2. Define the test driver or source of inputs to drive the system.
 3. Define the performance methods or tools that will be used.
 4. Define how the performance study will be conducted; for example, what is

the baseline, what are the variations, how can it be verified as repeatable, and
how does one know when the study is complete?

 5. Define the reporting process, for example, techniques and tools.

© 2009 by Taylor & Francis Group, LLC

242 ◾ Software Testing and Continuous Quality Improvement

Task 2: Design/Script the Security Tests
The objective of security testing is to evaluate the presence and appropriate function-
ing of the security of the application to ensure the integrity and confidentiality of the
data. Security tests should be designed to demonstrate how resources are protected.

A Security Design Strategy

A security strategy for designing security test cases is to focus on the following four
security components: the assets, threats, exposures, and controls. In this manner,
matrices and checklists will suggest ideas for security test cases.

Assets are the tangible and intangible resources of an entity. The evaluation
approach is to list what should be protected. It is also useful to examine the attri-
butes of assets, such as amount, value, use, and characteristics. Two useful analysis
techniques are asset value and exploitation analysis. Asset value analysis determines
how the value differs among users and potential attackers. Asset exploitation analy-
sis examines different ways to use an asset for illicit gain.

Threats are events with the potential to cause loss or harm. The evaluation
approach is to list the sources of potential threats. It is important to distinguish
among accidental, intentional, and natural threats, and threat frequencies.

Exposures are forms of possible loss or harm. The evaluation approach is to list
what might happen to assets if a threat is realized. Exposures include disclosure
violations, erroneous decision, and fraud. Exposure analysis focuses on identifying
areas in which exposure is the greatest.

Security functions or controls are measures that protect against loss or harm.
The evaluation approach is to list the security functions and tasks, and focus on
controls embodied in specific system functions or procedures. Security functions
assess the protection against human errors and casual attempts to misuse the sys-
tem. Some functional security questions include the following:

Do the control features work properly? N
Are invalid and improbable parameters detected and properly handled? N
Are invalid or out-of-sequence commands detected and properly handled? N
Are errors and file accesses properly recorded? N
Do procedures for changing security tables work? N
Is it possible to log in without a password? N
Are valid passwords accepted and invalid passwords rejected? N
Does the system respond properly to multiple invalid passwords? N
Does the system-initialed authentication function properly? N
Are there security features for remote access? N

It is important to assess the performance of the security mechanisms as well as the
functions themselves. Some questions and issues concerning security performance
include the following:

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 243

Availability N —What portion of time is the application or control available to
perform critical security functions? Security controls usually require higher
availability than other portions of the system.
Survivability N —How well does the system withstand major failures or natural
disasters? This includes the support of emergency operations during failure, backup
operations afterward, and recovery actions to return to regular operation.
Accuracy N —How accurate is the security control? Accuracy encompasses the
number, frequency, and significance of errors.
Response time N —Are response times acceptable? Slow response times can tempt
users to bypass security controls. Response time can also be critical for con-
trol management, for example, the dynamic modification of security tables.
Throughput N —Does the security control support required use capacities?
Capacity includes the peak and average loading of users and service requests.

A useful performance test is stress testing, which involves large numbers of users
and requests to attain operational stress conditions. Stress testing is used to attempt
to exhaust limits for such resources as buffers, queues, tables, and ports. This form
of testing is useful in evaluating protection against service denial threats.

Task 3: Design/Script the Volume Tests
The objective of volume testing is to subject the system to heavy volumes of data to
find out if it can handle the volume. This test is often confused with stress testing.
Stress testing subjects the system to heavy loads or stresses in terms of rates, such as
throughputs over a short time period. Volume testing is data oriented, and its purpose
is to show that the system can handle the volume of data specified in its objectives.

Some examples of volume testing are as follows:

Relative data comparison is made when processing date-sensitive transactions. N
A compiler is fed an extremely large source program to compile. N
A linkage editor is fed a program containing thousands of modules. N
An electronic-circuit simulator is given a circuit containing thousands of N
components.
An operation system’s job queue is filled to maximum capacity. N
Enough data is created to cause a system to span files. N
A test-formatting system is fed a massive document format. N
The Internet is flooded with huge e-mail messages and files. N

Task 4: Design/Script the Stress Tests
The objective of stress testing is to investigate the behavior of the system under
conditions that overload its resources. Of particular interest is the impact that this
has on the system processing time. Stress testing is boundary testing. For example,

© 2009 by Taylor & Francis Group, LLC

244 ◾ Software Testing and Continuous Quality Improvement

test with the maximum number of terminals active and then add more terminals
than specified in the requirements under different limit combinations. Some of the
resources subjected to heavy loads by stress testing include the following:

Buffers N
Controllers N
Display terminals N
Interrupt handlers N
Memory N
Networks N
Printers N
Spoolers N
Storage devices N
Transaction queues N
Transaction schedulers N
User of the system N

Stress testing studies the system’s response to peak bursts of activity in short periods of
time and attempts to find defects in a system. It is often confused with volume testing,
in which the system’s capability of handling large amounts of data is the objective.

Stress testing should be performed early in development because it often uncov-
ers major design flaws that can have an impact on many areas. If stress testing is
not performed early, subtle defects, which might have been more apparent earlier
in development, may be difficult to uncover.

The following are the suggested steps for stress testing:

 1. Perform simple multitask tests.
 2. After the simple stress defects are corrected, stress the system to breaking point.
 3. Perform the stress tests repeatedly for every spiral.

Some stress-testing examples include the following:

Word-processing response time for a fixed entry rate, such as 120 words N
per minute
Introducing a heavy volume of data in a very short period of time N
Varying loads for interactive, real-time process control N
Simultaneous introduction of a large number of transactions N
Thousands of users signing on to the Internet within a minute N

Task 5: Design/Script the Compatibility Tests
The objective of compatibility testing (sometimes called cohabitation testing) is to
test the compatibility of the application with other applications or systems. This is

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 245

a test that is often overlooked until the system is put into production. Defects are
often subtle and difficult to uncover in this test. An example is when the system
works perfectly in the testing laboratory in a controlled environment, but does
not work when it coexists with other applications. An example of compatibility is
when two systems share the same data or data files or reside in the same memory at
the same time. The system may satisfy the system requirements, but not work in a
shared environment; it may also interfere with other systems.

The following is a compatibility (cohabitation) testing strategy:

 1. Update the compatibility objectives to note how the application has actu-
ally been developed and the actual environments in which it is to perform.
Modify the objectives for any changes in the cohabiting systems or the con-
figuration resources.

 2. Update the compatibility test cases to make sure they are comprehensive.
Make sure that the test cases in the other systems that can affect the target
system are comprehensive. And ensure maximum coverage of instances in
which one system could affect another.

 3. Perform the compatibility tests and carefully monitor the results to ensure
the expected results. Use a baseline approach, which is the system’s operating
characteristics before the incorporation of the target system into the shared
environment. The baseline needs to be accurate and incorporate not only
the functioning but also the operational performance to ensure that it is not
degraded in a cohabitation setting.

 4. Document the results of the compatibility tests and note any deviations in
the target system or the other cohabitation systems.

 5. Regression test the compatibility tests after the defects have been resolved,
and record the tests in the retest matrix.

Task 6: Design/Script the Conversion Tests
The objective of conversion testing is to verify the conversion of existing data and
load a new database. The most common conversion problem is between two ver-
sions of the same system. A new version may have a different data format, but must
include the data from the old system. Ample time needs to be set aside to carefully
think of all the conversion issues that may arise.

Some key factors that need to be considered when designing conversion tests
include the following:

Auditability N —There needs to be a plan to perform before-and-after compari-
sons and analysis of the converted data to ensure it was converted successfully.
Techniques to ensure auditability include file reports, comparison programs, and
regression testing. Regression testing checks to verify that the converted data does
not change the business requirements or cause the system to behave differently.

© 2009 by Taylor & Francis Group, LLC

246 ◾ Software Testing and Continuous Quality Improvement

Database verification N —Prior to conversion, the new database needs to be
reviewed to verify that it is designed properly, satisfies the business needs,
and that the support center and database administrators are trained to sup-
port it.
Data cleanup N —Before the data is converted to the new system, the old data
needs to be examined to verify that inaccuracies or discrepancies in the data
are removed.
Recovery plan N —Roll-back procedures need to be in place before any conversion is
attempted to restore the system to its previous state and undo the conversions.
Synchronization N —It must be verified that the conversion process does not
interfere with normal operations. Sensitive data, such as customer data, may
be changing dynamically during conversions. One way to achieve this is to
perform conversions during nonoperational hours.

Task 7: Design/Script the Usability Tests
The objective of usability testing is to determine how well the user will be able to
use and understand the application. This includes the system functions, publica-
tions, help text, and procedures to ensure that the user comfortably interacts with
the system. Usability testing should be performed as early as possible during devel-
opment and should be designed into the system. Late usability testing might be
impossible, because it is locked in and often requires a major redesign of the system
to correct serious usability problems. This may make it economically infeasible.

Some of the usability problems the tester should look for include the following:

Overly complex functions or instructions N
Difficult installation procedures N
Poor error messages, for example, “syntax error” N
Syntax difficult to understand and use N
Nonstandardized GUI interfaces N
User forced to remember too much information N
Difficult log-in procedures N
Help text not context sensitive or not detailed enough N
Poor linkage to other systems N
Unclear defaults N
Interface too simple or too complex N
Inconsistency of syntax, format, and definitions N
User not provided with clear acknowledgment of all inputs N

Task 8: Design/Script the Documentation Tests
The objective of documentation testing is to verify that the user documentation is
accurate and ensure that the manual procedures work correctly. Documentation

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 247

testing has several advantages, including improving the usability of the system, reli-
ability, maintainability, and installability. In these cases, testing the document will
help uncover deficiencies in the system or make the system more usable.

Documentation testing also reduces customer support costs; when customers
can figure out answers to their questions by reading the documentation, they are
not forced to call the help desk.

The tester verifies the technical accuracy of the documentation to ensure that
it agrees with and describes the system accurately. He or she needs to assume the
user’s point of view and carry out the steps described in the documentation.

Some tips and suggestions for the documentation tester include the following:

Use documentation as a source of many test cases. N
Use the system exactly as the documentation describes it should be used. N
Test every hint or suggestion. N
Incorporate defects into the defect-tracking database. N
Test every online help hypertext link. N
Test every statement of fact, and do not take anything for granted. N
Work like a technical editor rather than a passive reviewer. N
Perform a general review of the whole document first and then a detailed review. N
Check all the error messages. N
Test every example provided in the document. N
Make sure all index entries have documentation text. N
Make sure documentation covers all key user functions. N
Make sure the reading style is not too technical. N
Look for areas that are weaker than others and need more explanation. N

Task 9: Design/Script the Backup Tests

The objective of backup testing is to verify the ability of the system to back up its
data in the event of a software or hardware failure. This test is complementary to
recovery testing and should be part of recovery test planning.

Some backup testing considerations include the following:

Backing up files and comparing the backup with the original N
Archiving files and data N
Complete system backup procedures N
Checkpoint backups N
Backup performance system degradation N
Effect of backup on manual processes N
Detection of “triggers” to backup system N
Security procedures during backup N
Maintaining transaction logs during backup procedures N

© 2009 by Taylor & Francis Group, LLC

248 ◾ Software Testing and Continuous Quality Improvement

Task 10: Design/Script the Recovery Tests

The objective of recovery testing is to verify the system’s ability to recover from a
software or hardware failure. This test verifies the contingency features of the sys-
tem for handling interruptions and returning to specific points in the application’s
processing cycle. The key questions for designing recovery tests are as follows:

Have the potentials for disasters and system failures, and their respective N

damages, been identified? Fire-drill brainstorming sessions can be an effec-
tive method of defining disaster scenarios.
Do the prevention and recovery procedures provide for adequate responses N

to failures? The plan procedures should be tested with technical reviews by
subject matter experts and the system users.
Will the recovery procedures work properly when really needed? Simulated N

disasters need to be created with the actual system verifying the recovery
procedures. This should involve the system users, the support organization,
vendors, and so on.

Some recovery testing examples include the following:

Complete restoration of files that were backed up either during routine main- N

tenance or error recovery
Partial restoration of file backup to the last checkpoint N

Execution of recovery programs N

Archive retrieval of selected files and data N

Restoration when power supply is the problem N

Verification of manual recovery procedures N

Recovery by switching to parallel systems N

Restoration performance system degradation N

Security procedures during recovery N

Ability to recover transaction logs N

Task 11: Design/Script the Installation Tests

The objective of installation testing is to verify the ability to install the system
successfully. Customers have to install the product on their systems. Installation
is often the developers’ last activity and often receives the least amount of atten-
tion during development. Yet, it is the first activity that the customer performs
when using the new system. Therefore, clear and concise installation procedures are
among the most important parts of the system documentation.

Reinstallation procedures need to be included to be able to reverse the installa-
tion process and validate the previous environmental condition. Also, the installa-

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 249

tion procedures need to document how the user can tune the system options and
upgrade from a previous version.

Some key installation questions the tester needs to consider include the following:

Who is the user installer? For example, what technical capabilities are assumed? N
Is the installation process documented thoroughly with specific and concise N
installation steps?
For which environments are the installation procedures supposed to work, for N
example, platforms, software, hardware, networks, or versions?
Will the installation change the user’s current environmental setup, for exam- N
ple, config.sys, and so on?
How does the installer know the system has been installed correctly? For N
example, is there an installation test procedure in place?

Task 12: Design/Script Other System Test Types

In addition to the foregoing system tests, the following system tests may also
be required:

API testing N —Verify the system uses APIs correctly, for example, operating
system calls.
Communication testing N —Verify the system’s communications and networks.
Configuration testing N —Verify that the system works correctly in different sys-
tem configurations, for example, software, hardware, and networks.
Database testing N —Verify the database integrity, business rules, access, and
refresh capabilities.
Degraded system testing N —Verify that the system performs properly under less
than optimum conditions, for example, line connections down, and the like.
Disaster recovery testing N —Verify that the system recovery processes work
correctly.
Embedded system test N —Verify systems that operate on low-level devices, such
as video chips.
Facility testing N —Verify that each stated requirement facility is met.
Field testing N —Verify that the system works correctly in the real environment.
Middleware testing N —Verify that the middleware software works correctly, for
example, the common interfaces and accessibility among clients and servers.
Multimedia testing N —Verify the multimedia system features, which use video,
graphics, and sound.
Online help testing N —Verify that the system’s online help features work properly.
Operability testing N —Verify system will work correctly in the actual busi-
ness environment.
Package testing N —Verify that the installed software package works correctly.

© 2009 by Taylor & Francis Group, LLC

250 ◾ Software Testing and Continuous Quality Improvement

Parallel testing N —Verify that the system behaves the same in the old and
new versions.
Port testing N —Verify that the system works correctly on different operating
systems and computers.
Procedure testing N —Verify that nonautomated procedures work properly, for
example, operation, DBA, and the like.
Production testing N —Verify that the system will work correctly during actual
ongoing production and not just in the test laboratory environment.
Real-time testing N —Verify systems in which time issues are critical and there
are response time requirements.
Reliability testing N —Verify that the system works correctly within predefined
expected failure duration, for example, mean time to failure (MTF).
Serviceability testing N —Verify that service facilities of the system work prop-
erly, for example, mean time to debug a defect and maintenance procedures.
SQL testing N —Verify the queries, data retrievals, and updates.
Storage testing N —Verify that the system storage requirements are met, for
example, sizes of spill files and amount of main or secondary storage used.

Step 3: review/approve System tests
Task 1: Schedule/Conduct the Review
The system test plan review should be scheduled well in advance of the actual
review, and the participants should have the latest copy of the test plan.

As with any interview or review, certain elements must be present. The first is
defining what will be discussed; the second is discussing the details; and the third is
summarization. The final element is timeliness. The reviewer should state up front
the estimated duration of the review and set the ground rule that if time expires
before completing all items on the agenda, a follow-on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the system test plan. If there are any suggested changes to the test plan dur-
ing the review, they should be incorporated into the test plan.

Task 2: Obtain Approvals
Approval is critical in a testing effort because it helps testing, development, and the
sponsor agree. The best approach is with a formal sign-off procedure of a system test
plan. If this is the case, use the management approval sign-off forms. However, if
a formal agreement procedure is not in place, send a memo to each key participant
including at least the project manager, development manager, and sponsor. In the
document, attach the latest test plan and point out that all their feedback com-
ments have been incorporated and that if you do not hear from them, it is assumed

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ◾ 251

that they agree with the plan. Finally, indicate that in a spiral development environ-
ment, the system test plan will evolve with each iteration but that you will include
them in any modification.

Step 4: execute the System tests
Task 1: Regression Test the System Fixes
The purpose of this task is to retest the system tests that discovered defects in the
previous system test cycle for this build. The technique used is regression testing.
Regression testing is a technique that detects spurious errors caused by software
modifications or corrections.

A set of test cases must be maintained and available throughout the entire life
of the software. The test cases should be complete enough so that all the software’s
functional capabilities are thoroughly tested. The question arises as to how to locate
those test cases to test defects discovered during the previous test spiral. An excel-
lent mechanism is the retest matrix.

As described earlier, a retest matrix relates test cases to functions (or program
units). A check entry in the matrix indicates that the test case is to be retested
when the function (or program unit) has been modified due to enhancements or
corrections. The absence of an entry indicates that the test does not need to be
retested. The retest matrix can be built before the first testing spiral, but needs
to be maintained during subsequent spirals. As functions (or program units) are
modified during a development spiral, existing or new test cases need to be created
and checked in the retest matrix in preparation for the next test spiral. Over time
with subsequent spirals, some functions (or program units) may be stable, with no
recent modifications. Selective removal of check entries should be considered, and
undertaken between testing spirals.

Task 2: Execute the New System Tests
The purpose of this task is to execute new system tests that were created at the end
of the previous system test cycle. In the previous spiral, the testing team updated
the function/GUI, system fragment, and acceptance tests in preparation for the
current testing spiral. During this task, those tests are executed.

Task 3: Document the System Defects
During system test execution, the results of the testing must be reported in the
defect-tracking database. These defects are typically related to individual tests that
have been conducted. However, variations to the formal test cases often uncover
other defects. The objective of this task is to produce a complete record of the defects.

© 2009 by Taylor & Francis Group, LLC

252 ◾ Software Testing and Continuous Quality Improvement

If the execution step has been recorded properly, the defects have already been
recorded on the defect-tracking database. If the defects are already recorded, the
objective of this step becomes to collect and consolidate the defect information.

Tools can be used to consolidate and record defects depending on the test exe-
cution methods. If the defects are recorded on paper, the consolidation involves col-
lecting and organizing the papers. If the defects are recorded electronically, search
features can easily locate duplicate defects.

© 2009 by Taylor & Francis Group, LLC

253

21Chapter

Conduct acceptance
testing

Acceptance testing is a user-run test that demonstrates the application’s ability to
meet the original business objectives and system requirements, and usually con-
sists of a subset of system tests (see Figure 21.1). It includes discussions on how to
prepare for the acceptance tests, design and script them, execute them, and report
anomalies discovered during the test.

Step 1: Complete acceptance test Planning
Task 1: Finalize the Acceptance Test Types
In this task, the initial acceptance testing type list is refined, and the actual tests to
be performed are selected.

Acceptance testing is an optional user-run test that demonstrates the ability of
the application to meet the user’s requirements. The motivation for this test is to
demonstrate rather than be destructive, that is, to show that the system works. Less
emphasis is placed on the technical issues and more on the question of whether
the system is a good business fit for the end user. Users usually perform the test.
However, the users sometimes define “special tests,” such as intensive stress or vol-
ume tests, to stretch the limits of the system even beyond what was tested during
the system test.

© 2009 by Taylor & Francis Group, LLC

254 ◾ Software Testing and Continuous Quality Improvement

Finalize Acceptance
Test Types

Finalize Acceptance
Test Schedule

Organize Acceptance
Test Team

Establish Acceptance
Test Environment

Install Acceptance
Test Tools

Subset System-Level
Test Cases

Design/Script Additional
Acceptance

Schedule/Conduct
Review

Obtain
Approvals

Regression Test
Acceptance Fixes

Execute New
Acceptance Tests

Document Acceptance
Test Defects

Complete
Acceptance

Test Planning

Complete
Acceptance
Test Cases

Review/Approve
Acceptance

Test Plan

Execute
Acceptance

Tests

(STEPS) (TASKS)

figure 21.1 Conduct acceptance testing (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

Conduct Acceptance Testing ◾ 255

Task 2: Finalize the Acceptance Test Schedule
In this task, the acceptance test schedule should be finalized. It includes the testing
steps (and perhaps tasks), target begin dates and target end dates, and responsi-
bilities. It should also describe how it will be reviewed, tracked, and approved. For
acceptance testing, the test team usually consists of user representatives. However,
the team test environment and test tool are probably the same as those used during
system testing. A sample acceptance test schedule is shown in Table 21.1.

Task 3: Organize the Acceptance Test Team
The acceptance test team is responsible for designing and executing the tests,
evaluating the test results, and reporting any defects to development, using the
defect-tracking system. When development corrects defects, the test team retests
the defects to validate the correction. The acceptance test team typically has repre-
sentation from the user community, because this is their final opportunity to accept
the system.

The acceptance test team is led by a test manager whose responsibilities include
the following:

table 21.1 acceptance test Schedule

Test Step Begin Date End Date
Responsible Staff

Member

general Setup

Organize the acceptance
test team

8/1/2004 8/7/2004 Smith, test manager

Establish the acceptance test
environment

8/8/2004 8/9/2004 Smith, test manager

Establish the acceptance test
tools

8/10/2004 8/10/2004 Jones, tester

acceptance testing

Design/script the tests 12/11/2004 12/15/2004 Jones, Baker (user),
testers

Test review 12/16/2004 12/16/2004 Smith, test manager

Execute the tests 12/17/2004 12/22/2004 Jones, Baker (user),
tester

Retest acceptance defects 12/23/2004 12/25/2004 Jones, Baker (user),
tester

© 2009 by Taylor & Francis Group, LLC

256 ◾ Software Testing and Continuous Quality Improvement

Organizing the test team N
Establishing the test environment N
Organizing the testing policies, procedures, and standards N
Ensuring test readiness N
Working the test plan and controlling the project N
Tracking test costs N
Ensuring test documentation is accurate and timely N
Managing the team members N

Task 4: Establish the Acceptance Test Environment
During this task, the acceptance test environment is finalized. Typically, the test
environment for acceptance testing is the same as that for system testing. The pur-
pose of the test environment is to provide the physical framework necessary for
the testing activity. For this task, the test environment needs are established and
reviewed before implementation.

The Business usually performs the user acceptance tests. Thus, it is important
that the details of the acceptance test environment be communicated to them.

Task 5: Install Acceptance Test Tools
During this task, the acceptance test tools are installed and verified for readiness. A
trial run of sample tool test cases and scripts should be performed to verify that the
test tools are ready for the actual acceptance test. Typically, the acceptance testing
tools are the same as the system level testing tools, but this needs to be confirmed
between the Business and the QA department. Some other tool readiness consider-
ations include the following:

Test team tool training N
Tool compatibility with operating environment N
Ample disk space for the tools N
Maximizing the tool potentials N
Vendor tool help hotline N
Test procedures modified to accommodate tools N
Installing the latest tool changes N
Verifying the vendor contractual provisions N

Step 2: Complete acceptance test Cases
During this step, the acceptance test cases are designed and scripted. The conceptual
acceptance test cases are transformed into reusable test scripts with test data cre-
ated. To aid in the development of scripting the test cases, the GUI-based Function

© 2009 by Taylor & Francis Group, LLC

Conduct Acceptance Testing ◾ 257

Test Matrix template in Appendix E7 can be used to document acceptance-level
test cases, with the “function” heading replaced with the acceptance test name.

Task 1: Identify the System-Level Test Cases
Acceptance test cases are typically (but not always) developed by the end user and
are not normally considered the responsibility of the development organization,
because acceptance testing compares the system to its original requirements and
the needs of the users. It is the final test for the end users to accept or reject the
system. The end users supply the test resources and perform their own tests. They
may or may not use the same test environment that was used during system testing.
This depends on whether the test will be performed in the end user’s environment.
The latter is the recommended approach.

Typically, the acceptance test consists of a subset of system tests that have
already been designed during system testing. Therefore, the current task consists of
identifying those system-level tests that will be used during acceptance testing.

Task 2: Design/Script Additional Acceptance Tests
In addition to the system-level tests to be rerun during acceptance testing, they
may be “tweaked” with special conditions to maximize the acceptability of the
system. For example, the acceptance test might require that a certain throughput
be sustained for a period of time with acceptable response time tolerance limits; for
example, 10,000 transactions per hour are processed with a mean response time of
3 seconds, with 90 percent less than or equal to 2 seconds. Another example might
be that an independent user “off the street” sits down with the system and the docu-
ment to verify that he can use the system effectively.

The user might also envision other tests not designed during system testing. These
may become more apparent to the user than they would have been to the developer
because the user knows the business requirements and is intimately familiar with
the business operations. He or she might uncover defects that only a user would see.
This also helps the user to get ready for the real installation and production.

The acceptance test design might even include the use of live data, because the
acceptance of test results will probably occur more readily if it looks real to the user.
There are also unusual conditions that might not be detected unless live data is used.

Step 3: review/approve acceptance test Plan
Task 1: Schedule/Conduct the Review
The acceptance test plan review should be scheduled well in advance of the actual
review, and the participants should have the latest copy of the test plan.

© 2009 by Taylor & Francis Group, LLC

258 ◾ Software Testing and Continuous Quality Improvement

As with any interview or review, it should contain certain elements. The first
defines what will be discussed; the second discusses the details; the third summa-
rizes; and the final element is timeliness. The reviewer should state up front the esti-
mated duration of the review and set the ground rule that if the allotted time expires
before completing all items on the agenda, a follow-on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the system test plan. If there are any suggested changes to the test plan dur-
ing the review, they should be incorporated into the test plan.

Task 2: Obtain Approvals
Approval is critical in a testing effort because it helps provide the necessary agree-
ments among testing, development, and the sponsor. The best approach is with
a formal sign-off procedure of an acceptance test plan. If this is the case, use the
management approval sign-off forms. However, if a formal agreement procedure
is not in place, send a memo to each key participant, including at least the project
manager, development manager, and sponsor. Attach to the document the latest
test plan, and point out that all feedback comments have been incorporated and
that if you do not hear from them, it is assumed they agree with the plan. Finally,
indicate that in a spiral development environment, the system test plan will evolve
with each iteration but that you will include them in any modification.

Step 4: execute the acceptance tests
Task 1: Regression Test the Acceptance Fixes
The purpose of this task is to retest the tests that discovered defects in the previous
acceptance test cycle for this build. The technique used is regression testing. Regression
testing detects spurious errors caused by software modifications or corrections.

A set of test cases must be maintained and made available throughout the entire
life of the software. The test cases should be complete enough so that all the soft-
ware’s functional capabilities are thoroughly tested. The question arises as to how to
locate those test cases to test defects discovered during the previous test spiral. An
excellent mechanism is the retest matrix.

As described earlier, a retest matrix relates test cases to functions (or program
units). A check entry in the matrix indicates that the test case is to be retested
when the function (or program unit) has been modified due to enhancements or
corrections. The absence of an entry indicates that the test does not need to be
retested. The retest matrix can be built before the first testing spiral, but needs to be
maintained during subsequent spirals. As functions (or program units) are modi-
fied during a development spiral, existing or new test cases need to be created and
checked in the retest matrix in preparation for the next test spiral. Over time with

© 2009 by Taylor & Francis Group, LLC

Conduct Acceptance Testing ◾ 259

subsequent spirals, some functions (or program units) may be stable with no recent
modifications. Selective removal of their check entries should be considered, and
undertaken between testing spirals.

Task 2: Execute the New Acceptance Tests
The purpose of this task is to execute new tests that were created at the end of the
previous acceptance test cycle. In the previous spiral, the testing team updated the
function/GUI, system fragment, and acceptance tests in preparation for the current
testing spiral. During this task, those tests are executed.

Task 3: Document the Acceptance Defects
During acceptance test execution, the results of the testing must be reported in the
defect-tracking database. These defects are typically related to individual tests that
have been conducted. However, variations to the formal test cases often uncover
other defects. The objective of this task is to produce a complete record of the defects.
If the execution step has been recorded properly, the defects have already been
recorded on the defect-tracking database. If the defects are already recorded, the
objective of this step becomes to collect and consolidate the defect information.

Tools can be used to consolidate and record defects, depending on the test exe-
cution methods. If the defects are recorded on paper, the consolidation involves col-
lecting and organizing the papers. If the defects are recorded electronically, search
features can easily locate duplicate defects.

© 2009 by Taylor & Francis Group, LLC

261

22Chapter

Summarize/report
test results

Appendix F23, “Project Completion Checklist,” can be used to confirm that all the
key activities have been completed for the project.

Step 1: Perform data reduction
Task 1: Ensure All Tests Were Executed/Resolved
During this task, the test plans and logs are examined by the test team to verify that
all tests were executed (see Figure 22.1). The team can usually do this by ensuring that
all the tests are recorded on the activity log and examining the log to confirm that the
tests have been completed. When there are defects that are still open and not resolved,
they need to be prioritized and deployment workarounds need to be established.

Task 2: Consolidate Test Defects by Test Number
During this task, the team examines the recorded test defects. If the tests have been
properly performed, it is logical to assume that, unless a defect test document was
reported, the correct or expected result was received. If that defect were not cor-
rected, it would have been posted to the test defect log. The team can assume that
all items are working except those recorded on the test log as having no corrective

© 2009 by Taylor & Francis Group, LLC

262 ◾ Software Testing and Continuous Quality Improvement

action or unsatisfactory corrective action. The test number should consolidate these
defects so that they can be posted to the appropriate matrix.

Task 3: Post Remaining Defects to a Matrix

During this task, the uncorrected or unsatisfactorily corrected defects should be
posted to a special function test matrix. The matrix indicates which test-by-test
number tested which function. The defect is recorded in the intersection between
the test and the functions for which that test occurred. All uncorrected defects
should be posted to the function/test matrix intersection.

Ensure All Tests Were
Executed/Resolved

Consolidate Test Defects
By Test Number

Post Remaining
Defects to a Matrix

Prepare Project
Overview

Summarize
Test Activities

Analyze/Create
Metric Graphics

Develop Findings/
Recommendations

Schedule/Conduct
Review

Obtain
Approvals

Publish Final
Test Report

Perform
Data

Reduction

Prepare Final
Test Report

Review/Approval
Final Test Report

(STEPS) (TASKS)

figure 22.1 Summarize/report spiral test results.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ◾ 263

Step 2: Prepare final test report
The objective of the final spiral test report is to describe the results of the testing,
including not only what works and what does not, from above, but the test team’s eval-
uation regarding performance of the application when it is placed into production.

For some projects, informal reports are the practice, whereas in others, very for-
mal reports are required. The following is a compromise between the two extremes
to provide essential information not requiring an inordinate amount of prepara-
tion (see Appendix E15, “Spiral Testing Summary Report”; also see Appendix E29,
“Final Test Summary Report,” which can be used as a final report of the test project
with key findings).

Task 1: Prepare the Project Overview
An objective of this task is to document an overview of the project in paragraph
format. Some pertinent information contained in the introduction includes the
project name, project objectives, the type of system, the target audience, the orga-
nizational units that participated in the project, why the system was developed,
what subsystems are involved, the major and subfunctions of the system, and what
functions are out of scope and will not be implemented.

Task 2: Summarize the Test Activities
The objective of this task is to describe the test activities for the project including
such information as the following:

Test team N —The composition of the test team, for example, test manager, test
leader, and testers, and the contribution of each, such as test planning, test
design, test development, and test execution.
Test environment N —Physical test facility, technology, testing tools, software,
hardware, networks, testing libraries, and support software.
Types of tests N —Spiral (how many spirals), system testing (types of tests and
how many), and acceptance testing (types of tests and how many).
Test schedule (major milestones) N —External and internal. External milestones
are those events external to the project but that may have a direct impact on
it. Internal milestones are the events within the project that can be controlled
to some extent.
Test tools N —The testing tools used and their purpose, for example, path analy-
sis, regression testing, load testing, and so on.

Task 3: Analyze/Create Metric Graphics
During this task, the defect and test management metrics measured during the
project are gathered and analyzed. Defect tracking should be automated for greater

© 2009 by Taylor & Francis Group, LLC

264 ◾ Software Testing and Continuous Quality Improvement

productivity. Reports are run, and metric totals and trends are analyzed. This anal-
ysis will be instrumental in determining the quality of the system and its accept-
ability for use, and also will be useful for future testing endeavors. The final test
report should include a series of metric graphics. The suggested graphics follow.

Defects by Function

Table 22.1 shows the number and percentage of defects discovered for each function
or group. This analysis will flag the functions that have the most defects. Typically,
such functions had poor requirements or design. In the following example, the
reports had 43 percent of the total defects, which suggests an area that should be
examined for maintainability after it is released for production.

Defects by Tester

Table 22.2 shows the number and percentage of defects discovered for each tester
during the project. This analysis flags those testers who documented fewer than the
expected number of defects. These statistics, however, should be used with care. A
tester may have recorded fewer defects because the functional area tested may have
relatively fewer defects, for example, tester Baker in Table 22.2. On the other hand,
a tester who records a higher percentage of defects could be more productive, for
example, tester Brown.

Defect Gap Analysis

Figure 22.2 shows the gap between the number of defects that has been uncovered
and the number that has been corrected during the entire project. At project com-
pletion, these curves should coincide, indicating that the majority of the defects
uncovered have been corrected and the system is ready for production.

Defect Severity Status

Figure 22.3 shows the distribution of the three severity categories for the entire
project, for example, critical, major, and minor. A large percentage of defects in
the critical category indicates that a problem existed with the design or archi-
tecture of the application that should be examined for maintainability after it is
released for production.

Test Burnout Tracking

Figure 22.4 indicates the rate of uncovering defects for the entire project and is a
valuable test completion indicator. The cumulative (e.g., running total) number of

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ◾ 265

table 22.1 defects documented by function

Function Number of Defects Percentage of Total

order Processing

Create new order 11 6

Fulfill order 5 3

Edit order 15 8

Delete order 9 5

Subtotal 40 22

Customer Processing

Create new customer 6 3

Edit customer 0 0

Delete customer 10 6

Subtotal 16 9

financial Processing

Receive customer payment 0 0

Deposit payment 5 3

Pay vendor 9 5

Write a check 4 2

Display register 6 3

Subtotal 24 13

inventory Processing

Acquire vendor products 3 2

Maintain stock 7 4

Handle back orders 9 5

Audit inventory 0 0

Adjust product price 6 3

Subtotal 25 14

Continued

© 2009 by Taylor & Francis Group, LLC

266 ◾ Software Testing and Continuous Quality Improvement

defects and defects by time period help predict when fewer and fewer defects are
being discovered. This is indicated when the cumulative curve “bends” and the
defects by time period approach zero.

Root Cause Analysis

Figure 22.5 shows the source of the defects, for example, architectural, functional,
usability, and so on. If the majority of the defects are architectural, the entire sys-
tem will be affected, and a great deal of redesign and rework will be required.
High-percentage categories should be examined for maintainability after they are
released for production.

Defects by How Found

Figure 22.6 shows how the defects were discovered, for example, by external cus-
tomers, manual testing, and the like. If a very low percentage of defects were dis-
covered through inspections, walkthroughs, or JADs, this would indicate that
there may be too much emphasis on testing and too little on the review process.

table 22.1 defects documented by function (Continued)

Function Number of Defects Percentage of Total

reports

Create order report 23 13

Create account receivable report 19 11

Create account payable report 35 19

Subtotal 77 43

Grand totals 182 100

table 22.2 defects documented by tester

Tester Number of Defects Percent of Total

Jones 51 28

Baker 19 11

Brown 112 61

Grand totals 182 100

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ◾ 267

The percentage differences between manual and automated testing also illustrate
the contribution of automated testing to the process.

Defects by Who Found

Figure 22.7 shows who discovered the defects, for example, external customers,
development, quality assurance testing, and so on. For most projects, quality assur-
ance testing will discover most of the defects. However, if external or internal
customers discovered the majority of the defects, this would indicate that quality
assurance testing was lacking.

Functions Tested and Not Tested

Figure 22.8 shows the final status of testing and verifies that all or most defects have
been corrected and the system is ready for production. At the end of the project,

50

40

30

20

10

0

Cu
m

ul
at

iv
e N

um
be

r o
f D

ef
ec

ts

Time

Uncovered

Corrected

Gap

figure 22.2 defect gap analysis.

© 2009 by Taylor & Francis Group, LLC

268 ◾ Software Testing and Continuous Quality Improvement

all test cases should have been completed and the percentage of test cases run with
errors and not run should be zero. Exceptions should be evaluated by management
and documented.

System Testing Defect Types

Systems testing consists of one or more tests that are based on the original objectives
of the system. Figure 22.9 shows a distribution of defects by system testing type. In
the example, performance testing had the most defects, followed by compatibility
and usability. An unusually high percentage of performance tests indicates a poorly
designed system.

Acceptance Testing Defect Types

Acceptance testing is an optional user-run test that demonstrates the ability of the
application to meet the user’s requirements. The motivation for this test is to posi-
tive rather than negative, for example, to show that the system works. Less empha-
sis is placed on the technical issues, and more is placed on the question of whether
the system is a good business fit for the end user.

60

50

40

30

20

10

0

Pe
rc

en
t

Critical

Major

Minor

Severity

figure 22.3 defect severity status.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ◾ 269

There should not be many defects discovered during acceptance testing, as most
of them should have been corrected during system testing. In Figure 22.10, perfor-
mance testing still had the most defects, followed by stress and volume testing.

Task 4: Develop Findings/Recommendations

A finding is a discrepancy between what is and what should be. A recommenda-
tion is a suggestion on how to correct a problem or improve a system. Findings and
recommendations from the test team constitute most of the test report.

The objective of this task is to develop the findings and recommendations from
the testing process and document “lessons learned.” Previously, data reduction has
identified the findings, but they must be put in a format suitable for use by the
project team and management.

The test team should make the recommendations to correct a situation. The proj-
ect team should also confirm that the findings are correct and the recommendations

Cumulative

By Time Period

Burnout

Time Periods

To
ta

l D
ef

ec
ts

300

200

150

250

100

50

0

figure 22.4 test burnout tracking.

© 2009 by Taylor & Francis Group, LLC

270 ◾ Software Testing and Continuous Quality Improvement

1 2 3 4 5

60

50

40

30

20

10

0

Pe
rc

en
t

1. Inspection
2. Walkthrough
3. JAD
4. Manual Testing
5. Automated Testing

figure 22.6 defects by how found.

1. Architectural
2. Connectivity
3. Consistency
4. Database Integrity
5. Documentation
6. Functionality
7. GUI
8. Installation
9. Memory
10. Performance
11. Security
12. Standards
13. Stress
14. Usability

Ro
ot

 C
au

se
 (%

)

1 141312111098765432

figure 22.5 root cause analysis.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ◾ 271

Test Cases Completed

Test Cases Run with Errors

Test Cases Not Run

50

40

30

20

10

0

Pe
rc

en
t

figure 22.8 functions tested/not tested.

1. External Customer

2. Internal Customer

3. Development

4. Quality Assurance

Pe
rc

en
t (

%)

80

70

60

50

40

30

20

10

0 1 2 3 4

figure 22.7 defects by who found.

© 2009 by Taylor & Francis Group, LLC

272 ◾ Software Testing and Continuous Quality Improvement

reasonable. Each finding and recommendation can be documented in the Finding/
Recommendation matrix depicted in Table 22.3.

Step 3: review/approve the final test report
Task 1: Schedule/Conduct the Review
The test summary report review should be scheduled well in advance of the actual
review, and the participants should have the latest copy of the test plan.

As with any interview or review, there are certain common elements. The first
is defining what will be discussed; the second is discussing the details; the third is
summarization; and the final element is timeliness. The reviewer should state up
front the estimated duration of the review and set the ground rule that if time expires
before completing all items on the agenda, a follow-on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the test report. If there are any suggested changes to the report during the
review, they should be incorporated.

1. Performance

10. Recovery
9. Backup
8. Documentation
7. Usability
6. Conversion
5. Compatibility
4. Stress
3. Volume
2. Security

1 2 3 4 5 6 7 8 109 11

10

15

20

25

5

0

Pe
rc

en
t (

%)

figure 22.9 System testing by root cause.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ◾ 273

Task 2: Obtain Approvals
Approval is critical in a testing effort, because it helps provide the necessary agree-
ment among testing, development, and the sponsor. The best approach is with a
formal sign-off procedure of a test plan. If this is the case, use the management
approval sign-off forms. However, if a formal agreement procedure is not in place,
send a memo to each key participant, including at least the project manager, devel-
opment manager, and sponsor. In the document, attach the latest test plan and
point out that all their feedback comments have been incorporated and that if you
do not hear from them, it is assumed that they agree with the plan. Finally, indicate
that in a spiral development environment, the test plan will evolve with each itera-
tion but that you will include them in any modification.

Task 3: Publish the Final Test Report
The test report is finalized with the suggestions from the review and distributed to
the appropriate parties. The purpose has short- and long-term objectives.

1. Performance

10. Recovery
11. Installation

9. Backup
8. Documentation
7. Usability
6. Conversion
5. Compatibility
4. Stress
3. Volume
2. Security

1 2 3 4 5 6 7 8 109 11

Pe
rc

en
t (

%)

10

30

20

40

50

0

60

figure 22.10 acceptance testing by root cause.

© 2009 by Taylor & Francis Group, LLC

274
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 22.3 finding/recommendations Matrix

Finding Descriptiona Business Functionb Impactc

Impact on Other
Systemsd Costs to Correcte Recommendationf

Not enough testers
were initially
assigned to the
project

N/A Caused the testing
process to lag
behind the original
schedule

N/A Contracted five
additional testers
from a contract
agency

Perform more resource
planning in future
projects

Defect tracking was
not monitored
adequately by
development

N/A Number of
outstanding defects
grew significantly

N/A Authorized overtime
for development

QA needs to stress the
importance of defect
tracking on a daily
basis in future projects

Automated testing
tools did contribute
significantly to
regression testing

N/A Increased testing
productivity

N/A N/A Utilize testing tools as
much as possible

Excessive number of
defects in one
functional area

Reports Caused a lot of
developer rework
time

N/A Excessive developer
overtime

Perform more technical
design reviews early in
the project

Functional area not
compatible with
other systems

Order Processing Rework costs Had to redesign
the database

Contracted an
Oracle database
DBA

Perform more database
design reviews early in
the project

30 percent of defects
had critical severity

N/A Significantly
impacted the
development and
testing effort

N/A Hired additional
development
programmers

Perform more technical
reviews early in the
project and tighten up
on the sign-off
procedures

© 2009 by Taylor & Francis Group, LLC

Su
m

m
arize/R

ep
o

rt Test R
esu

lts
◾

275
Function/GUI had the
most defects

N/A Required a lot of
rework

N/A Testers authorized
overtime

Perform more technical
reviews early in the
project and tighten up
on the sign-off
procedures

Two test cases could
not be completed
because
performance load
test tool did not
work properly

Stress testing
order entry with
1000 terminals

Cannot guarantee
system will perform
adequately under
extreme load
conditions

N/A Delay system
delivery until new
testing tool
acquired (2 months
delay at $85,000 loss
in revenue, $10,000
for tool)

Loss of revenue
overshadows risk. Ship
system but acquire
performance test tool
and complete stress
test

a This includes a description of the problem found from the defect information recorded in the defect-tracking database. It could also include test
team, test procedures, or test environment findings and recommendations.

b Describes the business function that was involved and affected.
c Describes the effect the finding will have on the operational system. The impact should be described only as major (the defect would cause the

application system to produce incorrect results) or minor (the system is incorrect, but the results will be correct).
d Describes where the finding will affect application systems other than the one being tested. If the finding affects other development teams, they

should be involved in the decision on whether to correct the problem.
e Management must know both the costs and the benefits before it can make a decision on whether to install the system without the problem being

corrected.
f Describes the recommendation from the test team on what action to take.

© 2009 by Taylor & Francis Group, LLC

276 ◾ Software Testing and Continuous Quality Improvement

The short-term objective is to provide information to the software user to determine if
the system is ready for production. It also provides information about outstanding issues,
including testing not completed or outstanding problems, and recommendations.

The long-term objectives are to provide information to the project regarding
how it was managed and developed from a quality point of view. The project can
use the report to trace problems if the system malfunctions in production, for
example, defect-prone functions that had the most errors and the ones that were
not corrected. The project and organization also have the opportunity to learn from
the current project. A determination of which development, project management,
and testing procedures worked, and which did not work or need improvement, can
be invaluable for future projects.

© 2009 by Taylor & Francis Group, LLC

4ProjeCt
ManageMent
Methodology

Project management, according to the American Society for Quality (ASQ), is the
application of knowledge, skills, tools, and techniques to meet the requirements of
a project. The following chapters apply the Project Quality Management practices
and methods to software testing by describing basic test management processes and
organizational approaches that achieve project quality.

The objectives of this section are to:

Define the Project Framework. N
Develop the dependencies between product quality and project quality. N
Characterize the phases of the Project Framework. N
Describe the important relationship between project scope and product quality. N
Define the roles of the project manager and test manager in quality N
management.
Describe the steps of the quality planning process that support Project N
Quality Management.
Emphasize the factors that influence project estimation. N
Illustrate the defect management activities that support Quality Control. N
Demonstrate how defect-tracking techniques influence project quality. N
Present the benefits of integrating test and development methodologies into N
a unified set of processes.
Reveal the steps to build an integrated methodology. N

© 2009 by Taylor & Francis Group, LLC

278 ◾ Project Management Methodology

Explain why organizational structures influence how project managers and N
test managers accomplish their tasks.
Establish the approaches to organizational challenges. N
Describe alternative quality metrics that measure project progress and com- N
pliance to requirements.

© 2009 by Taylor & Francis Group, LLC

279

23Chapter

the Project Management
framework

the Project framework
The Project Framework is a simple and useful way to unite quality processes with
project phases, and synchronize project quality management with the system, or
software, development approach.

The Project Framework, described in the following sections, uses the Project
Management Institute’s Process Groups to:

Embed the quality processes into the project phases. N
Align quality planning, assurance, and control activities with the output of a N
system or software (or system) development life cycle (SDLC).

The phases of the Project Framework require the project manager and the test man-
ager to cooperate so that the end result of the project is a quality product.

For more information on the Project Management Institute (PMI), go to www.
PMI.org.

Product Quality and Project Quality
Project managers are ultimately responsible for product quality and project quality.
The difference between product quality and project quality, drawn from The Project

© 2009 by Taylor & Francis Group, LLC

http://www.PMI.org
http://www.PMI.org

280 ◾ Software Testing and Continuous Quality Improvement

Management Institute’s Project Management Body of Knowledge® (PMBOK), is
abbreviated here:

Product quality N is meeting explicit criteria for conformance to requirements
and fitness for use.
Project quality N is delivering the required product, or service, within the agreed
project scope and meeting the approved schedule without exceeding the proj-
ect budget.

Together, product quality and project quality comprise project quality management.

Components of the Project framework
The Project Framework, illustrated in Figure 23.1, treats the Project Management
Institute’s five Project Management Process Groups as overarching project phases.
The resulting alignment implies flexibility and assumes that overlapping activities
will take place across the SDLC phases.

the Project framework and Continuous
Quality improvement
The project manager and the test manager share responsibility for continuous qual-
ity improvement. They use the Project Framework to infuse continuous quality
improvement into each SDLC phase.

The Project Framework works well with Deming’s modified Plan–Do–Check–
Act cycle shown in Figure 23.2.

Examples of using the PDCA cycle are nearly unlimited. Here are several
examples:

Plan: Clearly define the project and product scope; understand the conditions,
policies, and methods required to achieve the project objectives.

The Project Framework

CAT and
Go-live

Preparation
ImplementBuild and

Test
Detailed
Design

Solution
Analysis

Evaluation
and

Preparation

Initiation Planning Executing
Monitoring

and
Controlling

SDLC
Phases

Project
Phases Closing

figure 23.1 Project framework.

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework ◾ 281

Do: Create the conditions and procedures to complete the work according to the
approved project scope.

Impart training as needed so that the required skills are available when needed.
Ensure that project team members understand both the project objectives and

their project work.
Check: Determine if the project deliverables are completed according to plan

and whether the results are as expected.
Act: Respond to variances by adjusting the quality processes to prevent variance

from project and product quality. Actions include the following:
Validating changes to requirements and scope. −
Determining if project deliverables meet quality assurance measurements. −
Ensuring that project documents (such as the project schedule and bud- −
get) are updated.
Assessing the impact of changes in conditions to detect and correct vari- −
ances from project quality standards.
Performing root cause analysis for any major variance and adjusting the −
process to prevent recurrence.

the Project framework Phases
Initiation Phase

Project initiation signals the sponsor’s commitment to fund the project. Initiation
activities include producing a project charter that summarizes the high-level scope of
the product and the project, as well as authorizing the project manager to assume proj-
ect leadership. Early requirements definitions, project team mobilization, and stake-
holder analysis are initiation activities that set the foundation for the planning phase.

The quality definition for the project begins in the Initiation phase, using pro-
gressive elaboration to develop the detailed expectations for product acceptance
by the customer. Writing a preliminary quality statement, or initial quality policy,

Plan Do

Act Check

figure 23.2 the Plan–do–Check–act cycle.

© 2009 by Taylor & Francis Group, LLC

282 ◾ Software Testing and Continuous Quality Improvement

during the initiation phase helps jump-start the test planning by establishing a
context for customer acceptance.

Planning Phase
Planning the quality management approach for the project is accomplished in parallel
with developing the scope and requirements for the product and the project. The proj-
ect assumptions, dependencies, and risks are inputs to the test strategy. Other inputs
include application and architecture models as well as integration requirements.

Development activities during the planning phase, such as conducting a proof
of concept or demonstrating a prototype, provide opportunities to assess whether
the project requires changes and additions to existing quality policies, test environ-
ments, test tools, and test methodologies.

The fundamental quality outputs from the planning phase are the final qual-
ity policy (quality standards) for the project and the test strategy derived from the
functional and nonfunctional requirements.

Planning for quality assurance and quality control is incomplete until resources
are assigned to the quality tasks in the work breakdown structure (project sched-
ule). Planning the QA tests and user acceptance tests should be coordinated to
avoid unnecessary duplication of effort.

Executing, Monitoring, and Controlling Phases
This phase incorporates the project execution activities with the monitoring and
controlling activities because the processes are mutually dependent. Project work is
inspected to detect variance from, or confirm compliance to, project requirements.
Project scope is validated, too, during this phase, because a well-scoped test plan
detects unauthorized work.

The multitiered testing activities in this phase are distributed across SDLC
phases. The work is done by the application development organization, the infra-
structure organization, and the test organization if one exists. An example of the
work allocation is as follows:

Detailed Design:
Validating that the functional and nonfunctional requirements are −
complete.
Validating the test approach against the final designs for application and −
system interfaces.
Validating the test approach against specifications for system performance. −
Validating that the customer, the application developers, and the infra- −
structure team accept the quality standards.
Validating that the development and testing environments meet specifi- −
cations prior to the build and test activities.

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework ◾ 283

Build and Test:
Conducting code and unit testing for interfaces (and test data conver- −
sions if applicable).
Finalizing the test approach for application reports, integration, and −
performance.
Finalizing the test approach for hardware integration and performance. −
Creating the Test Plan for the functional and nonfunctional requirements. −
Creating and validating the test cases against functional and nonfunc- −
tional requirements.
Creating the User Acceptance Test Plan and test cases. −

Customer Acceptance Test and Go-Live Preparation:
Performing application reports, integration, and performance testing as −
required to meet the quality standards.
Performing hardware integration and performance testing as required to −
meet the design standards.
Performing user acceptance testing as required to meet the definition of −
fitness for use.
Testing reports completed and signed off. −

Implement Phase
The last phase in the Project Framework is characterized by user acceptance sign-off
and the cutover to production (successful go-live).

The project manager has many administrative tasks to accomplish before sig-
naling that the project is officially closed. A prerequisite to project closure is ensur-
ing that all defects are resolved per the predetermined project quality thresholds,
and that the defect log is closed. Even then, the project is not complete until all of
the test artifacts (including scripts) are archived for reference by other projects.

Scoping the Project to ensure Product Quality
The PMI states that project scope verification is concerned with the acceptance of the
work results, whereas quality control is concerned with the correctness of the work results.
Because scope verification begins in the earliest stage of project definition, project man-
agers who exploit the interdependencies between quality control and scope verification
in the initiation phase avoid project overhead in subsequent project phases.

Product Scope and Project Scope
Defining product scope is the precursor to defining the project scope. The asso-
ciation is straightforward: The product scope describes the characteristics of the

© 2009 by Taylor & Francis Group, LLC

284 ◾ Software Testing and Continuous Quality Improvement

product (or service to be delivered); the project scope specifies the work that must
be done to deliver the product.

As the product’s features and functionality take the form of requirements, the
project team estimates the work (tasks) that is necessary to meet each requirement.

Taking the proactive approach to quality management, the project manager
extends the work estimate to include the probable resources and projected time to
validate the requirements.

The benefit of estimating the validation activities in the initiation phase is that
the customer, the project manager, and the test manager negotiate the acceptable
level of project quality that the project must deliver. During the negotiation, the
project manager and the test manager learn the general acceptance criteria for
the products’ features and functionality, and formulate the boundaries of project
quality. The formal endorsement of the project scope usually takes the form of a
Project Charter. The detailed description of the project scope is developed in the
Scope Statement.

the Project Charter
The Project Charter is a living business document that officially recognizes the
funding of a project. The charter presents the project sponsor and the customer
with a brief summary of the product scope and the project scope, and authorizes
the project manager to mobilize the project team. The charter is updated when the
project scope changes.

The charter categorizes the project resources and assigns high-level roles and
responsibilities to the resources. The charter also provides the project stakeholders
with an aggregate list of future deliverables that includes the test plan, test specifica-
tion, and test results.

The Project Charter should be simple and nontechnical. Project charters usually
include these sections:

Scope N
Product scope −
Project scope −

Stakeholders N
Project resources N
Business impact N
Business objectives N
Project justification N
Project benefits N
High-level deliverables N
Project approach N

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework ◾ 285

the Scope Statement
The Scope Statement is a living project document that the project manager
updates as the project team develops detailed requirements. In the initiation
phase, the Scope Statement contains early estimates of the project resources
and costs.

Even in its earliest stage, the Scope Statement is vital to project quality man-
agement because it limits the project scope to the work that must be done to
deliver the product. The work to deliver the product encompasses quality assur-
ance and quality control.

Scope Statement formats differ among organizations and departments, but
scope statements usually contain the following sections:

Executive summary N
Background N
Business objectives N
Project costs N
Scope N

Product scope −
Project scope −
Out of scope −

Success criteria N
Dependencies N
Assumptions N
Constraints N
Known risks N
Estimated time frame, including the initial work breakdown structure N
Scope management approach N

the role of the Project Manager
in Quality Management
Project managers are responsible for coordinating and communicating the impact
of authorized scope changes across the spectrum of project stakeholders. Project
managers use the Scope Statement to detect deviation from the project scope.
Scope deviations are not negative if authorized, but the impact of any unauthorized
change must be analyzed and the root cause examined.

Project scope definition and quality management are intertwined such that
any change in product scope affects the project scope. Changes to product scope
directly influence the allocation of project resources to quality assurance and qual-
ity control because the project scope includes testing the product.

© 2009 by Taylor & Francis Group, LLC

286 ◾ Software Testing and Continuous Quality Improvement

The earlier project managers define product scope and how to manage product
scope change, the more effective they will be at managing the resources, sequence,
cost, and project duration.

In summary, by defining and managing the project scope, the project manager
is instrumental in helping the test manager verify that the requirements are defined
and testable; that scope changes are communicated; and ultimately, that the prod-
uct is fit for use.

the role of the test Manager in Quality Management
The test manager is responsible for ensuring that a product meets an acceptable
level of compliance with functional and nonfunctional requirements. The project
quality management that is required to ensure the level of compliance with require-
ments is rarely done without organizing the QA and QC activities into a series of
phases that either blends with, or complements, the software (system) development
life cycle.

The following task descriptions are not necessarily sequential and will overlap.
In some cases, the work is accomplished in parallel activities.

Analyze the Requirements
Early in the Initiation phase of the Project Framework, the business users begin for-
mulating their requirements by describing how they want their business processes
to work in the future compared to the current processes.

Many organizations rely on business analysts to turn the business users’ descrip-
tions into business requirements that summarize the users’ expectations regarding
new features and functionality. Experienced business users are prone to making
assumptions about system conditions because they typically focus on the business
processes and not on the system behavior. For this reason, business analysts may
not detect that some expectations of business users are based on assumptions about
system conditions. If an implicit condition is not tested, then the testing is not
complete and will not satisfy the end-user requirements.

The test manager should review the business requirements with the business users
to identify the implied system conditions. The reviews are best done while writing
and reviewing the test strategy and the test scenarios during the Planning phase.

Perform a Gap Analysis
The test manager should begin a preliminary gap analysis early in the Planning phase
to identify the disparities between the requirement and specification documents.

If possible, a comprehensive gap analysis spans the Planning and Executing
phases. The analysis includes baseline documents such as use cases and system

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework ◾ 287

design documents. Identifying and solving the gaps are essential in giving the busi-
ness confidence in their final requirements.

The gaps between the requirement documents and the functional or design
specifications become obvious after the product is released into the production
environment (post go-live) and a business scenario does not produce the expected
result. The gap analysis reduces the rework required to fix problems traced to con-
flicts between requirement and technical documents.

Avoid Duplication and Repetition

During the Planning phase, the proactive test manager ensures that the test cases
are comprehensive, and at the same time, that the test cases avoid repetitive cover-
age. Unless addressed during planning, there is a risk that executing the same class
of test cases for different conditions will increase the duration of test cycles by slow-
ing the testers’ advance to untested functionality.

Equivalence class partitioning, described in Appendix G, is a valuable tech-
nique for avoiding repetitive test case coverage. The technique classifies business
functions on the basis of input conditions that cause the same kind of processing
and output. The result of equivalence class partitioning is a concise set of test cases
that increase the testers’ ability to locate defects.

Please note that redundant testing caused by poor test planning and test case
design is not the same as repeating test cases for the purpose of verifying the resolu-
tion of anomalies concentrated in a specific area of code.

Define the Test Data

Defining the test data is a vital part of the test planning activity in the Planning
phase. The test manager is responsible for ensuring that the data required for exe-
cuting the test cases is available in the test environment and that all of the test cases
are executed with the correct data sets.

The data guidelines should be defined during test planning with the help of the
business analyst and developers. The location of data sets for the test cycle should
be determined in the test plan, as well as the method and time required to refresh
or restore the data sets.

Validate the Test Environment

The test manager defines the test environment in the test strategy document. The
definition must be complete and identify all of the interfaces that are required to
execute the test cases. In addition, the test manager must write a statement that
summarizes the risks to the test effort when the interfaces that affect test execution
are outside the control of the test engineers.

© 2009 by Taylor & Francis Group, LLC

288 ◾ Software Testing and Continuous Quality Improvement

After defining the test environment, the test manager prepares a checklist to
verify that the test environments are functioning as expected. The checklists are
also useful for restoring test environments at the end of each test cycle. Normally,
the initial test environment is validated during the detailed design phase of the
SDLC.

Analyze the Test Results
During test execution, the test manager is responsible for analyzing the test results to
identify the test scenarios that require correction or clarification.

For example, a specification document defines the ranges for start dates, dura-
tions, and end dates. An analysis of test results shows that the results of range test-
ing are correct; did testing the date ranges validate that the start date cannot be
greater than the end date?

Deliver the Quality
The primary responsibility of the test manager is to deliver a product to the business
with so few variances from requirements that it meets the business user’s needs. The
test effort was adequate if the customer accepted the product. The test effort was
successful if the customer accepted the product and testing concluded on time and
within budget.

advice for the test Manager
Request Help from Others
During test case development, the test manager and test team should take the ini-
tiative to ask the business users and developers to help validate the team’s expected
test results. The benefits of collaboration are multiple: The developers understand
the tester’s verification methods, the testers understand the end-user definition of
functionality, and the test manager understands the business view of the develop-
ment process.

Communicate Issues as They Arise
Test management requires effective communication between test managers, testers,
developers, and the project stakeholders. Issues that surface during test execution
must be conveyed to the stakeholders as soon as possible. Keeping stakeholders
informed regarding status and progress helps focus decision makers on issues that
impact quality.

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework ◾ 289

Effective communications require the test manager to understand the unique
need of the stakeholders and the types of information that they need to make well-
informed decisions. For example, the percentage of complete test cases will mean
different things to different stakeholders. The test manager is responsible for learn-
ing which type of stakeholder will use that statistic for decision making and which
stakeholder will ignore it because is has no value to him or her.

Always Update Your Business Knowledge
Software development supports the business enterprise. To develop deeper testing
capabilities, test managers and their teams must extend their business knowledge. If
they do not, then they will not be able to convince either the developers or the business
owners about the importance of the system defects that the testing effort uncovered.

Learn the New Testing Technologies and Tools
The software industry is a fast-changing industry. Test managers’ skills will be out-
dated very quickly unless they learn how to apply next-generation software testing
technology, tools, and methodologies. A result of outdated skills is the inability to
take advantage of the cost savings from high-efficiency tools and methods. Test
managers who are resistant to change will not be in a position to support the busi-
ness as expectations for quality increase but budgets and schedules decrease.

Improve the Process
The test manager should take responsibility for continuous process improvement.
One way to do this is by taking advantage of the lessons-learned activity for the
overall project. New concepts for enhancing testing efficiency and product quality
are discovered as the project team reviews the results of the end-to-end processes
used to deliver the product.

Reviewing production support issues will give the test manager a great deal of
useful information. Issues that are discovered after the product is released into the
production environment are indications that test methodology and planning might
have gaps that should be addressed.

Create a Knowledge Base
The expertise gathered in various projects should be documented so that the
knowledge is reused in other projects. The test manager should document the
positive and negative factors that were encountered in each test project execution
and organize the information so that members of other project teams can reuse
the information.

© 2009 by Taylor & Francis Group, LLC

290 ◾ Software Testing and Continuous Quality Improvement

the Benefits of the Quality Project
Management and the Project framework
The benefits of integrating the Quality Project Management processes with the
Project Framework processes are:

Initiation phase
Project scope validation begins and is input for the test plan. N
The context for customer acceptance is established. N
The project manager and the test manager negotiate the acceptable level of N
project quality.

Planning phase
The product requirements for the product are developed in parallel with the N
quality management approach.
The project assumptions, dependencies, and risks are input into the test N
strategy.
Preliminary resources are assigned to quality tasks (in project schedule). N
QA tests and user acceptance tests are planned to avoid unnecessary duplica- N
tion of effort.
Project scope is validated using the test plan to detect any unneeded work. N

Executing, Monitoring, and Controlling phases
Unauthorized scope changes are detected and the root cause examined. N
The development and testing environments meet specifications prior to the N
build and test activities.
Test approaches are finalized for software and hardware. N
Multi-tiered testing activities are distributed across SDLC phases. N
Emphasis on continual improvement enhances product and project N
performance.

Closing phase
Quality defects are resolved. N
The customer accepts that the product is fit for use. N
All testing artifacts are archived for future reference and reuse. N

In order to realize the benefits of integrating the Quality Project Management pro-
cesses with the Project Framework, the test manager and project manager should
integrate their respective roles and responsibilities as well as their methodologies.
If they do, then they will greatly increase the probably of meeting the customer’s
expectation for product quality and the business goal of project quality.

© 2009 by Taylor & Francis Group, LLC

291

24Chapter

Project Quality
Management

Project Quality Management Processes
Project Quality Management encompasses all of the work that is required to deliver the
project’s product at the customer’s required level of quality. The PMI divides Project
Quality Management into three major processes commonly shown as follows:

Quality Planning: Planning the quality approach. N
Quality Assurance: Defining the level of compliance with requirements and N
incorporating continuous quality improvement into the test processes.
Quality Control: Executing the testing and measuring results compared to N
the quality thresholds defined in the Quality Assurance processes.

These Project Quality Management processes are integrated into the phases of the
Project Framework described in the previous section. This section describes the
planning activities in the Quality Planning phase.

© 2009 by Taylor & Francis Group, LLC

292 ◾ Software Testing and Continuous Quality Improvement

Quality Planning
An experienced test manager systematically plans the test strategy, selects the test exe-
cution methodologies, and specifies the testware if needed. Working with the project
manager, the test project manager addresses the following planning objectives:

Defining the strategy to accomplish the types of required testing. N

Implementing traceability between requirements and test cases to ensure N

good test coverage.
Preparing the test cases and scripts. N

Reviewing all the test documents. N

Planning the data requirements and availability. N

Scheduling the execution. N

When testing activities, cost, and schedule are planned without the benefit of the
test manager’s input, the overall project schedule rarely includes a realistic timeline
for the testing efforts.

Frequently, the test manager is not brought into a project until the project has
already begun. Once a project is under way, the project manager is unable to make
a retrospective test estimation effort and readjust the schedule. In this situation, the
test manager must adapt to the predefined testing schedule.

identifying the high-level Project activities
When the project scope is reasonably clear and documented, the project team iden-
tifies all of the major high-level activities that need to be accomplished to deliver
the project. Members of the project team decompose the individual high-level
activities into work. The decomposition of work is sufficient when the following
requirements are met:

 1. Can be completed in a short duration without further information inputs
 2. Produces a deliverable (deliverables must have conclusions)
 3. Can be estimated on the basis of realistic measurements
 4. Cannot be broken down into further activities performed by one person

estimating the test work effort
Estimating the test work effort takes into consideration the types and costs of the
resources that are required to complete the planned test. To estimate the cost of soft-
ware testing, the test manager and project manager must consider the following:

© 2009 by Taylor & Francis Group, LLC

Project Quality Management ◾ 293

The number of testers and their rates N
The level of the testers’ experience and their productivity N
The cost of the hardware and software required to support the work effort N
The administrative overhead that the company assigns to project budgets N

The test manager and project manager evaluate factors that influence the size of the
test effort such as the following:

The number of test cycles planned for the test execution phase N
The number of interfaces that require testing N
The number of test batch runs N
The complexity level of the test conditions and cases N
The defect fix turnaround time agreed upon in the strategy N
The availability of the required test data N
The defect management and resolution process N
The change management process N

test Planning
Although the percentage varies according to the project, on average, the test team
spends 15 percent of its total work effort on the critical tasks of defining the test
conditions and preparing the traceability matrix, test cases, test scripts, test data,
and execution plans.

Normally, the test conditions are prepared first and mapped with the business
requirement documents to ensure that the test coverage is complete. The test condi-
tions become test cases by establishing the data values required to extensively test
the conditions.

It is recommended practice to decompose the entire application into its mod-
ules and subapplications to identify the conditions, cases, and scripts that make up
the core of the test plan.

The test conditions and test cases are refined and categorized as complex,
medium, and simple conditions/cases. The number of test conditions/cases, and the
time to prepare the scripts constitute the major part of the test-planning activity.
Deciding on the appropriate level of condition/case complexity requires the techni-
cal and functional expertise of the entire project team.

The work effort to execute the scope of testing—the time required to prepare
the test plan, publish the test strategy, and review the deliverables—adds to the
test-planning effort.

The project manager and test manager should also factor the daily defect meet-
ing, conference calls, and other meetings into the planning and execution stages of
the projects.

© 2009 by Taylor & Francis Group, LLC

294 ◾ Software Testing and Continuous Quality Improvement

The sample project plan shown in Figures 24.1 and 24.2 defines the typical
tasks that are performed in a testing project.

Of the various activities in the project plan, planning and execution are the key
activities that determine the cost of resources and schedules required for the test-
ing projects. During these two crucial phases of testing, various key deliverables
are estimated. This will ensure the test team will have a focused approach and the
delivery of the deliverables will bring each task to a logical conclusion so that the
project can advance to the next task in the plan. However, it is not always neces-
sary that a particular task be completed before beginning the next task. The project
manager should analyze the task dependencies. A task dependency is the relation-
ship between two tasks in which one task depends on the start or finish of another
task to begin or end. The task that depends on the other task is the successor, and
the task it depends on is the predecessor.

The following text describes some typical test dependencies and why they are
important to test management:

Finish-to-Start (FS): Task B cannot start until task A finishes. For example,
if you have two tasks, “Test Script Writing” and “Test Execution,” “Test
Execution” cannot start until “Test Script Writing” completes. This is the
most common type of dependency.

Start-to-Start (SS): Task B cannot start until task A starts. For example, if we
have two tasks “Test Script Writing” and “Run Plan Preparation,” “Run Plan
Preparation” cannot begin until “Test Script Writing” starts.

Finish-to-Finish (FF): Task B cannot finish until task A finishes. For example, if you
have two tasks, “Test Execution Complete” and “Test Closure Report,” “Test
Closure Report” cannot finish until “Test Execution Complete” finishes.

Start-to-Finish (SF): Task B cannot finish until task A starts. This dependency
type can be used for “just-in-time scheduling” up to a milestone or the project
finish date to minimize the risk of a task finishing late, if its dependent task
slips. This dependency type applies when a related task needs to finish before
a milestone or project finish date. However, it does not matter exactly when,
and one does not want a late finish to affect the just-in-time task. You can
create an SF dependency between the task you want scheduled just in time
(the predecessor) and its related task (the successor). Then, if you update the
progress on the successor task, it will not affect the scheduled dates of the
predecessor task.

effort estimation: Model Project
The following describes how to effectively use an estimation template.

The critical activities for effort estimation involving functional testing are
defined in the model. The time for each of these activities is arrived on the basis

© 2009 by Taylor & Francis Group, LLC

Project Quality Management ◾ 295

figure 24.1 Sample project plan.

figure 24.2 Sample project plan (continued).

© 2009 by Taylor & Francis Group, LLC

296 ◾ Software Testing and Continuous Quality Improvement

of the parameters defined and the experiences from the project team. Table 24.1
shows the tasks with which the project manager, test lead, and test engineer are
typically associated.

Test cases are classified as simple, medium, and complex on the basis of the time
preparation and execution times for these scripts. The baseline times required by
project management activities and other project-related activities are estimated and
entered into Table 24.2.

Table 24.3 shows the total effort for test planning, test execution, and test closure
activities separately for test engineers and test project managers. The total person-
days are calculated for each of these effort parameters, and total person-months are
calculated. Normally, 22 working days are taken for a month to arrive at a person-
month. The table also shows that the total number of individuals required can be
calculated from the person-months. If the test execution schedule is already defined
in the overall milestone project plan, one can estimate the number of resources
required to complete the project within the given time.

The project team should establish the baseline for how many test conditions, test
cases, and test scripts can be prepared and executed by the individual tester per day. This
is critical to this estimate and will differ from project to project. Similarly, review activi-
ties should be calculated as a percentage of the activity for each of those activities.

Quality Standards
Planning the quality management approach for every project includes establishing
quality standards. The standards are based on the level of quality that the customer
will accept. Many companies require a quality statement that defines the measurable
goals for product and project quality. The measurements are audited for traceability
back to the testing that produced the test metrics. The planning techniques and pro-
cesses described in this section will help the test team meet the quality standards.

© 2009 by Taylor & Francis Group, LLC

Project Quality Management ◾ 297

table 24.1 activities for estimating effort

Test Initiation and Planning Resources

Understanding the application PMa

TLb

Training the rest of the team members/ambiguity review TEc TL

Project plan/test strategy PM

Test conditions/scenarios TE

Review of test conditions PM

Test cases TE

Test scripts TE

Internal review of test scripts PM

Preparation of coverage/trace matrix TE TL

Data requirements/guidelines TE TL

Preparation of run plan TL

Internal review of run plan PM

Sign-off by business

test execution

Day 0 verification — environment check PM

Validation of test scripts with application TE TL

Iteration 1 (100 percent) (execution & defect review) TE TL

Iteration 2 (50 percent) (execution & defect review) TE TL

Iteration 3 (50 percent) (automation) TE PM

test Closure

Final report preparation PM

Business review and sign-off

a PM—Project Manager
b TL—Test Lead
c TE—Test Engineer

© 2009 by Taylor & Francis Group, LLC

298 ◾ Software Testing and Continuous Quality Improvement

table 24.2 Baseline effort estimation

Planning Executiona

Condition to Case

Simple 1

Medium 3

Complex 5

Buffer 20%

Case to Script

10 1

no. of test Cases per day

30 15

no. of test Scripts per day

2 1

timelines

Day-Hr 8

Week-Day 5

Month-Day 22

Project Schedule

35 25

Note: Project baselines—Values can be
changed depending on the project
requirements.

a Including bug/defect regression.

© 2009 by Taylor & Francis Group, LLC

Project Quality Management ◾ 299

table 24.3 total effort and number of individuals required

No. Resource

Test Planning/
Scripting

Test
Execution

Test
Closure Total

(All Effort in Person-Days)

1 Test engineers

2 Project manager/test
lead

 Total person-days

 Total person-months 60.0 30.0 10.0 100.0

 Ratio 60.0% 30.0% 10.0% 100.0%

Person-months (only TE
effort)

0 0 0 0

Team size 4 3 0 7

© 2009 by Taylor & Francis Group, LLC

301

25Chapter

the defect
Management Process

Quality Control and defect Management
The Quality Control process is the third phase of Project Quality Management.
A key element in managing quality, defect management establishes the method of
recording and organizing the defects that are discovered during test execution. The
output of the process gives the project stakeholders a way to judge the progress that
the test team makes as it executes the test plan. The same output gives the end user
visibility regarding how well the product conforms to his requirements.

This section breaks the defect management process into the following essential
functions:

Defect discovery and classification N
Defect tracking N
Defect reporting N

defect discovery and Classification
A defect is a deviation from either business or technical requirements. Testers gen-
erally find and log the defects as they execute test cases. Even though testing finds
defects, end users find defects, too, as they use the business application or system.

© 2009 by Taylor & Francis Group, LLC

302 ◾ Software Testing and Continuous Quality Improvement

Defects are classified into categories to facilitate change management and to
help plan and prioritize the rework that is required to fix the defect. Classifications
vary from organization to organization. The following are sample classifications:

Showstopper (X): N The impact of the defect is severe, and the system cannot be
tested without resolving the defect because an interim solution (work-around)
is not available.
Critical (C): N The impact of the defect is severe; however, an interim solution is
available. The defect should not hinder the test process in any way.
Noncritical (N): N All defects that are not in the X or C category are in the N
category. These are the defects that could potentially be resolved via docu-
mentation and user training. These can be GUI defects or some minor field-
level observations. Figure 25.1 depicts the life-cycle flow of the defects. A
defect has the initial state of “New” and eventually has a “Closed” state.

defect Priority
During the test activities, testers assign a priority to each defect as they log the
defects into the defect-tracking system. The priority assigned to a defect might
change as a result of discussions in the defect meetings because the priority assigned
to the defects will affect the order in which the development team will fix the

New

Authorized

Duplicate

WAI (works
as needed)

Fixed

Closed

Reraised

figure 25.1 defect life cycle.

© 2009 by Taylor & Francis Group, LLC

The Defect Management Process ◾ 303

defects. The number and sequence of the fixes have a direct impact on the develop-
ment schedules and test schedules.

These are examples of common priority designations:

High: N Further development and testing cannot occur until the defect has
been repaired. The software system cannot be used until the repair is done.
Medium: N The defect must be resolved as soon as possible because it is hinder-
ing development and testing activities. Software system use will be severely
affected until the defect is fixed.
Low: N The defect is an irritant that should be repaired, but which can be
repaired after a more serious defect has been fixed.

defect Category
Defects are categorized into different categories per the testing strategy. The follow-
ing are the major categories of defects normally identified in a testing project:

Works as Intended (WAI): N Test cases to be modified. This may arise when the
tester’s understanding may be incorrect.
Discussion Items: N Arises when there is a difference of opinion between the test
and the development team. This is marked to the domain consultant for the
final verdict.
Code Change: N Arises when the development team has to fix the bug.
Data Related: N Arises when the defect is due to data and not coding.
User Training: N Arises when the defect is not severe or technically infeasible to fix;
it is decided to train the user on the defect. This should ideally not be critical.
New Requirement: N Inclusion of functionality after discussion.
User Maintenance: N Master and parameter maintenance by the user causing
the defect.
Observation: N Any other observation not classified in the foregoing categories,
such as a user-perspective GUI defect.

defect tracking
The test strategy document (see Appendix E21, “Test Strategy”) specifies the defect
management process for the project (see Figure 25.2). It spells out the test engineer’s
actions when a defect is found that needs to be reported to the developers and the
owners of the system.

Test engineers who enter their defect in the defect log (see Appendix E9,
“Test Care Log”) note when they discovered the defect. The defect log can also

© 2009 by Taylor & Francis Group, LLC

304 ◾ Software Testing and Continuous Quality Improvement

be a database that includes the results of the test along with descriptions of the
discrepancies between the expected and actual results.

Numerous defect management tools are available for logging in and monitoring
defects. Some of the popular defect management tools are described in Section 6,
“Modern Software Testing Tools.”

Defect Reporting

Testers use the defect report (also called a problem report) to capture the detail of
a problem so it can be evaluated and prioritized into a list of product defects. The
report is important to the project management team as well as to the developers
who are assigned to recreate and fix the defect, and the testers, who verify that the
defect was fixed. The defect report does not include detailed descriptions of the
expected and actual test results, but it does require a detailed problem description.
Defects are reported using a standard format that collects the information shown
in Appendix E12, “Defect Report.”

defect Summary
Trend curves are based on the collective information from the defect reports and
are published to graphically illustrate these types of trends:

Estimate of Total Errors to be Found

To
ta

l E
rr

or
s F

ou
nd

Predicted
Error Rate

Errors Found
�us Far or

Errors
Corrected
�us Far

Testing Effort (Time)

figure 25.2 defect tracking.

© 2009 by Taylor & Francis Group, LLC

The Defect Management Process ◾ 305

Total errors found over time. N
Errors by cause. Example: Operator versus program error. N
Errors by how found. Example: Errors discovered by the user. N
Errors by system. Example: Errors found in the order entry system. N
Errors found by organization. Example: Support group or operations. N

Figure 25.2 shows a graph of time versus the number of defects found during test-
ing. The predicted error rate is an estimate of progress toward completing the test
effort. When the rate of correction becomes a bottleneck in the test process, addi-
tional development resources should be assigned. Figure 25.2 also shows the dif-
ference between the predicted and actual error rates relative to the total number of
projected errors.

defect Meetings
Defect meetings are the best way to disseminate information among the testers,
analysts, development, and the business.

Daily meetings are conducted at the end of the day between the test team and
development team to discuss test execution and defects. This is when the defects are
formally categorized in terms of the defect type and severity.

Before the defect meetings with the development team, the test team should
have internal discussions with the test project manager on the defects reported.
This process ensures that all defects are accurate and authentic to the best knowl-
edge of the test team.

defect Metrics
The analysis of the defects can be done on the basis of the severity, occurrence,
and category of the defects. As an example, defect density is a metric that gives the
ratio of defects in specific modules to the total defects in the application. Further
analysis and derivation of metrics can be done employing the various components
of the defect management.

Defect age: N Defect age is the time duration between the point of identification
of the defect to the point of closure of the defect. This would give a fair idea
regarding the defect set to be included for smoke test during regression.
Defect density: N Defect density is usually calculated per thousand source lines
of code (KSLOC) as shown in the following text. This can be helpful in that
a measure of defect density can be used to (1) predict the remaining defects
when compared to the expected defect density, (2) determine if the amount of
testing is sufficient, and (3) establish a database of standard defect densities.

© 2009 by Taylor & Francis Group, LLC

306 ◾ Software Testing and Continuous Quality Improvement

 Dd = D/KLSOC

where
 D = the number of defects,
 KSLOC = the number of noncommented lines of source code (numbered per

thousand), and
 Dd = the actual defect density.

Plotting defect density versus module size typically produces a U-shape curve that
is concaved upward (see Figure 25.3). Plotting very small and very large modules
shows that they have a higher defect count than modules of intermediate size. The
increasing incidence of bugs for small module sizes holds across a wide variety of
systems and has been demonstrated by different studies.

A different way of viewing the same data is to plot lines of code per module
against total bugs. The curve looks roughly logarithmic and then flattens, corre-
sponding to the minimum in the defect density curve, after which it goes up as the
square of the number of the lines of code.

Quality Standards
Managing the cycle of finding and fixing defects is an integral activity in the qual-
ity control process. The purpose of the work that goes into the overall defect man-
agement is to compare the quality of the product to planned quality standards.
If the quality standards are not well established by the project manager and test

D
ef

ec
t D

en
sit

y

Module Size
0 400 800

2

4

6

8

Observed Data

figure 25.3 defect count and density versus module size.

© 2009 by Taylor & Francis Group, LLC

The Defect Management Process ◾ 307

manager, then the cost of quality will reach a point of diminishing return. That
point is where the cost of finding and fixing more defects outweighs the financial
benefit of the project.

Enforcing quality standards means delivering a product that the customer will
accept. Beyond the acceptable level of quality is a point of diminishing returns at
which the cost of quality exceeds the financial benefit of the project.

© 2009 by Taylor & Francis Group, LLC

309

26Chapter

integrated testing
and development

Quality Control and integrated testing
This section addresses test execution—another aspect of the quality control pro-
cess. The integrated approach to testing supports the goals of quality control, sum-
marized here as keeping errors out of the development process and preventing errors
from reaching the customer.

Traditionally, functional characteristics separated test organizations from devel-
opment organizations. The partition encouraged organizational silos that did not
share resources or knowledge across functional lines. The increasing expectations
for organizational efficiency and the growing focus on compliance with regulatory
standards are good reasons to consider merging the development and test method-
ologies and processes.

integrated testing
Integrating testing methodology and development methodology into a single meth-
odology is neither a new concept nor is the implementation particularly common.
Regardless of the reasons for change, no merger will be successful without a busi-
ness case and executive-level support.

© 2009 by Taylor & Francis Group, LLC

310 ◾ Software Testing and Continuous Quality Improvement

One approach to an integrated test and development methodology is to incor-
porate the testing steps and tasks into the development process by adding or
modifying the development tasks. Usually, the person who is responsible for the
development methodology integrates testing processes. If no one is directly respon-
sible for the development methodology, then the test manager assumes responsibil-
ity for integrating the processes.

Another approach is to make the integration part of the quality assurance func-
tion. Executive management should not tell the quality assurance team which aspects
of the software testing standard should be adopted; how that testing methodology
should be integrated into the existing design methodology; and the amount of time
and effort needed to perform the task. Executive management should set the tone by
stating that the integrated approach will be the basis for testing in the organization.

Step 1: organize the test team
Creating a combined methodology begins with organizing the team for the task. To
make a new methodology work, key people who understand testing and development
must be appointed to manage it. The group should consist of three to seven individu-
als who are respected by their peers. With fewer than three members, the interaction
and energy necessary to successfully introduce the testing methodology may not
occur. With more than seven members, management of the team becomes unwieldy.
An experienced chairperson works with the executive sponsor to sanction the team’s
mission. The project sponsor should ensure that the test management team:

Understands testing concepts and the standard for software testing discussed N
in this manual.
Customizes and integrates the standard for software testing into the organi- N
zation’s systems design and maintenance methodology.
Encourages adherence to and support of the integrated test methodology, and N
agrees to perform testing in the manner prescribed by the methodology.

Step 2: identify the tasks to integrate
Section 3 describes different development and test methodologies that reflect the
relationship between the business technology, system architecture, and organiza-
tional structure. The same relationships must be evaluated to determine whether
or not to integrate the design methodology. When the team performs this step, the
members must arrive at a consensus on the general objectives of testing and how the
design methodology affects the test methodology. The design methodology may be
addressed by design standards, so the team may accept the design tasks as part of

© 2009 by Taylor & Francis Group, LLC

Integrated Testing and Development ◾ 311

the integrated methodology, or the team may decide that the design methodology
and tasks remain outside the integrated methodology.

Step 3: Customize test Steps and tasks
The team should customize the steps and tasks covered in this text so that they are
consistent with the organization’s development and test methodologies. The team
can either perform the customization itself or assign it to others (e.g., to the group
in charge of design methodology).

Customization usually includes the following:

Standardizing vocabulary N —Vocabulary should be consistent throughout
the design methodology. If staff members understand and use the same
vocabulary, they can easily move from job to job within the organization.
Vocabulary customization may mean changing vocabulary in the testing
standard or integrating the testing vocabulary into the systems develop-
ment methodology.
Changing the structure of presentation N —The way the testing steps and tasks
have been described may differ from the way other parts of the design
methodology are presented. For example, this manual has separate sections
for forms and text descriptions of the software testing tools. If the systems
development methodology integrates them into single units, they may need
to be rearranged or reordered to make them consistent with the develop-
ment manual.

During test planning, the test team will determine which test standards, procedures,
tasks, worksheets, and checklists are applicable to the system being developed. The
team should customize the process for either individual application systems, or for
a particular development function.

The team can also choose to create a smaller version of the process for the pur-
pose of validating whether or not the process worked as expected.

Step 4: Select integration Points
This step involves selecting where to integrate the test steps and tasks into the devel-
opment methodology. This step requires a thorough understanding of the devel-
opment methodology and tasks. The two key criteria for determining where to
integrate these tasks are the following:

What data is needed N —The test task can be inserted into the design methodol-
ogy only after the point at which the needed information has been produced.

© 2009 by Taylor & Francis Group, LLC

312 ◾ Software Testing and Continuous Quality Improvement

Where the test products are needed N —The testing tasks must be completed
before the products produced by that task are needed in the systems develop-
ment methodology.

Applying these criteria will determine both the earliest and latest points at which
the tasks can be performed. The tasks should be inserted into the development
methodology at these points.

Step 5: Modify the development Methodology
At this point, all of the information is that is needed to modify the systems develop-
ment methodology is available. This step requires someone who is familiar with the
design process; he or she inserts the test processes and steps into the development
methodology documentation.

Step 6: test Methodology training
This step involves training analysts, users, and programmers in use of the test meth-
odology. Once testing is integrated into the systems development methodology, peo-
ple must be trained and motivated to use the test methodology, a more difficult job.

Test management team members play an important role in convincing their peers
to accept and use the new methodology—first, by their example, and second, by
actively encouraging coworkers to adopt the methodology. An important part of this
step is creating and conducting testing seminars that should cover the following:

Testing concepts and methods— N This part of the training recaps the material in
Appendix F.
Test standards— N Individuals responsible for testing must know the standards
against which they are measured. The standards should be taught first, so
team members know why they are performing certain tasks (e.g., test proce-
dures), and the procedures second. If they feel that the procedures are just one
way of testing, they may decide there are better ways. On the other hand, if
they know the purpose of performing the test procedures (e.g., meeting test
standards), they are more likely to take an interest in learning and following
the test procedures.
Test methodology— N The methodology incorporated into the systems develop-
ment methodology should be taught step by step and task by task. An ana-
lyst, user, or programmer should initially perform tasks under the direction
of an instructor. This helps ensure that these professionals fully understand
how the task should be performed and what results should be expected.

© 2009 by Taylor & Francis Group, LLC

Integrated Testing and Development ◾ 313

Until the individuals responsible for testing have been trained and have demon-
strated proficiency in testing processes, management should allow for some testing
errors. In addition, until individuals have demonstrated mastery of the test proce-
dures, they should be closely supervised during the execution of those procedures.

The next part of this section presents a procedure for defect recording and anal-
ysis when the testing process is integrated into the development methodology. This
procedure requires categorizing defects and ensuring that they are appropriately
recorded throughout the development methodology.

Step 7: incorporate defect recording
The quality control function is an integral part of the tester’s workbench. Defects
must be recorded and analyzed to determine how to improve the integrated pro-
cess. This process is the equivalent of problem reporting in operational application
systems. The test manager must be able to capture information about the problems
or defects that occur; without this information, it is difficult to improve testing.

The most difficult part of defect recording is convincing development staff
members that this information will not be used against them. This information is
gathered strictly for the improvement of the test process and should never be used
for performance appraisals or any other individual evaluations.

the integrated team
Although the project and test managers are the people who focus on completing
the project within the constraints of the project budget and schedule, the outcome
of the execution phase has always been in the hands of the developers and testers.
The integrated team approach does not change that condition. The change that will
come, if the integration is done for the right reasons and with the best interest of
quality in mind, is the opportunity for developers to understand how testers think,
and for testers to become more mindful of the developers’ perspective.

In the course of pooling our technical knowledge, the greatest challenge will
remain unchanged—understanding the customer’s point of view.

© 2009 by Taylor & Francis Group, LLC

315

27Chapter

test Management
Constraints

organizational architecture
In the context of the Project Framework, the role of the project manager is to
recognize and adapt to the organizational architecture to accomplish the project
objectives. This section on the constraints of organizational architecture describes
the relationship between the quality organization’s structural composition and the
project manager’s responsibility for delivering project quality.

Describing all the permutations of organizational architecture is nearly impos-
sible. This section concentrates on accomplishing projects in two divergent organi-
zational architectures:

Delivering project quality in conditions where process-driven quality meth- N
odology and delivery processes are well established.
Delivering project quality in conditions where no quality infrastructure exists. N

traits of a well-established Quality organization
A well-established quality organization is recognizable by these traits:

© 2009 by Taylor & Francis Group, LLC

316 ◾ Software Testing and Continuous Quality Improvement

Integration with business units (strategic and tactical). N
Measurable targeted improvement of delivery processes for goods and services. N
Decreasing customer issues with delivered goods and service as they transi- N
tion through the product life cycle.
Verifiable and consistent level of positive customer satisfaction across the N
product and service portfolio.

Figure 27.1 shows an example of an organizational architecture that integrates the
quality organization and project management into the business enterprise. Note
how this organizational structure aligns the chief quality officer with the chief
information officer. The structure positions quality assurance and control groups to
deliver financial benefits to the enterprise. Although the cost of quality is measur-
able, the groups are rarely organized as a business unit.

division of responsibilities
The responsibility for maintaining project quality and for delivering a quality
product resides with the project manager. The specific quality management tasks,

Board

CFO

Chief Quality
Officer

Quality Control

Quality Assurance

Application
Development

Development
Organization

QC Organization

QA Organization

Technical
Infrastructure

Infrastructure

Chief Information
Officer

CEO

Strategic Project
Officer

Project Management
Officer

figure 27.1 aligning quality, development, and project management.

© 2009 by Taylor & Francis Group, LLC

Test Management Constraints ◾ 317

however, are distributed (shared) between the project manager and the quality man-
agers who are assigned to manage the test preparation, execution, and reporting.

The quality-related project responsibilities include the following:

Reporting the project status—communicating whether the test cycles are N
tracking to the plan.
Assessing the project status—analyzing the test results to predict whether the N
test cycles are tracking to the plan.
Communicating changes—project change management activities including N
project scope, schedule, and cost, as well as quality.
Defect tracking and review—validating that obligatory rework is logged, N
assigned, completed, and validated.
Ensuring that resources are engaged—rolling on and off the project accord- N
ing to the benefit of the project.
Continuous process improvement—capturing and applying the knowledge N
gathered from analysis of the inputs and outputs of quality processes. The
analysis includes evaluating the efficient use of tools, understanding how test
techniques and processes might be enhanced, as well as appraising the parity
between technical training and test environments.
Ensuring that the quality organization aligns the producer’s view with the N
customer’s view.

organizational relationships
The project manager’s relationship with the quality organization either enhances or
reduces the probability of project success. An often-overlooked dynamic is how the
project manager interacts with the QA and QC teams.

Table 27.1 summarizes the positive and negative perceptions that affect the
project manager’s relationship with the quality organization.

using the Project framework where
no Quality infrastructure exists
Project managers who encounter an organizational structure where no formal qual-
ity infrastructure exists usually find signs of ad hoc testing. Although ad hoc testing
(exploratory testing) is a productive approach when combined with formal testing,
ad hoc testing described here is done with either little, or no, documentation or
planning and is the sole testing approach.

The following are some of the organizational behaviors that characterize ad
hoc testing:

© 2009 by Taylor & Francis Group, LLC

318 ◾ Software Testing and Continuous Quality Improvement

The releases of new functionality and bug fixes are allowed to “soak” in a N
preproduction environment to determine if the modifications caused unin-
tended results in existing code.
The end users validate whether the product meets their needs when develop- N
ers release versions of the product with new functionality, including bug fixes,
into the production environment.
The product support effort is equal to, or greater than, the development effort. N
The same relationship exists between support costs and development costs if
they are tracked.
Product engineers are inundated with a backlog of user requests for bug fixes N
and enhancements.
There is no consistent effort to measure the comparative quality of goods and N
services across the product and service portfolio.

ad hoc testing and the Project framework
The key to harnessing ad hoc testing for project benefit is to exploit the Project
Framework’s emphasis on the traceability between requirements and the test effort.

In an earlier section, we established the link between the project scope and prod-
uct scope by saying that the product scope describes the characteristics of the product
(or service to be delivered); the project scope specifies the work that must be done to
deliver the product. In effect, the project manager uses the ad hoc testing activities
to align two views of quality: the producer’s view and the customer’s view.

table 27.1 Positive and negative Perceptions

Positive Perceptions Negative Perceptions

The project manager involves the
quality team in the project initiation
and work estimation at the earliest
possible time.

The project manager treats product
quality processes as if they are
threats to project schedule and cost
constraints.

The project manager negotiates with
the project sponsor for the best use
of quality resources.

The project manager does not
understand the role that the quality
team plays in supporting the project.

The project manager integrates the
quality metrics into the project
performance measurements.

The project management processes
are redundant and add unnecessary
complexity to the quality processes.

The project manager supports the
findings of the QC team with
decisive negotiation for the benefit
of a quality product.

The project manager makes decisions
that threaten the quality of the
product and blames the end result
on the quality groups.

© 2009 by Taylor & Francis Group, LLC

Test Management Constraints ◾ 319

using a traceability/validation Matrix
The project manager uses a simple matrix to track the progress of ad hoc testing and
estimate the level of product quality. The matrix combines requirement traceability
with functional validation, as shown in Table 27.2.

The matrix format organizes the business and technical (system) requirements
into functional areas for validation by the end user. When the end user determines
that a functional requirement meets expectations, he or she indicates acceptance in
the matrix. The matrix also shows functionality that is rejected, but does not show
when the functionality is ready for retest. The project manager follows the project
change control process to manage and report the progress of test and retest.

The traceability/validation matrix relies on the availability of written functional
and technical requirements. If no formal requirement documents exist, then the
project manager and his team will compile basic requirements using artifacts that
capture the user’s and the producer’s interpretation of requirements. Artifacts from
which requirements are derived include written requests for functionality, business
workflow diagrams, process models, UML diagrams, and design documents.

reporting the Progress
Once the validation is under way, the project manager is responsible for communi-
cating the progress of testing to the project sponsor and stakeholders. The project
manager’s test summary report is the result of analyzing the coverage of the require-
ments in concurrence with tracking functionality that meets the end user’s need.
A report that captures the affiliation between requirements and user acceptance is
represented in Table 27.3.

Ad hoc testing implies that the testing is unplanned, but the end of testing is
rarely an arbitrary point in time. The project manager uses the aforementioned
report to estimate the impact of testing on the project schedule. The impact is deter-
mined by the variance between the project’s planned end date and the projected
end of the validation effort.

Even if the project end date should move to accommodate unplanned work,
reality dictates that the project schedule will extend only so far. The benefit of cre-
ating the traceability/validation matrix and the test summary report is that quality

table 27.2 traceability/validation Matrix

User Requirement Reference
Technical

Requirement Pass/Fail
Verified

by Date

Customer Entry 1.1 Customer
must be
valid

1.1.2 Online
customer
screen

© 2009 by Taylor & Francis Group, LLC

320 ◾ Software Testing and Continuous Quality Improvement

of the product and the project becomes tangible measurements to guide the project
sponsor’s business decisions.

table 27.3 test Summary report by functional area

Functional Area
User

Requirements

Accepted Remaining

Count % Count %

Customer entry 16 9 56.25 7 43.75

Customer reports 26 25 96.15 1 3.85

Vendor entry 19 5 26.32 14 73.68

Vendor reports 26 14 53.85 12 46.15

totals 87 53 60.92 34 39.08

© 2009 by Taylor & Francis Group, LLC

5eMerging
SPeCialized areaS
in teSting

Software development is an industry characterized by constant change, innovation,
and growing competition. It is, therefore, difficult to stay on top of software testing
trends. This section depicts some of the specialized emerging areas in testing, which
help the testing team to improve the quality and performance of the applications
under testing.

Each part is written to inform readers of emerging trends in software testing
and highlight promising ideas. Each topic is written by the author (and a hands-on
expert) and is intended to inform readers of emerging trends in software testing and
highlight promising ideas. Our articles are published and presented at renowned
forums and conferences.

The objectives of this section are to:

Describe how to perform software testing process evaluations. N
Provide a methodology for evaluating and initiating a software automa- N
tion project.
Characterize the types of test automation frameworks. N
Describe various types of nonfunctional testing types, including perfor- N
mance, security, usability, and compliance.
Define the key steps to initiate SOA testing. N
Provide an overview of how to perform software testing in an agile develop- N
ment environment.

© 2009 by Taylor & Francis Group, LLC

322 ◾ Emerging Specialized Areas in Testing

List the basic steps to enable software management to ensure that their docu- N
mentation will be ready for an audit.
Describe the organizational structure of a center of excellence (COE). N
Describe how to set up a COE. N
Describe the advantages and disadvantages of on-shore compared to off-shore N
staffing approaches.

© 2009 by Taylor & Francis Group, LLC

323

28Chapter

test Process and
automation assessment

Companies that invest in information technology do so to enhance competitive
abilities, reduce overhead, or comply with regulatory demands. Business initiatives
elaborate these business purposes, but rarely measure the impact of change to exist-
ing IT infrastructure and IT business systems.

Conversely, IT software development and implementation often ignore the
business justification in favor of focusing on the technical solutions (more details
are discussed in Chapter 30, “SOA Testing”).

This chapter deals with the approach and methodology for conducting a test
process assessment in a business environment.

test Process assessment
There is often a perceived conception that software testing does not add direct value
to the business. However, over a period businesses have realized that software test-
ing is a must for the business to avoid catastrophic bugs in the software that will
have adverse effects on the business.

Software testing processes not only detect whether the product meets design
requirements, but also validate that the business objectives are being met. If quality
assurance and quality control are not aligned with the business objectives, func-
tional defects (or bugs) put the expected business at risk.

Concentrating on IT system design to the exclusion of functional business testing
often results in nonavailability of business applications in production environments.

© 2009 by Taylor & Francis Group, LLC

324 ◾ Software Testing and Continuous Quality Improvement

When a critical business system fails, many midsize and large companies conduct
error corrective strategies in an effort to measure the financial loss to the business and
trace the cause of failure to its origin. It is not unusual to follow the error through
quality assurance to untested code that was not included in regression testing.

Y2K fears caused companies to realize the importance of integrating testing
processes into the software development life cycle. Operational realities are helping
the software test process assessment to gain attention as a business enabler.

A good starting point is an assessment of the current software engineering and
management practices. The output of this study is a detailed Gap Analysis Report,
which captures the present strength and weakness of the company’s software test-
ing practices. The analysis is carried out via:

Management discussions N
Questionnaires N
Responsive feedback N
Well-structured interviews N
Analysis N
Action plans N

The analysis includes the applications and test artifacts prepared at the various test
phases. It is followed by detailed action planning with the client’s management to
arrive at a road map for improving the test software processes. The gap analysis activity
focuses predominantly on the key areas that contribute to improving the test process.

To perform a comprehensive analysis, the process analyst should not only learn
how the business functions; he or she must also understand the expectations that
are unique to each level of management.

Process evaluation Methodology
Figure 28.1 shows the steps for the test assessment process.

Step 1: Identify the Key Elements
The process analyst assesses the technology used to develop the application, stud-
ies the software development methodology adopted by the client, determines

Identify the
Components

Gather
Information

Analyze the
Maturity

Define
Improvements

figure 28.1 Process evaluation methodology.

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 325

the company’s maturity level, and examines the current level of existing testing
processes.

The test process assessment ascertains the level of maturity and coverage of the
quality applications and products.

The following are the areas studied during a test process assessment:

Scope of test methodology N
Test process management N
Testing functions and training N
Life-cycle review methodologies N
Estimating and planning the test cycles N
Test strategy N
Test coverage N
Test design techniques N
Test metrics N
Test data N
Testware management N
Test tools N
Test environment N
Defect management N
Change and configuration management N
Communication and reporting N
Commitment and motivation N
Static test techniques N

The foregoing elements are extensive, but may not be relevant in all process improve-
ment opportunities.

Step 2: Gather and Analyze the Information
The process analyst assesses the current test process by gathering relevant informa-
tion from the following business representatives (see Figure 28.2):

Heads of business units N
Project managers N
Program managers N
QA managers N
Product managers N
Test engineers N
Test leads N
SQA leads N
Test tool specialists N
Test environment specialists N

© 2009 by Taylor & Francis Group, LLC

326 ◾ Software Testing and Continuous Quality Improvement

The information is gathered by creating a questionnaire for each one of the busi-
ness representatives on the basis of the roles and responsibilities of the business
representatives. Interviews are conducted, and the results should be validated
against the existing development and test documents to detect areas requiring
further clarification.

Step 3: Analyze Test Maturity

After validating and collating the information, the process analyst defines the gaps
in the current processes against the standard set of processes defined for that tech-
nology or business group:

IEEE 829 test documentation N

American National Standards Institute (ANSI) N

Sarbanes–Oxley (ISACA subset of COBIT) N

Software Engineering Institute-Capability Maturity Model (SEI-CMM) N

The following are key areas of the testing process and the indicators that will help
the assessor draw conclusions on the maturity level.

The Requirements Definition Maturity

The basis for successful testing is testable requirements. Requirements developed
early in the software development life cycle are rarely complete and unambiguous.
Sources of requirements vary greatly, but common starting points are e-mails, ver-
bal descriptions, unwritten customer expectations, and “tribal gossip.” Ultimately,
the requirements definition process must refine all forms of ambiguous information
into concise statements from which test engineers can develop test cases.

Application

Questionnaire

Interview

Document

Measurements
Plans, Policies &

Procedures

Tools
Findings Presentation

 Test Process Level
 Test – Strength and

 Weaknesses
 Assessment Report
 Action Plans

Portfolio Assessment

figure 28.2 test assessment inputs and outputs.

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 327

The process analyst must examine the existing requirements definition and ver-
ification/validation process. The steps for determining the quality of the require-
ments process are as follows:

Gathered, or elicitation N
Analysis and prioritization N
Documentation N
Review for completeness N
Incorporation changes back to the baseline document N

The analyst must also assess whether adequate impact analysis is performed for
changes to requirements (including scope creep), and how those changes are man-
aged for all components of the testing process.

The following organizational evaluations are important inputs for the gap anal-
ysis of the existing requirements process to best practices:

Analyze e-mail communication between the development group and busi- N
ness teams.
Analyze project documents to ascertain the traceability of requirements to N
test cases.
Verifying the final requirement document is reviewed and signed off by the N
business owners and Quality Assurance.

After observing the existing requirements methodology and maturity, the process
analyst should recommend the actions that will address the gaps to improve the
existing requirement definition and verification/validation process.

Test Strategy Maturity

The test strategy is an area where insufficient planning leads to multiple issues
in the test life cycle, for example, testing resources and test environment
availability.

The test strategy should be comprehensive and include the following sections:

Scope of testing N
Types of testing N
Traceability methodology N
Effort estimation N
Test case preparation N
Test execution methodology N
Defect management process N

© 2009 by Taylor & Francis Group, LLC

328 ◾ Software Testing and Continuous Quality Improvement

Resource allocation N
Test closure process N

The process analyst should also verify that the test strategy defines the test entry
(what needs to be ready to start testing) and exit (what needs to be completed to
stop testing) criteria as well as the type of metrics to be collected at the various
stages of testing.

The process analyst should also verify that test process audits measure compli-
ance with quality standards and continual process improvement. The test artifacts
will reveal the cost, quality, and schedule metrics that are captured.

Other important areas of process validation include the following:

A formalized configuration management process. N
Documented end-to-end testing processes and procedures for all key test pro- N
cess areas (including guidelines, templates, and checklist).
The defect turnaround time (or aging) is measured, that is, the time it takes N
to correct a defect, based on severity.

Test Effort Estimation Maturity

Test effort estimation methodology is evaluated. Inaccurate effort estimation not
only delays the test cycle, but puts the project schedule at risk.

Calculations for the testing effort are performed by adopting estimation meth-
ods such as the SMC model (Simple, Medium, and Complex test cases), the Work
Breakdown Structure (WBS) model, a Test Case Points Model, and some form of
Function Point Analysis.

Regardless of the model, the analyst should verify that the estimation method
is documented and that the estimations are compared to the actual test efforts to
verify the level of accuracy.

The process analyst should consider the following:

 1. The definition of simple, medium, and complex test cases
 2. The availability of test data and techniques used to generate data
 3. Effort required for the defect management process
 4. Number of test iterations considered for the release and methodology adopted

for regression and retesting

Test Design and Execution Maturity

The test design methodology defines how the test cases are defined, how the trace-
ability matrix is established, and how the test data is linked to the test cases. With
the goal of optimizing the test execution, a gap analysis reveals where missing pro-
cesses and missing links prevent efficient test execution.

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 329

The following are the parameters of a mature test design and execution process:

Testing is a measured and quantified process. N
Products are tested for quality, for example, reliability, usability, and N
maintainability.
Test cases are collected and recorded for reuse. N
Defects are logged, and severity is assigned. N
Testing is defined and managed. N
Testing costs and effectiveness are measured. N
Testing processes are fine-tuned and continuously improved. N
Defect prevention and quality control are enforced. N
Automated testing has a significant role in the quality control process. N
Tools support test case design and metric collection. N
Process reuse is practiced. N
Defect root cause analysis is practiced, that is, a defect prevention technique. N

The test process assessment defines all of the foregoing indicators and collects the
test execution metrics to quantify continual quality improvement.

Regression Testing Maturity

A regression-testing strategy must also be defined. Regression testing is the selective
retesting of a system or component to verify that modifications have not caused
unintended effects and that the system or component still complies with its speci-
fied requirements (IEEE, 1990). Testers must determine the degree of regression
testing to minimize the risk. A software change may have an unexpected effect on
a seemingly unrelated part of the software.

Test Automation Maturity

Efforts have been made to reduce the software testing life cycle and cost. Test
automation has emerged as a viable alternative to manual testing to reduce the
test life-cycle cost. However, the initial investment on the testing tools and script
development efforts still remains a huge cost. The return on investment (ROI) is
not realized quickly by the business.

A structured approach to test automation should ensure that businesses get the
benefits of complete, thorough testing on the code developed so that software test-
ing does not consume a major portion in the SDLC. Unplanned approaches toward
testing have resulted in companies spending more than 30 percent of their develop-
ment life cycle in various forms of testing.

The Test Strategy identifies the scope of automation, functionalities to be
automated, methodology, and approach toward automation. The strategy defines
roles and responsibilities, project test schedule, test planning, design activities, test

© 2009 by Taylor & Francis Group, LLC

330 ◾ Software Testing and Continuous Quality Improvement

environment preparation, test risks and contingencies, and an acceptable level of
thoroughness. The Test Strategy includes the test procedures, naming conventions,
test procedure format standards, and the test procedure traceability matrix.

The following is the standard outline of a Test Automation Strategy that can
be customized depending on the test requirements (see Appendix E30, “Test
Automation Strategy”):

Overview of the project N
Automation purpose and objectives N
Scope of automation—inclusions and exclusions N
Automation approach N
Test environment N
Tools used—scripting and test management N
Script naming conventions N
Resources and scheduling N
Training requirements N
Risk and mitigation N
Assumptions and constraints N
Entry and exit criteria N
Acceptance criteria N
Deliverables N

Step 4: Document and Present Findings

The final gap report, the test process findings, is a critical deliverable that identifies
the candidates for test process improvement. While identifying the gaps, the report
also documents the best practices that exist in the current environment. The report
baselines the current processes and serves as the starting point for future continu-
ous improvement initiatives.

test automation assessment
The test automation approach determines how to ensure that business requirements
and end goals of the application are achieved. The approach helps plan and identify
software components to be tested using test automation. It will also determine the
context and approach to automated testing for different project life cycles.

The best automation testing strategy must balance the cost/risk of defects
against the overall costs of extensive testing. The goals are to maximize the value
from the testing done, and to minimize the testing effort and duration, to an
acceptable risk level.

The following are the major factors to be considered for test automation:

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 331

 1. Identification of the correct application and correct percentage of the applica-
tion that can be automated

 2. Identification of testing tools that should be considered, which includes compat-
ibility, cost, ease of use, reusability, framework considerations, and training

 3. Identification and creation of the test framework, for example, data centric,
business function centric, and hybrid approaches

 4. Identification of the various levels of reusable test components, that is, func-
tions that can be reused across the application under test

 5. Creation of test automation scripts adhering to the standards and guidelines
 6. Required validations, checkpoints, error-handling mechanisms, and

result reporting
 7. Creating the relevant test data for running the scripts
 8. Dry run of the scripts to ensure they perform the required business function

validation as expected by the business
 9. Creating the necessary documentation for maintaining the scripts developed

for enhancements, new releases, tool guide manuals, and so on

Figure 28.3 shows the test automation approach in the context of the Plan–Do–
Check–Act (PDCA) model (see Section 1, “Software Quality in Perspective,”
Chapter 5). As with any other continuous quality improvement initiative, the test
automation effort must be planned, executed, checked to verify that it is on track,
and acted upon to adjust the plan.

The following sections describe planning considerations for the test automa-
tion strategy.

Plan

Check Act

Do

Identify the Correct Application
Identify the % that can be
automated
Identify the required tool
Design the Framework
Create an Automation Approach

Create the Automation Framework
Create the Reusable Functions
Create the Test Scripts
Create the Test Data

Create the Required Documentation
Deliver the Scripts
Test the Application using the
Automation Suite
Enhance the Scripts for Releases

Validate the Test Scripts
Validate the Test Data
Dry Run to Ensure Accuracy

figure 28.3 PdCa applied to test automation.

© 2009 by Taylor & Francis Group, LLC

332 ◾ Software Testing and Continuous Quality Improvement

Identify the Applications to Automate
In their eagerness to expedite structured testing, companies have invested in
various testing tools. With time, they have not always realized the benefits that
were expected from their investment. The primary reason for this failure is the
unplanned, nonsystematic activities on automation.

The following are the major decision points that need to be evaluated to identify
the correct application for test automation:

Applications that are business critical, have high-frequency usage, and have N
a long life span
Applications that are localized/globalized with multiple platforms N
Multiple releases requiring complete regression testing each time N
Minimal external interfaces requiring manual intervention N
Applications in which the impact of the releases does not negatively affect the N
entire regression-testing efforts
GUI-based applications involving bitmaps N
Applications with objects/functions that are used multiple times across N
applications
Applications that are stable without many changes to the front-end GUI or N
back end

Identify the Best Test Automation Tool
Tool evaluation is very critical to test automation. One needs to collect the details
on the technology with which the application is developed, the details of the tech-
nology for the interfacing applications, and the third-party tools used to develop
the applications.

The vendors for each automation tool describe the type of technology supported
by their tools and the required add-ins for additional interfacing and underlying
application technologies. On the basis of an understanding of the product, an eval-
uation of various test automation tools should be undertaken.

Some general factors to consider before choosing the automation tool include
the following:

Technical capabilities of the application under automation N
Compatibility with the application environment, components, and interfaces N
Ease of test development N
Test maintainability N
Reliability and market confidence N
Custom objects used; third-party tools used N
Vendor tool references N
Ease of use for the testers N

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 333

Scripting languages used and ease of adoption N
Amenability for easier modification of the scripts N
Cost of the automation tool and annual maintenance cost N
Support from the vendor for newer technologies and issues encountered (see N
Section 6, “Modern Software Testing Tools,” for both informal and formal
methodologies for selecting an automation tool).

Test Scripting Approach
The following are the activities that are normally involved during the test automa-
tion scripting that need to be considered in the automation strategy:

Test case selection: Review all the test cases and appropriately align the related N
business areas so that number of test cases will be reduced. Segregate the test
cases that can be automated from the ones that cannot be automated.
Capture the base flow scripts: Capture the script for the basic business flow, N
capture the GUI or bitmap, follow the scripting standards and guidelines,
and use the available functions in the library.
Verification and validation: Realign the scripts, add required check points, N
break points, functions, and synchronization.
Create the data tables: Create all possible test data combinations to ensure N
coverage and prepare for traceability.
Dry run: Run the script, validate the results, and follow the defect manage- N
ment process.

Test Execution Approach
Normally, test management tools such as HP’s Quality Center are used for storing
the automation scripts created. These scripts are triggered for execution using the
available functionalities within the test management tools.

The advantage of automation scripts is execution without human intervention.
These scripts can be scheduled to be triggered when the environment is available,
even in the middle of the night. When the automation analyst comes back the next
day, the results of the test execution are stored in the defined files, which will help
him or her to analyze and raise exceptions.

Each test team needs to perform problem-reporting operations in compliance with
a defined defect management process. The documentation and tracking of software
problem reports are greatly facilitated by an automated defect-tracking tool. The same
defect management process that is adopted for functional and integration testing is
adopted for the defects arising out of the test execution of automated test scripts.

The test team manager is responsible for ensuring that tests are executed accord-
ing to schedule. Test personnel are allocated and redirected when necessary to han-
dle problems that arise during the test effort. To perform this oversight function

© 2009 by Taylor & Francis Group, LLC

334 ◾ Software Testing and Continuous Quality Improvement

effectively, the test manager needs to perform test program status tracking and
management reporting.

Test metrics provide the test manager with key indicators of the test coverage,
progress, and the quality of the test effort. The metrics collection focuses on the
breadth of testing to include the amount of demonstrated functionality and the
amount of testing that has been performed (see Chapter 22, “Summarize/Report
Test Results,” for more information relating to test metrics).

Test Script Maintenance
Following test execution, the test team needs to review the performance of the test scripts
to determine where improvements can be implemented to improve the test scripts on
the next iteration. The test scripts are upgraded on the basis of the test execution results,
modification in the business flow, and enhancements to the base functionalities.

Whenever new enhancements are introduced in the application, the test man-
ager needs to perform an impact analysis on any new or changed functionality as
to how they will impact the existing regression suite and how many new scripts are
needed to be added to the regression set.

Throughout the test execution cycle, the test team needs to collect various test
metrics. The focus of the test review includes an assessment of whether the application
satisfies acceptance criteria and is ready to go into production. The review also includes
an evaluation of achieved progress measurements and other metrics collected.

Throughout the entire test life cycle, it is a good practice to document and
begin to evaluate lessons learned at each milestone. The metrics that are collected
throughout the test life cycle, and especially during the test execution phase, help
pinpoint problems that need to be addressed.

Lessons learned metrics evaluations and corresponding improvement activity
or corrective action need to be documented throughout the entire test process in a
central repository that is easily accessible.

test automation framework
Software testing gurus have accepted test automation as the effective way to
improve quality, and reduce cost and life-cycle time. Many companies acquired
these testing tools with the hope of optimizing their testing effort and qual-
ity. However, over a period, these companies realized that these tools had not
really benefited them as expected. While conducting a root-cause analysis for
this failure, companies have realized that the absence of a structured test auto-
mation approach and an overall framework for this approach is the basic reason
for failure. This resulted in introduction of various test automation frameworks
depending on the application technologies and methodologies adopted for testing
the relevant applications.

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 335

Some popular test automation frameworks that are in place in the test automa-
tion arena are as follows:

Data-driven framework N
Modular framework N
Keyword-driven framework N
Hybrid framework N

This part provides an overview of the various features of the foregoing frameworks,
and the approach to building these frameworks.

Automation frameworks emerged as a concept with a set of rules, assumptions,
standards and guidelines, and generic reusable components and practices that pro-
vided support for automated software testing. It also defined the directory storage
structure for effective usage and maintenance of automation scripts and defined the
way in which the test automation results are documented and published.

Basic Features of an Automation Framework
As an automation expert, one should understand that 100 percent of any standard
business-oriented applications cannot be automated. There are various dependent
factors such as interfaces involved and their technologies, third-party tools used and
their compatibility with testing tools, real-time application complexities, and various
other factors. One more important aspect for the success of automation is combining
all related functional test cases together and optimizing the reusable components;
ideally, one cannot create x number of test scripts for x number of test cases identi-
fied for test automation. Ideally, the number of automation scripts should be a lesser
percentage of the identified test cases for automation because of reusability.

The following are some best practices for a test automation framework.

Define the Folder Structure

The basic success of an automation project lies in uniformity and reusability. One
should define the folder structure for the automation project in such a way that
everyone in the organization will be able to understand and access the structure. A
sample format is shown in the following text; it can be customized depending on
the complexity of the project.

Project Automation N
Repository −

Driver scripts•	
Reusable window functions•	
Reusable business functions•	
Error-handling functions•	

© 2009 by Taylor & Francis Group, LLC

336 ◾ Software Testing and Continuous Quality Improvement

Test scripts −
Common (modulewise)•	

Test scripts N
Login (example)•	

Test scripts N
Test data files −
Log −

Test report•	
Error log•	

Modularize Scripts/Test Data to Increase Robustness

The best approach for effective test automation is introducing modularity so that
reuse can be ensured at different levels. This will enable more data combinations
to be tested, thereby increasing the coverage and reducing the failure chances by
introducing test data tables for multiple testing.

Reuse Generic Functions and Application-
Specific Function Libraries

Another advantage of the Test Automation Framework–based approach is the
introduction of different levels of reusable functions. These functions can be at
the OS/window level or at the application levels. These functions reduce the level
of coding each automation tester needs to introduce in his or her test script and
improve the productivity levels. The following are some of the generic functions
that can be developed:

File handling N
String handling N
Buffer handling N
Variable handling N
Database access N
Logging utilities N
System\environment handling N
Application mapping functions N
System messaging or system API enhancements and wrappers N

Develop Scripting Guidelines and Review Checklists

Defined guidelines and standards for writing the automated scripts are essential to
enforce uniformity, reusability, and ease of maintenance. Some of the standards
that should be documented include the following:

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 337

Variables N
Connecting to databases N
Calling the reusable functions N

These need to be customized for the test tool being used with the application
being automated.

Define Error Handling and Recovery Functions

The Test Automation Framework should have common error-handling techniques
for the expected and unexpected behavior of the application at different levels.
These error-handling scripts may be kept in the common library folder for effective
reuse by the various automation testers.

Basic failures. These correspond to failures at the system level (e.g., data table,
GUI map not loaded, file not found, out of memory, etc.). The script halts the
execution, logging the error message.

Application failures. These correspond to failures of the application, such as
unexpected pop-up window, page not found, button not found, link not
found, server time-out, and so on.

Every function starts by checking for the expected window. Utilities are developed
for basic functionalities such as filling the text box, selecting the radio button, and
selection from a list box. These utilities will check for existence and enablement of
controls before performing operations. Each function ends by checking whether
any error message appeared on the screen.

If such failures occur, the script logs the appropriate message and continues
execution with next test case/scenario.

Define the Maintenance Process

The Test Automation Framework should also define ways and means for incorpo-
rating future enhancements into the application. The framework should be scal-
able for the future enhancements. It should define how to identify the impact
of the changed functionalities in the existing test automation suite and how to
modify them.

Standard Automation Frameworks
Test Automation frameworks have evolved over a period of time depending on the
maturity levels in the automation testing organization.

The Data-Driven Framework, Modular Framework, Keyword-Driven
Framework, and Hybrid Framework are some of the popular framework models
that are being used across the test automation areas.

© 2009 by Taylor & Francis Group, LLC

338 ◾ Software Testing and Continuous Quality Improvement

Data-Driven Framework

Data-driven testing is a framework in which test input and output values are read
from data files (such as CVS files, Excel files, text files, etc.) to drive the tests.
Navigation through the different application screens, reading of the data files, and
logging of test status and information are all coded in the test script.

The Data-Driven test framework is very useful for carrying out tests on an
application screen using different combinations of test data (see Table 28.1). In this
case, only one script can handle the various combinations of tests, depending on
the different combinations of test data as specified in the data files. Each row is a
test case.

The Data-Driven Framework will be very useful when one needs to validate the
business function with a host of relevant data of different combinations. This will
be effective and will replace the mundane manual testing work, where human error
is bound to happen. This approach also will save a lot of time in the test life cycle
and improve productivity.

The key aspect that needs to be considered for this framework is aligning the
test data to ensure maximum coverage to unearth the hidden bugs in the system
(see Chapter 34, “Software Testing Trends,” for a description of the SmartTestTM
tool from Smartware Technologies, Inc., which automatically generates the test
data).

Modular Framework

The Modular Framework approach (illustrated in Figure 28.4) requires the creation
of small, independent automation scripts and functions that represent modules, sec-
tions, and functions of the application under test. These small scripts are then used
in a hierarchical method to construct larger tests, realizing a particular test case.

The following modularity format will explain how this framework is constructed
using the different levels and features available in the application.

table 28.1 test data

Account
Number

Credit Card
Number

Validity
Date

Auto
Debit Remarks

313 254 2288 2222 3333 4444 08/04/21 Y

567 298 9988 9923 8769 8742 08/03/12 N

987 765 9843 8769 6754 4397 09/02/23 Y

769 457 5544 6549 7692 4214 09/01/23 Y

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 339

Driver scripts, main scripts, business function scripts, validation scripts, sub-
routine scripts, and reporting scripts are some of the components of this modular-
ity, for example, retail banking functions.

The following are the advantages of the Modular Framework:

Because scripts are written to perform and test individual business functions, N

they can easily be combined in “higher-level” test scripts to accommodate
complex test scenarios.
Reduces redundancy and effort in creating automated test scripts. N

Scripts can be developed even when application development is in progress. N

Script reusability is very high in this framework. N

Maintaining the expected results for such scripts is very easy. N

Error handling is much more robust, which allows unattended execution of N

the test scripts.
Because such scripts have very little interdependency, they can be used in a N

plug-and-play manner.

Keyword-Driven Framework

A Keyword-Driven Framework is one of the popular models of business automation.
With this framework, the different screens, functions, and business components

Data Table 1

Data Table 2

Data Table 3

Data Table 4

Data Table 5

Module 1

Module 2

Module 3

Module 4

Module 5

Module 6

OS

Windows
Functions

Error
Functions

Business
Functions

Reporting
Functions

Load/Connect to the
Relevant Database

Load the Functional
Library

Driver Script

Main Test Script
(Invoice Relevant Module)

figure 28.4 the Modular framework.

© 2009 by Taylor & Francis Group, LLC

340 ◾ Software Testing and Continuous Quality Improvement

are specified as keywords in a data table. The test data and the actions to be per-
formed are scripted with the test automation tool. Testing is driven completely by
the different keywords specified in the data table. This is also called a Table-Driven
Framework as the keywords are mapped to the relevant automation scripts in a
table. A sample format is given in Table 28.2.

The test suite consists of all the test case files (see Figure 28.5). The user is able
to select a specific test suite with a list of test cases to execute based on a flag that is
turned on or off in the test suite file.

The test suite will be in the form of an Excel worksheet that contains columns
for TestCaseID, Description, To be Executed (Y/N), Object Repository Path, Test
Case File Path, and so on.

Results Logs
Error Logs
Log Files

Keyword Driven Framework Architecture

Test
Suite Driver Script

Keywords
Processing

Engine

Library
Functions for
the Keywords

Output

Business Logic Test Cases with Keywords

Test Case 1
Test Case 2

Test Case 3

In
pu

t

figure 28.5 keyword-driven framework.

table 28.2 keyword test data

Window Control Action Arguments

Window Name Menu Click Open

Window Name Push Button Click Folder Name

Window Name Verify Results

Window Name Menu Click Close

© 2009 by Taylor & Francis Group, LLC

Test Process and Automation Assessment ◾ 341

Test Case File contains the detailed steps to be carried out for the execution of
a test case. It is in the form of an Excel sheet and contains columns for Keywords,
Object Names, Parameters.

The driver script reads the test case files from test suite, checks the keywords
from each step of test case, and executes the steps one after the other, depending
on the keywords contained in the action field. The keywords are handled by a
processing engine, which in turn calls the appropriate library function, based on
the keyword. The keyword action is implemented in the library function. Before
executing the keyword, the driver script performs error checking, and logs any
relevant information.

One can also extend this framework with the help of startup scripts.
The startup script performs the initialization of test settings and reads the test

suite. It will then call the driver script to execute all the test cases marked for execu-
tion in the test suite file.

The advantage of keyword-driven testing is that the tester need not be code-
savvy to execute the scripts. He or she only needs to be comfortable with the var-
ious keywords and related functions that need to be validated to execute these
scripts. The automation specialist will create the functions through the code for the
required keyword.

The Keyword-Driven Framework requires individuals with good scripting skills
(depending on the testing tool) to create the keyword functions.

Hybrid Framework
The most commonly implemented framework (see Figure 28.6) is a combination
of all of the aforementioned techniques, pulling from their strengths and trying to
mitigate their weaknesses. This framework is what most frameworks evolve into
over time and multiple projects. It is defined by the core data engine, the generic
component functions, and the function libraries. Whereas the function librar-
ies provide generic routines useful even outside the context of a Keyword-Driven
Framework, the core engine and component functions are highly dependent on the
existence of all three elements.

The test execution starts with the driver script. This script invokes the core data
engine by providing one or more driver scripts that process these test tables, invok-
ing the main script for each level.

The core data engine can be implemented with the following, depending on the
test requirements:

 1. Release driver
 2. Test suite driver
 3. Test script driver

© 2009 by Taylor & Francis Group, LLC

342 ◾ Software Testing and Continuous Quality Improvement

A release driver consists of multiple test suites. A test suite consists of multiple test
scripts. A test script consists of multiple sets of test data.

The driver script will first call the release driver, which in turn calls the correspond-
ing suite driver. The suite driver then will call the respective test scripts. The called test
scripts will be executed by taking the corresponding test data for each script.

Building a hybrid test automation framework requires the architect to under-
stand the application technology, interfaces and third-party components interact-
ing with the applications, and the business flow of the application. The test cases
should be analyzed thoroughly to understand and identify the reusable business
components. The understanding of the application will help the architect identify
the type of framework required to automate the application.

The automation analyst should identify the relevant framework that is applicable
for the application under automation and design the same. The basic design should
be flexible and scalable. The framework should consider the future enhancements and
releases and should be effectively designed to increase modularity and reusability.

Library Functions
Generic Common Functions
Business Specific Functions
Error Handling Functions

Driver Script

Test Scripts 1 to n

GUI Repository
Object Repository

Business Function Scripts/File

Function One
Function Two
Function Three

Function “n” Log Files
Result Log
Error Log

Test Data Files

Login/Security Data
Parameter Data
Input Data For Functions

figure 28.6 hybrid test framework.

© 2009 by Taylor & Francis Group, LLC

343

29Chapter

nonfunctional testing

There is a tendency for a project to focus primarily on functional testing, that is,
on functions that a system or component must be able to perform, and ignore non-
functional testing. They specify the criteria that judge the operation of the system.

Nonfunctional testing verifies how a system must behave, that is, constraints
upon the system’s behavior. Nonfunctional requirements specify all the remaining
forms of testing not covered by the functional requirements.

This chapter deals with performance, security, usability, and compliance testing.

Performance testing
Today’s complicated business environment necessitates integration of multiple
applications developed and maintained in different architectures. Enterprise appli-
cation integration has gained much importance. Scalability, reliability, and perfor-
mance of the enterprise application from the business perspective have opened up
the requirements for increased performance testing and management. This chapter
will illustrate the various types of performance testing that are being performed.

The performance of an application is measured from different perspectives to
improve scalability and performance of the application. Load testing, stress testing,
and volume testing are some of the types of performance testing that are normally
done during the application development stage to ensure that the application per-
forms at the expected level in production. Even when the application is live in pro-
duction, performance is continuously monitored through performance monitoring
tools to understand the current levels of performance and to understand the factors
that affect the performance, so that they can be addressed.

© 2009 by Taylor & Francis Group, LLC

344 ◾ Software Testing and Continuous Quality Improvement

load testing
Load testing is defined as the practice of modeling the expected usage of the appli-
cation software by simulating multiple users concurrently. The system response
under this condition is observed for various factors such as memory utilization,
hardware capacity utilization, throughput, and so on. The source of any irrational
behavior is observed and rectified in the system so that the application behaves in
a better manner in production. There are a number of vendor-based and freeware
tools that can simulate thousands of virtual users in the system for facilitating load
testing (see Chapter 35, “Taxonomy of Testing Tools,” for more information).

Stress testing
With stress testing, the load placed on the system is increased beyond the normal
expected usage to test the applications response. Either the load on the user pattern
may be increased or the system may be executed continuously for a lengthy period
of time (hours or days) to test the robustness of the hardware system under stress.

volume testing
Volume testing is a form of performance testing in which the data volume is
increased to abnormal levels to observe the response of the system. Volume testing
will verify the physical and logical limits of the systems’ capacity.

Performance Monitoring
When an application is deployed, it is the responsibility of the system owners to
monitor the application continuously for any performance degradation, as this will
impact the business. There are multiple instances in the Web business of compa-
nies losing millions of dollars because of the nonavailability of their system online.
Continuous monitoring of the various factors that affect performance is accom-
plished by performance monitoring. When symptoms of degradation or slowness
appear, appropriate remedial measures are initiated so that the system does not go
down abruptly, thereby affecting the business.

Performance testing approach
Performance testing has come a long way in the application testing life cycle. It
requires specialized skills with application technologies, tools, languages, system
configuration, and capacity details.

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 345

The application performance test architect analyzes the application architecture
and determines the type of performance testing required for the application. This is
performed in consultation with the business users on the performance expectations.

The following are the key activities carried out during this phase:

Identification of critical and noncritical business transactions N
Expected application response time N
Throughput for business transactions N
Peak-hour performance N

The normal and peak hour load expected in a multi-user application is tested to
detect real-time issues before the application goes into production.

knowledge acquisition Process
In this phase, the performance team will understand the application functional-
ity, the user characteristics, and the system architecture, as well as the application
design. The team will interact with the various stakeholders such as business users,
application developers, and the system maintenance team to understand the business
requirements, capacity of the planned system as perceived by the developers, and the
expected number of users in the system when the system goes live. The team will
understand the production environment in which the application needs to be deployed
in terms of hardware, software, and network connectivity. In some situations this will
be determined on the basis of results of the performance testing activity.

The following are the planning steps in performance analysis:

 1. Define the scope: This involves knowledge of multiple user groups, the
number of concurrent users, frequency of access to different functionalities,
simulated random think times between access to various screens, transaction
duration, and so on. The team will determine whether databases need refresh-
ing between tests, and to what extent. Database refreshes between tests can be
time consuming, especially with large databases. Often, database refreshes can
take more time than the actual test. The team will define the parameters that
will characterize the performance of the system. Some examples are transac-
tion response time and transaction throughput (pages, transactions, and also
the parameters that need to be monitored for identifying bottlenecks).

 2. Plan the performance test: The performance test team should study the
test environment to ensure that it mimics the real-time production environ-
ment. They have to identify the transactions and application scenarios that
need to be tested in consultation with the business users. They should also
identify the common windows/OS-related transactions that will lower the
performance of the application.

© 2009 by Taylor & Francis Group, LLC

346 ◾ Software Testing and Continuous Quality Improvement

Based on the inputs collected, the performance test team will plan the combination
of various input parameters to execute multiple test scenarios. This can be added or
modified during test execution time depending on the response of the system. They
should also plan the database-loading patterns.

Figure 29.1 illustrates a typical performance testing environment.

test development
The following are the planning steps in test development, that is, test script devel-
opment, test execution, and test analysis:

 1. Develop Test Scripts—Test script development involves the following activities:
Configure the Performance Testing tool, for example, HP’s Performance −
Test Centre 8.1 in the test environment.
Use LoadRunner’s VuGen (Virtual User generator) to record scripts. −
After recording, scripts need to be modified to emulate complex −
environments.

Some examples include the following:
Loop to make a single captured activity act like many activities. −
Parameterize the variables, and supply data from an external source. −
Example sources of data include text files and capturing data returned
from the application under test.
Prepare data files for data inputs through the tool. −
All users will try to access a particular transaction at the same time. −

 2. Test Execution—Test execution involves the following activities:
Test data setup. −
For large databases, this will be a time-consuming activity. If scripts had −
been developed earlier for this purpose, run the scripts and load data.
Set up the test scenario in the testing tool. −
Turn on the server monitors for monitoring CPU, memory, and so on. −
Replay the scripts with user loads by generating the virtual users using −
LoadRunner’s Controller. The tool records the test results. The results are
exported for further analysis.
Execute the test scripts under varying user loads. Refresh the database by −
running the database-loading scripts between executions.
Collect data for analysis, including data from multiple sources such as −
Web server logs, application server logs, performance statistics from serv-
ers such as performance monitor logs, and so on.

 3. Analysis—LoadRunner has standard reports that can be used for analysis and
reporting purposes. Some of the reports that are generated are as follows:

© 2009 by Taylor & Francis Group, LLC

N
o

n
fu

n
ctio

n
al Testin

g
◾

347

Performance Test Scenarios

Vugen - Capture and Record

Performance Scripts Run Time Settings Java/.net Clients IE Clients

Test Environment

Controller

Load Generator

Analyzer

Virtual
Users

figure 29.1 Performance testing environment.

© 2009 by Taylor & Francis Group, LLC

348 ◾ Software Testing and Continuous Quality Improvement

Transaction Performance Summary Report −
Detail Transaction Report By vuser (virtual user) −
Transaction Performance By vuser Report −
Scenario Execution Report −
Failed Transaction Report −
Database Server Report Monitors −
Network Delay Monitors −
System Resource Monitors −

The team analyzes the data collected from the report generated to identify the
bottlenecks.

The following are some typical outputs from a performance test tool that help the
performance test analyst to understand and analyze the performance requirements:

Test Summary Report: A test summary report, such as that shown in Figure 29.2,
gives the overall result of the performance testing conducted in terms of the
number of virtual users pumped into the system, total throughput in bytes,
average throughput per second, total hits into the system, and average hits per
second for each transaction identified for performance testing. This will give an
indication to the performance test analyst on the performance parameters.

Average Transaction Response Time: Figure 29.3 gives the average response
time for the identified scenario at various points of time. This may change,
depending on the number of users in the system and system throughput.

Maximum Running Vusers:

Statistics Summary

Transaction Summary

View HTTP Responses Summary

Transactions:

Transaction Name

Action_Transaction

CRIS Online

News Communications

VOL Home Page

VOL Login

vuser_end_Transaction

vuser_init_Transaction

20.099

43.052

17.485

98.071

3.996

79.027

115.374

26.729

233.005

11.875

0.001

144.247

286.612

47.258

389.911

22.212

0.01

36.527

77.954

9.283

91.636

5.247

126.655

220.83

39.806

331.772

21.154

10

10

10

10

10

10

100.003

0 0 0 0 0

000

0 0

0 0

0 0

0 0

0 0

0 0

0

Minimum Average Maximum Std 90
Percent Pass Fail Stop

4
3,136,684
2,973
870
0.825

Total �roughput (bytes):
Average �roughput (bytes/second):
Total Hits:
Average Hits per Second:

Total Passed: 70 Total Failed: 0 Total Stopped: 0 Average Response Time

figure 29.2 test summary report.

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 349

Average Transaction Response Time under Load: Figure 29.4 shows how the
average transaction response time changes as we increase the load on the
system. The analyst will come to know how the response time is impacted by
increasing the load and what is the tolerable limit for the live system.

CPU Utilization: Figure 29.5 gives an idea to the analyst of how CPU utilization
is at various points of the identified transaction. This will help them to set the
ideal utilization level for the CPU.

Page Component Breakdown: The pie chart in Figure 29.6 shows how much
each page component is a percentage of the sum of average download time
(in seconds).

Network Delay Time: Network delay is composed of network propagation,
serialization, and queuing delay. Propagation delay is the time it takes the

Average Transaction Response Time
Av

er
ag

e R
es

po
ns

e T
im

e (
se

co
nd

s)

Elapsed Scenario Time mm:ss

380
360
340
320
300
280
260
240
220
200
180
160
140
120
100

80
60
40
20
0
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00

figure 29.3 average transaction response time.

Transaction Response Time Under Load

Av
er

ag
e R

es
po

ns
e T

im
e (

se
co

nd
s)

Number of Vusers
0 1 2 3 4

320
300
280
260
240
220
200
180
160
140
120
100
80
60
40
20
0

figure 29.4 average transaction response time under load.

© 2009 by Taylor & Francis Group, LLC

350 ◾ Software Testing and Continuous Quality Improvement

physical signal to traverse the path. Serialization delay is the time it takes to
actually transmit the packet. Queuing delay is the time a packet spends in
router queues. Figure 29.7 is a network delay time graph.

Performance deliverables
The performance test team is responsible for the following deliverables during the
performance testing sessions:

Page Component Breakdown

37.89 % of 113.613

9.29 % of 113.613

22.58 % of 113.613

30.23 % of 113.613

figure 29.5 CPu utilization.

Network Delay Time

N
et

w
or

k
D

el
ay

 (m
ill

ise
co

nd
s)

Elapsed Scenario Time mm:ss

3,200

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00

3,000
2,800
2,600
2,400
2,200
2,000
1,800
1,600
1,400
1,200
1,000

800
600
400
200

0

Network Delay Time Graph

figure 29.6 Page component breakdown.

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 351

Performance testing strategy N
Performance test plan N
Identified performance test scenarios N
Vuser (virtual user) scripts for the identified scenarios N
Vuser scripts documentation N
Test execution plan N
Test data information report N
Test run report (daily report) N
Analysis findings N
Performance test report N

Recommendations will be provided as part of the performance test report. For
example, if the performance test team finds the test architecture not good enough,
they can suggest the recommended architecture and how many users the new archi-
tecture will support.

Security testing
Security testing was once considered a technical assignment performed by net-
work administrators or system developers. In those days, application security was
not given much importance during the test phase of software development life
cycle. An increasing number of security incidents and a growing awareness among
business owners about invalidated applications due to security issues have moved
security testing into the software tester’s world. Gartner’s reports say that three out

figure 29.7 network delay time graph.

© 2009 by Taylor & Francis Group, LLC

352 ◾ Software Testing and Continuous Quality Improvement

of four Web sites are vulnerable to an attack and 75% of the hacks occur at the
application level. More and more clients across the globe have started including
application security testing as a part of software testing.

The cornerstone of security rests on confidentiality, integrity, and availability.
For critical applications, there is a need to provide different levels of access to dif-
ferent users. Security of transactions ensures customer confidence, which is a key
factor for successful implementation of applications. As per Section 404 of SOX,
organizations have to maintain internal control over financial reporting, which
involves testing the integrity of the applications.

The following are the steps for a successful security initiative.

Step 1: Identifying the Scope of Security Testing

The main objectives of security testing are the following:

Verify and validate that the applications meet the security requirements. N
Identify security vulnerabilities of applications in the given environment. N

Performing a thorough security assessment of a Web application is a complex task
that should be approached like any other software analysis task—with a methodol-
ogy, testing procedures, set of helpful tools, skills, and knowledge. Manual pen-
etration testing as well as automated tools can be used to uncover critical security
vulnerabilities in Web applications. The technology used for development and the
vulnerability of the applications determine the correct balance of automated scan-
ning and manual penetration testing to provide the best possible Web application
security coverage.

Security testing starts with vulnerability assessment. Vulnerability scanning
examines a network for security holes in the network segments for IP-enabled
devices and enumerates systems, operating systems, and applications. Apart from
identifying the operating system version, IP protocols, and TCP/UDP ports that
are listening, vulnerability scanning also identifies the common security threats,
such as weak passwords, files with liberal permissions, security configuration prob-
lems, and so on.

Security testing strategy for an application or product should be developed
for each phase such as development, implementation, deployment, operation, and
maintenance. Security testing should preferably be performed by an independent
testing team. The test target should be identified using a threat model, and all
interfaces such as User interface (UI), sockets, file input, API, mail configuration,
and devices should be included under the scope. The performance bottlenecks such
as network bandwidth, memory, disk space, files, and sockets should be subject to
security testing.

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 353

Step 2: Test Case Generation and Execution
The security of an application is tested by attempting to violate the built-in security
controls. This technique ensures that the protection mechanisms in the system are
adequate enough to secure the application from improper and unauthorized access.
The tester overloads the system with continuous requests, thereby denying service
to others. The tester may deliberately cause system errors to violate security during
recovery or may browse through insecure data to find the key to system entry. The
following areas need to be tested for security:

User authentication N
Password management N
Access controls N
Input validation N
Exception handling N
Secure data storage and transmission N
Logging N
Monitoring and alerting N
Change management N
Application development N
Periodic security assessments and audits N

Buffer overflow, SQL injection, cross-site scripting, parameter tampering, cookie
poisoning, hidden fields, debug options, unvalidated input, broken authorization,
broken authentication, and session management are some of the areas around
which the test cases should be generated for security testing. Ideally, security testing
should be performed at the end of functional integration testing and performance
testing. This helps to detect hidden security threats in the application.

After completing security testing, the findings should be summarized in a
report. The summary report should contain details such as the types of testing
conducted and the security risks identified, with ratings, which helps the business
take a decision on deployment of the application.

types of Security testing
The following are the types of security testing along with the purpose, tools,
and approach.

Network Scanning
Network scanning involves using a port scanner to identify whether all hosts are
potentially connected to the organization’s network. This identifies all active hosts

© 2009 by Taylor & Francis Group, LLC

354 ◾ Software Testing and Continuous Quality Improvement

and open ports, and some scanners will give additional information on the scanned
hosts and applications running on a particular port. This should be executed con-
tinuously in the system.

Purpose

Check the unauthorized hosts connected to N

Identify vulnerable services N

Identify deviations from the permitted services as per the security policy N

Help in penetration testing N

Assist in configuration of the intrusion detection systems N

Tools

 1. Fscan—A command line port scanner that scans both TCP and UDP ports
 2. LANguard network scanner—Freeware security and port scanner
 3. DUMPSec—security auditing program for Microsoft Windows

Approach

A high level of human expertise is required for interpreting the results. Scanning
may disrupt the network operations by taking more bandwidth and less response
time. The results should be documented and analyzed, and corrective steps should
be initiated. The following are some possible measures:

Investigate and disconnect unauthorized hosts N

Disable or remove unnecessary and vulnerable services N

Modify firewall to restrict outside access N

Modify vulnerable hosts to restrict access to vulnerable services N

The speed and efficiency of network scanning depends on the number of hosts in
the system, and there are many freeware tools available that are automated. The
disadvantage of network-scanning tools is that they do not directly identify the
vulnerabilities.

Vulnerability Scanning

Apart from scanning the ports, these tools also report on the associated vulnerabili-
ties. Outdated software versions, unapplied patches and system upgrades, noncom-
pliance deviations from the organization’s security policy, and so on are identified.

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 355

The negative side of vulnerability scanning is that these tools tend to load the sys-
tem and continuous update of vulnerability database to capture them.

Purpose

Identify the active hosts (a computer connected to the Internet on the N
network)
Identify the active and vulnerable services on, e.g., e-mail service, hosts N
Identify the applications, misconfigured settings, and operating systems N
Verify compliance with the host application security policies N

Tools

 1. Cybercop Scanner—A network-based vulnerability-testing tool
 2. ISS Internet Scanner—A vulnerability-scanning tool that identifies secu-

rity issues
 3. SecureScan—NX, SAINT, and SARA are some other vulnerability-scan-

ning tools

Approach

Vulnerability scanning is required to validate that operating systems and major
applications are up-to-date on security patches and software versions. The results of
the testing should be documented and analyzed.

The following are the recommended corrective measures:

Upgrade or patch vulnerable systems. N
Improve configuration management. N
Dedicated resources to monitor vulnerability. N
Implement continuous improvement in the organizations’ security policies N
and architecture.

Network scanning can be fast, depending on the number of hosts scanned; auto-
mated freeware tools are available. These scanners are easy to run on a regular basis.
Sometimes, there is a chance of false-positives, which have to be identified by the
analysis of the results.

Password Cracking
Password cracking is a process that verifies whether users are employing strong
passwords, by intercepting the password hashes in the network.

Password crackers should be run on the system on a monthly basis, or even con-
tinuously, to ensure correct password combination throughout the organization.

© 2009 by Taylor & Francis Group, LLC

356 ◾ Software Testing and Continuous Quality Improvement

Tools

 1. Crack 5—UNIX password cracker
 2. John the Ripper—Windows and UNIX password cracker
 3. L0phtCrack—Windows password cracker

If the cracked passwords were selected according to policy, the policy should be
modified to reduce the percentage of crackable passwords. If the cracked passwords
were not selected according to the policy, then users should be educated to choose
passwords as per the policy.

Log Reviews

Various system logs can be used to identify deviations from the organization’s secu-
rity policy, including firewall logs, IDS (abbreviation to be mentioned) logs, server
logs, and any other logs collecting audit data on systems and networks. Audit logs
can be used to validate that the system is operating according to policies.

Manual audit log review is extremely cumbersome and time consuming.
Automated audit tools provide a means of significantly reducing the required review
time and to generate reports (predefined and customized) that summarize the log
contents to a set of specific activities.

Approach

For example, if an IDS (abbreviation) sensor is placed behind the firewall (within
the enclave), its logs can be used to examine the service requests and communi-
cations that are allowed into the network by the firewall. If this sensor registers
unauthorized activities beyond the firewall, it indicates that the firewall is no longer
configured securely and a backdoor exists on the network.

File Integrity Checkers

File integrity checker is a tool to recognize changes to files, particularly unauthorized
changes. A file integrity checker computes and stores a checksum for every guarded
file and establishes a database of file checksums. Stored checksums should be recom-
puted regularly to test the current value against the stored value to identify any file
modifications. The reference database should be stored off-line so that attacks can-
not compromise the system and hide their tracks by modifying the database.

Purpose

To recognize unauthorized changes to files N
To determine the extent of possible damage when a compromise is suspected N

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 357

Tools

 1. LAN guard
 2. Tripwire

Virus Detectors
All organizations are at risk of “contracting” computer viruses, Trojans, and worms
if they are connected to the Internet, use removable media (e.g., floppy disks and
CD-ROMs), or use shareware/freeware software. With any malicious code, there is
also the risk of compromising or losing sensitive or confidential information. To detect
viruses, anti-virus software needs to be installed on network and machines. This anti-
virus software should have an up-to-date virus identification database (sometimes called
virus signatures) that allows it to recognize all viruses. To detect viruses, the anti-virus
software compares file contents with the known computer virus signatures, identifies
infected files, quarantines and repairs them if possible, or deletes them if not. More
sophisticated programs also look for viruslike activity in an attempt to identify new or
mutated viruses that would not be recognized by the current virus detection database.

Tools

 1. McAfee
 2. Symantec
 3. Trend Micro

Approach

There are two primary types of anti-virus programs available: those that are installed
on the network infrastructure and those that are installed on end-user machines.

The virus detector installed on the network infrastructure is usually installed on
mail servers or in conjunction with firewalls at the network border of an organiza-
tion. Server-based virus detection programs can detect viruses before they enter the
network or before users download their e-mail.

The other type of virus detection software is installed on end-user machines.
This software detects malicious code in e-mails, floppies, hard disks, documents,
and the like but only for the local host. The software also sometimes detects mali-
cious code from Web sites.

Penetration Testing
Penetration testing is security testing in which evaluators attempt to circumvent the
security features of a system on the basis of their understanding of the system design
and implementation. It is important to determine how vulnerable an organization’s
network is and the level of damage that can occur if the network is compromised. A

© 2009 by Taylor & Francis Group, LLC

358 ◾ Software Testing and Continuous Quality Improvement

penetration test can be designed to simulate an inside or an outside attack. If both
internal and external testing is to be performed, the external testing usually occurs
first. With external penetration testing, firewalls usually limit the amount and
types of traffic that are allowed into the internal network from external sources.
Depending on what protocols are allowed through, initial attacks are generally
focused on commonly used and allowed application protocols such as FTP, HTTP,
or SMTP and POP.

Purpose

The purpose of penetration testing is to identify methods of gaining access to a
system by using common tools and techniques used by attackers. These types of
testing expose vulnerabilities in kernel code, buffer overflow, symbolic link, file
descriptors, race conditions, file and directory permissions, Trojans, and so on.

Approach

Penetration testing can be either overt or covert. These two types of penetra-
tion testing are commonly referred to as Blue Teaming and Red Teaming. Blue
Teaming involves performing a penetration test with the knowledge and consent
of the organization’s IT staff. Red Teaming involves performing a penetration test
without the knowledge of the organization’s IT staff but with full knowledge and
permission of the upper management. This type of test is useful for testing not only
network security but also the IT staff’s response to perceived security incidents and
their knowledge and implementation of the organization’s security policy. In Red
Teaming, penetration testing may be conducted with or without warning.

To simulate an actual external attack, the testers are not provided with any real
information about the target environment other than targeted IP address/ranges,
and they must covertly collect information before the attack. They collect informa-
tion on the target from public Web pages, newsgroups, and similar sites. They then
use port scanners and vulnerability scanners to identify target hosts. Because they
are, most likely, going through a firewall, the amount of information is far less than
they would get if operating internally. After identifying hosts on the network that
can be reached from the outside, they attempt to compromise one of the hosts. If
successful, they then leverage this access to compromise other hosts not generally
accessible from outside. (Reference: Guidelines on Security Testing by NIST, special
publication 800-42.)

usability testing
As the number of users of Web applications in business grows, this impacts the
applications and usage pattern of the users. When more than the estimated number

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 359

of users log in, the system application performance is affected, and we have seen how
this performance can be improved by acting on the result of the performance testing
techniques explained. Similarly, another problem that crops up due to the mush-
rooming growth of Web application is usability. Usability testing helps us to evalu-
ate the ease of use with which the end users of the system access the applications.

According to ISO 9214-11, usability is the “extent to which product can be used
by any specific users to achieve specified goals with effectiveness, efficiency, and
satisfaction in a specified context of use.” Usability is a combination of factors that
influence the user’s experience with a product or a system. There are many varia-
tions on Web site usability testing, but a simple way to picture it is to imagine a real
user sitting in front of a PC and working on a short list of tasks on a Web site, and
to record the findings. The process is repeated with a handful of different users and
the identified weaknesses are rectified.

The following are the three key tenets of usability:

Communicate clearly so that users understand you. Users allocate minimal N
time to initial Web site visits, so you must quickly convince them that the
site is worthwhile.
Provide information users want. Users must be able to easily determine whether N
your services meet their needs and why they should do business with you.
Offer simple, consistent page design, clear navigation, and an information N
architecture that puts information where users expect to find it.

Usability ought not to be confused with “functionality,” however, as the latter is
purely concerned with the functions and features of the product and has no bearing
on how easily they can be used.

goals of usability testing
The goal of usability testing is to discover the needs and expectations of users. Its
purpose is to examine the proposed AUT (Application Under Testing) to find how
the intended user can meet his or her goals using the system being tested.

The following are some critical tenets of usability testing:

 1. Visibility of system status: The system should always keep users informed about
what is going on, through appropriate feedback within reasonable time.

 2. Match between system and the real world: The system should speak the user’s
language, with words, phrases, and concepts familiar to the user, rather than
system-oriented terms. Follow real-world conventions, making information
appear in a natural and logical order.

 3. Ease of learning: How fast can a user learn to use a system that he has never
seen before, to accomplish basic tasks?

© 2009 by Taylor & Francis Group, LLC

360 ◾ Software Testing and Continuous Quality Improvement

 4. Flexibility and efficiency of use: The ability to use the system in different ways
in an efficient manner is very important.

 5. Accelerators: May often speed up the interaction for the expert user such
that the system can cater to both inexperienced and experienced users. Allow
users to tailor frequent actions.

 5. User control and freedom: Users often choose system functions by mistake
and will need a clearly marked “emergency exit” to leave the unwanted state
without having to go through an extended dialogue. Support undo and redo.

 6. Consistency: Actions that cause the same reaction in similar situations, for
example, clicking on a hyperlink opens a pop-up window whereas clicking on
a button takes you to a new screen.

 7. Error frequency and severity: How frequent are errors in the system? How
severe are they? How do users recover from errors? Even better than good
error messages is a careful design that prevents a problem from occurring in
the first place. Either eliminate error-prone conditions or check for them and
present users with a confirmation option before they commit to the action.

 8. Aesthetic and minimalist design: Dialogues should not contain information
that is irrelevant or rarely needed. Every extra unit of information in a dia-
logue competes with the relevant units of information and diminishes their
relative visibility.

 9. Graphical User Interface: The front end or the part of a software application
or Web site that the users see and work with.

 10. Orientation: How the user knows his location within the application or
Web site. The user’s orientation is critical for future navigation and for a
feeling of “understanding the application” and easily correcting navigation
mistakes.

Approach and Execution

The usability specialist should identify the transactions that affect and are expected
to impact the users in terms of usage of the system. The test cases should be written
for the following areas:

Site design and page design N
Navigation aids and common look and feel N
Page size, file size, making pages resize N
Effects of fonts on legibility N
Use of textual elements and formatting lists, block text, and tables N
Improving Web page accessibility N
When to use images and how to make images more efficient N
Appearance of links and where and how to use links N
Improving user efficiency N

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 361

The usability specialist can write the test cases in a similar format as the functional
test cases. The usability experts who are going to execute these test cases should have
some basic knowledge of the usage pattern of Web applications, and the expected
results should be documented.

Normally, users from different walks of life who will have access to the system
should be chosen for executing and documenting their user experience for the usabil-
ity test. This will closely reflect the real-world situation. Usability testing should be
carried out on a real-time system, on a paper prototype, or on a demo application.
One of the most effective forms of inspection-based user testing involves the use of a
“usability checklist.” Checklist-based user testing is extremely inexpensive to imple-
ment, and requires a surprisingly small number of testers to be effective.

The usability testers can be volunteers who will stop at any time to perform the
testing. The testers should feel free to speak their minds without fear of hurting the
feelings of the product developer even if their mistakes may mean that the devel-
oper will have to do more work. You may think the test is a simple matter, and you
may even be bored with it, but the testers might take it very seriously.

Guidelines for Usability Testing
The usability specialist should clearly document the guidelines for preparation of
usability test cases, definition of outside user for testing, and test execution guide-
lines for usability testing. The following are some standard guidelines:

For all but the simplest and most informal tests, run a pilot test first. N
Ensure that testers are made to feel at ease, and are fully informed of any N
observation. Attend at least one test as a participant to appreciate the stress
that the testers/participants undergo.
Ensure that participants/testers have the option to abandon any tasks that N
they are unable to complete.
Do not prompt participants unless it is clearly necessary to do so. N
Record the events in as much detail as possible—to the level of keystrokes N
and mouse clicks if necessary.
If there are observers, ensure that they do not interrupt in any way. N
Be sensitive to the fact that developers may be upset by what they observe or N
what you report.

Accessibility Testing and Section 508
In 1998, Congress amended the Rehabilitation Act to require federal agencies to
make their electronic and information technology accessible to people with dis-
abilities. Inaccessible technology interferes with an individual’s ability to obtain
and use information quickly and easily. Section 508 was enacted to eliminate barri-
ers in information technology, to make available new opportunities for people with

© 2009 by Taylor & Francis Group, LLC

362 ◾ Software Testing and Continuous Quality Improvement

disabilities, and to encourage development of technologies that will help achieve
these goals. The law applies to all federal agencies when they develop, procure,
maintain, or use electronic and information technology. Under Section 508 (29
U.S.C. ‘ 794d), agencies must give disabled employees and members of the public
access to information that is comparable to the access available to others. Web
accessibility means that people with disabilities should be able to use the Web.
More specifically, Web accessibility means that people with disabilities should be
able to perceive, understand, navigate, and interact with the Web, and contribute to
the Web. Web accessibility also benefits others, including older people with chang-
ing abilities due to aging.

The standards define the types of technology covered and set forth provisions
that establish a minimum level of accessibility. The application section (1194.2)
outlines the scope and coverage of the standards. The standards cover the full range
of electronic and information technologies in the federal sector, including those
used for communication, duplication, computing, storage, presentation, control,
transport, and production. This includes computers, software, networks, peripher-
als, and other types of electronic office equipment. The standards define electronic
and information technology, in part, as “any equipment or interconnected system
or subsystem of equipment, that is used in the creation, conversion, or duplication
of data or information.”

The standards provide criteria specific to various types of technologies, includ-
ing the following:

Software applications and operating systems N
Web-based information or applications N
Telecommunication products N
Video and multimedia products N
Self-contained, closed products (e.g., information kiosks, calculators, and N
fax machines)
Desktop and portable computers N

This section provides technical specifications and performance-based requirements
that focus on the functional capabilities of covered technologies. This dual approach
recognizes the dynamic and continually evolving nature of the technology involved
as well as the need for clear and specific standards to facilitate compliance. Certain
provisions are designed to ensure compatibility with adaptive equipment that peo-
ple with disabilities commonly use for information and communication access,
such as screen readers, Braille displays, and TTYs.

Most of the specifications for software pertain to usability for people with vision
impairments. For example, one provision requires alternative keyboard navigation,
which is essential for people with vision impairments who cannot rely on pointing
devices, such as a mouse. Other provisions address animated displays, color and
contrast settings, flash rate, and electronic forms, among others.

© 2009 by Taylor & Francis Group, LLC

Nonfunctional Testing ◾ 363

The criteria for Web-based technology and information are based on access
guidelines developed by the Web Accessibility Initiative of the World Wide Web
Consortium. Many of these provisions ensure access for people with vision impair-
ments who rely on various assistive products to access computer-based information,
such as screen readers, which translate what’s on a computer screen into automated
audible output, and refreshable Braille displays. Certain conventions, such as verbal
tags or identification of graphics and format devices, such as frames, are necessary
so that these devices can “read” them for the user in a sensible way. The standards do
not prohibit the use of Web site graphics or animation. Instead, the standards aim
to ensure that such information is also available in an accessible format. Generally,
this means use of text labels or descriptors for graphics and certain format elements.
(HTML code already provides an “Alt Text” tag for graphics that can serve as a ver-
bal descriptor for graphics.) This section also addresses the usability of multimedia
presentations, image maps, style sheets, scripting languages, applets and plug-ins,
and electronic forms.

The standards apply to federal Web sites but not to private sector Web sites
(unless a site is provided under contract to a federal agency, in which case only that
Web site or portion covered by the contract would have to comply). Accessible sites
offer significant advantages that go beyond access. For example, those with “text-
only” options provide a faster downloading alternative and can facilitate transmis-
sion of Web-based data to cell phones and personal digital assistants.

The criteria of this section are designed primarily to ensure access to people who
are deaf or hard of hearing. This includes compatibility with hearing aids, cochlear
implants, assistive listening devices, and TTYs. TTYs are devices that enable people
with hearing or speech impairments to communicate over the telephone; they typi-
cally include an acoustic coupler for the telephone handset, a simplified keyboard,
and a visible message display. One requirement calls for a standard nonacoustic
TTY connection point for telecommunication products that allow voice communi-
cation but also provide TTY functionality. Other specifications address adjustable
volume controls for output, product interface with hearing technologies, and the
usability of keys and controls by people who may have impaired vision or limited
dexterity or motor control.

Multimedia products involve more than one media and include, but are not
limited to, video programs, narrated slide production, and computer-generated
presentations. Provisions address caption decoder circuitry (for any system with a
screen larger than 13 inches) and secondary audio channels for television tuners,
including tuner cards for use in computers. The standards also require captioning
and audio description for certain training and informational multimedia produc-
tions developed or procured by federal agencies. The standards also provide that
viewers be able to turn captioning or video description features on or off.

Section 508 covers products that generally have embedded software but are
often designed in such a way that a user cannot easily attach or install assistive tech-
nology. Examples include information kiosks, information transaction machines,

© 2009 by Taylor & Francis Group, LLC

364 ◾ Software Testing and Continuous Quality Improvement

copiers, printers, calculators, fax machines, and similar types of products. The stan-
dards require that access features be built into the system so that users do not have to
attach an assistive device to it. Other specifications address mechanisms for private
listening (handset or a standard headphone jack), touchscreens, auditory output and
adjustable volume controls, and location of controls in accessible reach ranges.

Section 508 also focuses on keyboards and other mechanically operated controls,
touch screens, use of biometric form of identification, and ports and connectors.

The performance requirements mentioned in Section 508 are intended for over-
all product evaluation and for technologies or components for which there is no
specific requirement under the technical standards in Subpart B. These criteria are
designed to ensure that the individual accessible components work together to create
an accessible product. They cover operation, including input and control functions,
operation of mechanical mechanisms, and access to visual and audible information.
These provisions are structured to allow people with sensory or physical disabilities
to locate, identify, and operate input, control, and mechanical functions and to
access the information provided, including text, static, or dynamic images, icons,
labels, sounds, or incidental operating cues. For example, one provision requires
that at least one mode allow operation by people with low vision (visual acuity
between 20/70 and 20/200) without relying on audio input because many people
with low vision may also have a hearing loss.

The standards also address access to all information, documentation, and sup-
port provided to end users (e.g., federal employees) of covered technologies. This
includes user guides, installation guides for end-user installable devices, and cus-
tomer support and technical support communications. Such information must be
available in alternate formats upon request at no additional charge. Alternate for-
mats or methods of communication can include Braille, cassette recordings, large
print, electronic text, Internet postings, TTY access, and captioning and audio
description for video materials.

A standard set of test cases is given in the government Web site that can be used
to guide accessibility testing. (Reference: http://www.section508.gov.)

Compliance testing
Compliance testing determines that a product implementation of a particular
implementation specification fulfills all mandatory elements as specified and that
these elements are operable.

Compliance testing may become more stringent over time, especially as a par-
ticular implementation specification matures. Regardless of how a software audit is
initiated, the process is rarely anticipated and often results in valuable resource loss.
Beyond the resource strain, software audits require additional expenses to deploy
asset management services to prevent future compliance breaches. This chapter

© 2009 by Taylor & Francis Group, LLC

http://www.section508.gov

Nonfunctional Testing ◾ 365

presents a risk assessment survey to help determine if your organization can adhere
to a software compliance audit and what level of risk it faces.

The following are six basic steps for enabling software management to ensure it
has the documentation to satisfy an audit:

 1. Review existing software licensing agreements.
 2. Take an inventory of existing IT assets.
 3. Compare inventory to purchasing records to determine problematic areas.
 4. Uninstall noncompliant software.
 5. Implement management policies for use and license compliance.
 6. Maintain new standards and processes.

© 2009 by Taylor & Francis Group, LLC

367

30Chapter

Soa testing

The goal of Service Oriented Architecture (SOA) testing is to view the whole busi-
ness process, and ensure that the components of that process interact properly.

End-to-end SOA testing involves testing an entire business process path to
ensure that the integration has resulted in the intended execution of transactions,
interactions, and data transformations. This also includes testing across multiple
platforms, transport protocols, ESBs, language interfaces, and messages, and vali-
dating the linkages and integrations between business services and operational sys-
tems to meet target defect rates and service level agreements (SLAs).

As SOAs begin to form the fabric of IT infrastructure, actively and aggressively
testing Web services has become crucial. Comprehensive functional, performance,
interoperability, and vulnerability testing form the essence of SOA testing.

Web services have blurred the boundaries between network devices, security
products, applications, and other IT assets within an enterprise. Almost every IT
asset now advertises its interface as a Web Services Definition Language (WSDL)
interface ready for SOAP/XML messaging. Web services interfaces provide unprec-
edented flexibility in integrating IT assets across internal and external corporate
domains. Such flexibility makes it the responsibility of IT staff from all domains,
such as developers, network engineers, security and compliance officers, and appli-
cation QA testers, to ensure that their Web services work as advertised across func-
tional, performance, interoperable, and security requirements.

Only by adopting a comprehensive testing commitment can enterprises ensure
that their SOA is robust, scalable, interoperable, and secure.

© 2009 by Taylor & Francis Group, LLC

368 ◾ Software Testing and Continuous Quality Improvement

key Steps of Soa testing
The following are the steps that need to be performed for a successful SOA test-
ing strategy:

 1. Create an assembly-oriented plan: SOA and integration projects are funda-
mentally different from traditional application development projects. In these
projects, much of the logic is in the connections between applications, not
within the applications. Coordination and planning from an end-to-end per-
spective are key. There are several ways to make a dramatic difference in SOA
projects. The first requirement is a project/program manager with an orga-
nizationwide view, not strictly an application orientation. Second, create an
assembly-oriented plan that incorporates traditional code construction and
validation, but is process-focused and has an incremental assembly orienta-
tion. The challenge is that most companies are still organized into application
or business unit silos.

 2. Focus on the business processes in requirements and testing: Focusing on the
business process sounds simple. In reality, testing a business process means
having many components available: applications, middleware, supporting
technologies, and teams that support each one. Because processes run across
applications and technologies, project managers report that coordinating
testing is often one of the biggest problems and often a source of unpredict-
able delays.

 3. Develop a testing team that understands and can validate integration: Another
challenge to the broad business focus is ensuring that testers have the broad
knowledge of business processes. This includes an understanding of the dom-
ino effects that are part of the intricacies of business transactions. The ability
to work in cross-functional teams and work in a knowledge acquisition and
knowledge transfer culture is an essential skill for SOA testers. Developing
cross-functional teams of business users and testers and deploying testers that
specialize in testing connectivity are two ways that successful SOA teams
have created process-centric testing teams.

 4. Test integration connectivity in all test phases: unit, component, integration,
and end-to-end.

 Armed with an understanding of the business processes, testers have the
ability to access the underlying technology to follow and validate the process.
In the past, QA teams have required developers to write hundreds of stubs
and harnesses, creating substantially more “test code” to be validated. In
recent years, though, integration-oriented test tools have made accessing and
testing SOA’s underlying connectivity much simpler. The important transi-
tion for testers is not to focus solely on the code, but instead find productive
ways to understand and diagnose connectivity.

© 2009 by Taylor & Francis Group, LLC

SOA Testing ◾ 369

 Invariably, integration teams attempt to assemble all components of the
system during the end-to-end testing phase where the results of integration
problems are first discovered. To avoid this pitfall, it is necessary to test SOA
projects at every phase using a consistent testing methodology that will work
across all phases. SOA projects are assembly projects. The only way to effec-
tively test SOA projects is to start from the ground up. First, in unit testing,
test the inputs and outputs of individual modules. Second, put sections of
logic together and test smaller sections of the integration flow. This new test-
ing phase is called the “assembly” phase. This critical step is the equivalent
of logically assembling a Tinker Toy model one piece at a time. Once this is
accomplished, an end-to-end test can be performed on the fully assembled
Tinker Toy model. Using this process, the end-to-end test is truly a final
validation of the full process, and not the starting point for debugging inte-
gration logic.

 5. Create an automated and repeatable testing process: As with any other test-
ing process, repeatability is important, but even more so with SOA projects.
The high number of permutations and combinations of paths through the
system prove a daunting challenge for SOA projects. Building a regression
library that can be run when even minor changes are made is the only way
to efficiently reduce integration-level errors in maintenance mode. Although
testing early when errors are easy to find has always been a testing tenet, the
domino effect of a small error in an SOA environment makes comprehensive
regression testing essential in an SOA project.

 6. Plan for typical SOA testing hurdles (e.g., unavailable systems): One recur-
ring problem with testing integration is that not all the components needed
to test are available. Whether the missing application is an internal module,
a vendor application, or a feed from a mainframe system, waiting creates sub-
stantial timing and coordination delays in integration projects. The ability to
simulate unavailable systems is a must to keep SOA testing on track.

 Whether your SOA initiative is a new development effort or has been
in place for some time, an SOA-oriented testing strategy can dramatically
improve the delivery and cost of SOA systems. To effectively validate SOA
systems, teams need to think along SOA lines and become assembly and end-
to-end focused. Instead of thinking like sprinters, it is necessary to think like
a relay team and focus on the handoffs.

© 2009 by Taylor & Francis Group, LLC

371

31Chapter

agile testing

Software development life-cycle methodologies are either iterative or follow a
sequential model, for example, waterfall. The agile development methodology was
developed to respond to changes quickly. These methods are people-oriented rather
than process-oriented.

Agile methodology is a collection of values, principles, and practices that incor-
porates iterative development, test, and feedback into a new style of application
development. Iterative and agile development provide a different approach to devel-
oping applications than traditional “waterfall” methodologies.

Whereas waterfall development develops applications by performing big
up-front design first, agile development avoids that approach and develops the
requirements along the way. This implies that test cases must be developed as the
requirements evolve.

agile user Stories Contrasted to formal requirements
The Computer Society of the Institute of Electrical and Electronics Engineers
(IEEE) has published a set of guidelines on how to write software requirements
specifications. The IEEE recommendations cover such topics as how to organize
the requirements specification document, the role of prototyping, and the charac-
teristics of good requirements. The most distinguishing characteristic of an IEEE
830–style software requirements specification is the use of the phrase “The system
shall…,” which is the IEEE’s recommended way to write functional requirements.

From an agile development point of view, developing well-defined requirements
prior to coding has some major flaws. It implies that the software was at some point
sufficiently well known for its scope to have been fully defined. This is usually not

© 2009 by Taylor & Francis Group, LLC

372 ◾ Software Testing and Continuous Quality Improvement

the case. The waterfall approach assumes that software is complete when it fulfills a
list of requirements, rather than when it fulfills the goals of the intended user.

what is a user Story?
A user story is an informal statement of the requirement. With agile development,
a user story is a software system requirement formulated as one or two sentences
in the everyday language of the user. User stories are used for the specification of
requirements (together with acceptance tests). Each story is written on a small 3 × 5
inch paper note card to ensure that it is not lengthy.

An example of a user story might be, “When a user attempts to use an expired
credit card, the system prompts him to use a different credit card.”

The process of breaking down a user story is important because it helps one
think about how to develop and test the functionality. Many people disaggregate a
user story into tasks and then estimate them because they are smaller units of work
and can be estimated with less inaccuracy. The goal is to track the number of run-
ning tested features. I want to know how many user stories are passing.

agile Planning
In agile planning, we usually have to estimate how much work a story will take.
When developers write functional tests before design and coding, they are more
confident the user story is complete. This also aids in user story estimation. That
will make the release planning easier.

The following are some useful agile planning tips:

 1. Schedule short-term: As agile planning is an evolutionary process, it is dif-
ficult to plan long-term.

 2. Do not overemphasize Gantt charts: As the requirements and activities are
rapidly changing and evolving, you may find yourself spending all your time
updating Gantt charts

 3. Involve the team with scheduling: The team should be active participants
in the project to gain “buy-in.”

 4. Define short iterations: Limit the development iterations to 2 to 3 weeks,
which will also limit “scope-creep.”

 5. Train the team: The team may not have worked on agile projects in the past
and will not understand the process unless they are exposed to training and
facilitation workshops.

As part of the planning process, it is imperative to prioritize user stories (as with
any requirements). This can be achieved with a User Story Prioritization Model, as
shown in Figure 31.1.

© 2009 by Taylor & Francis Group, LLC

A
gile Testin

g
◾

373

User Instructions:
1. The input columns (starting at User Story #1) are Relative Benefit(C), Relative Penalty(D), Relative Cost(G), and Relative Risk(I), Lowest-1, highest-9.
2. The Relative Weight of each input can be adjusted (Row 10, Columns C, D, G and I). The higher the number, the more weigh.
3. After entering the inputs, sort on the Column K starting from Row 13 and the “Risk” column in descending order to see the risk priorities shown in Column K.

User Story Prioritization Model

Relative Weights

1
Item # User Story

Totals

1
Relative
Benefit

0

1
Relative

Cost
0

2
Relative

Risk
0

2
Relative
Penalty

0

Total
Value

0

Value %

0

Cost %

0

Risk % Priority

0

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

figure 31.1 user Story Prioritization Model.

© 2009 by Taylor & Francis Group, LLC

374 ◾ Software Testing and Continuous Quality Improvement

The following are the basic elements of the model:

The relative benefits of focusing on a user story N
The relative penalty for not focusing on a user story N
The relative cost to implement a user story N
The relative risk to implement a user story N

Each of these elements are input to the model for each user story and weighted. The
result is a score displayed on the last column, which can be sorted in descending
order to show their relative priority. (The Prioritization Model is located in the CD
that came with this book.)

types of agile testing
Test-Driven Development (TDD) is a software development technique consisting
of short iterations where new test cases covering the new functionality are written
first, then the production code necessary to pass the tests is implemented. The avail-
ability of tests before actual development ensures rapid feedback after any change.

Practitioners emphasize that test-driven development is a method of designing
software, not merely a method of testing. The first step is to turn acceptance criteria
into tests, so one of the most important factors for us is to find tools that support us
in achieving that goal. Functional testing tools are actually a very important part
of the testing process. Given that there are already many unit testing tools available
for nearly every programming language, a suitable functional testing tool seems
more important for testers.

For Web applications, functional testing tools such as Selenium, Watir (Watin,
Watij), and Sahi are available. Abbot is useful for Java GUI applications, NUnitForm
for Windows Form applications, and Microsoft UIAutomation Framework for a
wide range of Windows applications. More “heavy” tools such as HP’s Quick Test
Professional (QTP) could also be used.

When a user story is to be implemented, a more formal acceptance test must be
written by the customer to ensure that it is later possible to determine whether the
goals of the story have been fulfilled.

Acceptance tests are created from user stories. During an iteration, the user
stories selected during the iteration planning meeting will be translated into accep-
tance tests. The customer specifies scenarios to test when a user story has been
correctly implemented. A story can have one or many acceptance tests, whatever it
takes to ensure the functionality works.

An example of an acceptance test for the foregoing credit card story might be:

 1. Test with Diner’s Club, Visa, MasterCard, and American Express (pass)
 2. Test with Visa Club (fail)

© 2009 by Taylor & Francis Group, LLC

Agile Testing ◾ 375

 3. Test with good, bad, and missing card ID numbers
 4. Test with expired cards
 5. Test with different purchase amounts (including one over the card’s limit)

Acceptance tests are black-box system tests. Each acceptance test represents some
expected result from the system. Customers are responsible for verifying the cor-
rectness of the acceptance tests and reviewing test scores to decide which failed tests
are of highest priority.

Acceptance tests are also used as regression tests. A user story is not considered
complete until it has passed its acceptance tests. This means that new acceptance
tests must be created with each iteration or the development team will report zero
progress.

The matrix shown in Figure 31.2 is a useful way of documenting the relation-
ship between user stories and acceptance tests.

Compliance testing
Compliance testing determines that a product implementation of a particular
implementation specification fulfills all mandatory elements as specified and that
these elements are operable.

Compliance testing may become more stringent over time, especially as a par-
ticular implementation specification matures. Regardless of how a software audit is
initiated, the process is rarely anticipated and often results in valuable resource loss.
Beyond the resource strain, software audits require additional expenses to deploy
asset management services to prevent future compliance breaches. This chapter
presents a risk assessment survey to help determine if your organization can adhere
to a software compliance audit and what level of risk it faces.

User Story

Agile User Story/Acceptance Testing Matrix

Acceptance Tests Type Test
(Functional Performance etc) Date Passed/

Failed Comments

figure 31.2 user story versus test cases.

© 2009 by Taylor & Francis Group, LLC

376 ◾ Software Testing and Continuous Quality Improvement

The following are six basic steps for enabling software management to ensure it
has the documentation to satisfy an audit:

 1. Review existing software licensing agreements.
 2. Take an inventory of existing IT assets.
 3. Compare inventory to purchasing records to determine problematic areas.
 4. Uninstall noncompliant software.
 5. Implement management policies for use and license compliance.
 6. Maintain new standards and processes.

© 2009 by Taylor & Francis Group, LLC

377

32Chapter

testing Center
of excellence

IT organizations looking to improve their testing practices often centralize some or
all test-related activities in a testing center of excellence (CoE).

Figure 32.1 depicts the normal organizational structure in a testing CoE. The
testing CoE primarily consists of resources such as test managers, test architect,
solution architect, test automation experts, QA managers, and QA auditors.

The CoE engages in the following activities:

 1. Delivery division: Here, multiple projects will be handled in multiple
domains. There may be manual testing projects, test automation projects,
performance testing projects, and other specialized testing such as SOA test-
ing, usability testing, compatibility testing, and so on. All the testing delivery
will be handled by this wing of the testing CoE.

 2. Competency division: The next division focuses on improving the compe-
tency of the testing resources. This will essentially handle different types of
training such as application training, test tools training, test methodology
training, and so on.

 3. Knowledge repository: The third division maintains the knowledge reposi-
tory for all the testing projects, whereas the fourth section consists of people
with quality assurance capabilities. This division will also handle quality
audits and inspections.

The business view of application development is changing significantly, and business
users have become the driving force for application development and deployment.

© 2009 by Taylor & Francis Group, LLC

378 ◾ Software Testing and Continuous Quality Improvement

Independent software testing is emerging as the key business across IT college
majors, and businesses have started setting up dedicated testing centers to handle
the ever-growing testing requirements. Integration of tools and technology with
comprehensive process-oriented testing methodology is the expectation from these
service providers.

Testing CoE is expected to provide the following:

End-to-end test management processes, including test processes and staging N
methodologies
Review process toward verification and validation across different phases N
Entry criteria N
Exit criteria for the QA test process N
Test coverage and traceability N
Defect management N
Automated test tools laboratory, including standards for test automation N
Release management N
Root cause analysis N
Test reporting and communications N
Quantitative test process management with identified metrics and measures N
across the test phases
Knowledge management system for testing related artifacts and other reus- N
able components.

The following describe the steps for establishing a testing center of excellence and depicts
the trend of testing services and the enablers for a testing center of excellence:

 1. Setting up a new testing CoE: Establishing a testing CoE is really an itera-
tive process. It is important to understand and develop a center based on the

Test Project
Management

Test Managers Solution
Architect

Test
Architect

Test Automation
Experts

QA Manager
QC Controllers

Project 1
Project 2
Project 3
 .
Project n

Competency
Development

Application
Training
Tools Training
Test
Methodology
Training
Process
Training

Knowledge
Repository

Application
Related

Tools Related
Domain
Specific IPs

Test Process

Test
Methodology
Update

QA
Monitoring

QA Group
Test Process
Management

figure 32.1 Center of excellence organization.

© 2009 by Taylor & Francis Group, LLC

Testing Center of Excellence ◾ 379

actual needs of your organization as requirements tend to be very company-
specific. One recommendation is to follow a flow that reflects continuous
evaluation and improvement, as outlined in the following text.

 2. Define expectations: The establishment of the CoE should confirm the busi-
ness goals of the organization. The scope of the CoE should be defined in
consultation with the key stakeholders in the organization. This phase will
provide the framework within which the test team will operate.

 During this phase, the solution architect will understand the quality pro-
cesses existing in the organization and their level of maturity, which will help
him identify the scope of the testing center. We need to ensure alignment
of project sponsor expectations and project objectives while arriving at the
framework for the testing CoE.

 Apart from project sponsors and key stakeholders, various other key play-
ers in business and IT systems need to be met to confirm the scope across
business lines. The agreement with the stakeholders is the key for success-
ful establishment of the testing center. The applications head, business unit
heads, IS management team, and business technology officers are some of
the key people who will decide the testing center of excellence structure and
communication channels among other business units.

 3. Define current testing model: Every improvement should take place from a
defined baseline model. The existing testing processes should be analyzed
and documented so that the benefits of the testing center can be measured
in the future. In this phase, the team has to interview IS management, devel-
opment managers, the QA team, business technology managers, and user
representatives.

 The solution architect will also interact with the existing QA resources to
understand their:

Process knowledge—Project management, SDLC, and test processes. −
Business knowledge—Domain or functional knowledge for each prod- −
uct line.
Application/project knowledge—Project requirements, processes, and −
technical details. This includes the knowledge acquisition on testing spe-
cific projects such as annual maintenance releases, patch releases, and the
associated infrastructure.

 This will help the tester understand the level of percolation of existing
project and process-related knowledge-imparting programs and their effec-
tiveness. This will also help build cross-training techniques and rotation plans
that will help the organization in risk management and retention areas.

 At the end of this phase, the solution architect will come out with a scope
document that will give the structure of the CoE, with defined roles and
responsibilities for the various actors involved. The document will also indi-
cate a long-term objective of the CoE and how uniform quality processes
will be introduced in the various business lines to align the business growth

© 2009 by Taylor & Francis Group, LLC

380 ◾ Software Testing and Continuous Quality Improvement

of the organization. This will give a list of quantitative test process metrics
existing at the current level and how they will be improved upon over the
period of time.

 4. Define testing CoE scope: An initial scope for the testing CoE must be
defined. As with most global changes, it is best to attack implementation one
step at a time, identifying where the testing CoE can have the greatest busi-
ness impact. It may not replace all quality assurance efforts initially. Rather,
it may make sense to focus on a particular business unit or application type,
or even a specific application. This way, initial investments and policies and
procedures can be proved before branching out into other areas. Metrics will
also be defined during this phase for use in evaluating the success of the test-
ing CoE.

 5. Develop implementation plans: Once the scope has been defined, more spe-
cific plans can be made to properly resource the testing CoE. This phase
of the implementation involves development of infrastructure requirements,
toolsets, and staffing. It also involves the definition of standards, policies,
and procedures that will be employed once the testing CoE is in place. The
uniform testing templates, guidelines, and checklists will be identified.

 It is essential that all inherent risks be identified to ensure that the final
operating model proposed addresses all potential constraints. The tester needs
to document the risk factors to the current testing workflow, detail positive
elements of the projects reviewed, and document any recommendation that
will reduce project risk.

 6. Set up testing CoE service: This phase will consist of moving forward with
the implementation plans that were previously defined. Infrastructure and
toolsets will be purchased and deployed, a location for the center will be iden-
tified, and trials will begin to test the existing plans. At the conclusion of this
phase, lines of business (LOB) will be able to use the services of the testing
CoE for their quality assurance needs. The following are the key components
in the implementation phase:

Identifying the resource for CoE and testing projects −
Agreement of business priorities for phasing of implementation −
Identifying potential implementation project constraints and dependencies −
Risk analysis and mitigation definition for the proposed implementation −
Establishing rollout priorities and identifying project candidates −

 7. Evaluate outcome: Previously defined metrics will be evaluated during this
phase, as well as overall customer satisfaction with the service. Any adjust-
ments that need to be made in virtually any aspect of the testing CoE will
be handled on the basis of metrics and customer satisfaction. Once these
adjustments have been made, the scope of the testing CoE can be expanded,
offering this service to a larger group within the firm. The goal of this process
is to base it on the firm’s needs today, but to allow for ongoing expansion until
the testing CoE benefits have spread throughout the company.

© 2009 by Taylor & Francis Group, LLC

Testing Center of Excellence ◾ 381

 8. Structure and best practices: The testing CoE is headed by a CoE manager
who initiates various core competent activities apart from a team that man-
ages the testing projects with different types of identified testing. Figure 32.1
illustrates some of the key activities of a testing CoE. Continuous process
improvement and introducing innovations in the testing techniques to reduce
the testing timelines and increasing the ROI are the key performance goals of
a testing CoE manager.

 9. Test methodology: The testing CoE will create a specific application/prod-
ucts testing and implementation methodology with defined ETVX (Entry,
Task, Validation, and Exit) criteria. The standardized templates, standards,
guidelines, and checklists will be created. The Peer Review and Lead Review
process will be established. Comprehensive Project Management Plan will be
evolved, which will consist of effort estimation, resource management plan,
risk identification and mitigation plan, assumptions, and entry and exit crite-
ria for each phase of the testing.

industry Best Processes
Testing CoE adopts all the industry best processes. The testing processes are fine
tuned to the IEEE/ISO/CMM/TMM processes.

All resources are continuously trained on quality concepts by the TQM. The
CoE will adopt these best processes in delivering quality services to its clients.

testing Metrics
The following is a set of test metrics that will be adopted by the CoE, as illustrated
in Figure 32.2.

operating Model
The testing CoE manager will be a self-starter with people management skill and
core competency in the “operate” model, with emphasis on responsiveness, efficiency,
reliability, and instantaneous scalability. He or she will act as a guide on architec-
tural, testing, and ASQ tools standards. With extensive knowledge of business mod-
els, he or she will be the anchor person for the entire center of excellence setup.

The solution architect defines the holistic test strategy solution, defines CoE
operating model, growth, and profitability models.

The test architect is another key player in the CoE, who does intensive consult-
ing and retains the in-depth testing process knowledge for specific vertical require-

© 2009 by Taylor & Francis Group, LLC

382 ◾ Software Testing and Continuous Quality Improvement

ments; he or she is responsible for defining, refining, and continuously enhancing
the process, and measuring performance in terms of business metrics.

The automation experts coordinate all of the activity at the business applica-
tions level (test design, script development, customization, execution, integration,
and so on) of technology and ASQ tools.

test automation framework
The CoE will create a test automation framework under which all functional
regression test suites are created. The framework will define the reusable business
functions, automation artifacts, directory structure, and standards and guidelines
for automation scripting. This will enable the clients to take advantage of effective
reusability and the automation pack enhancements.

The CoE will also train the testing resources on the adopted functional automa-
tion and performance testing tools.

Continuous Competency development
The CoE will encourage resources to acquire the certifications in quality-related
areas such as QAI CSTE, CSQA, CSPM, and Certified Product Specialist exam
from tools vendors. The testing CoE will also create a comprehensive annual com-
petency development capability building plan for its resources to continuously
improve their testing skill and capabilities.

SLA Adherence
Issue Resolution
Risk Index Trend
Delivery Quality Trend
Escalation Closure Rate
Casual Analysis

Management Product

Testing Metrics

Process

Schedule &
Effort Variance
Productivity
Test Coverage &
Efficiency
Review Effectiveness
Test Effectiveness
Phase Containment
Efficiency
Requirement
Stability Index

Defect Density
Defect Distribution (Severity-
wise & Modulewise)
Post Shipment Residual
Defects & Residual Defect
Density
Defect Removal Efficiency
Weighted Defect Density
Defect Injection Rate
Defect Containment Efficiency
Test Containment Efficiency
Defect Detection Rate
Defect Closure Rate & Fix Rate

figure 32.2 testing metrics.

© 2009 by Taylor & Francis Group, LLC

383

33Chapter

on-Site/offshore Model

Outsourcing emerged as a major concept in the twentieth century, when a num-
ber of manufacturing products were outsourced to China and Japan. The offshore
outsourcing model can provide exceptional value to clients. Increased efficiency
and cost advantage are the two basic elements that made the outsourcing approach
popular. When the IT boom evaporated and companies were forced to maintain
their profit line, they often outsourced the development, testing, and maintenance
to Asian countries such as India, China, and others. This chapter analyzes the
important elements of outsourcing with special reference to testing and the advan-
tages and issues involved.

Project management, according to the American Society for Quality (ASQ), is
the application of knowledge, skills, tools, and techniques to meet the requirements
of a project. Project management knowledge and practices are best described as a
set of processes. A critical project process is software testing. The following section
describes the implementation considerations for managing this endeavor.

The objectives of this section are to:

Describe basic project management principles.
Contrast general project management and test management.
Describe how to effectively estimate testing projects.
Describe the defect management subprocess.
Discuss the advantages and disadvantages of the offshore and onshore models.
List the steps for integrating the testing activity into the development methodology.

© 2009 by Taylor & Francis Group, LLC

384 ◾ Software Testing and Continuous Quality Improvement

Step 1: analysis
Corporate management should evaluate the outsourcing option. It should not
be chosen as a matter of routine. A committee should carefully study the fol-
lowing aspects and submit a report to senior management to make a decision on
outsourcing.

Some questions that need to be answered include the following:

Could the products, development, testing, or maintenance be outsourced? N
What part of the project can be outsourced? N
What experiences have other companies had with outsourcing? N
Are there options available for the line of product in the market? N
What are the short-term versus long-term business processes to outsource? N
Are the requirements defined beforehand? N
Are there frequent changes in the business process outsourcing project? N
Does the client’s location have the extra capacity it needs? N

Management should analyze the report and only if the product could be success-
fully outsourced with substantial benefits to the company should the decision to
outsource be taken.

Step 2: determine the economic trade-offs
Once management has decided to outsource the product, then the cost–benefit
analysis should be done. This can be performed in two ways:

 1. The advantages of outsourcing in terms of cost within the same geographi-
cal location

 2. The advantages of outsourcing among the various competitive outsourcing
clients available

Corporate management should not be carried away by the cost–benefit studies pro-
jected by the outsourcing vendors (see the Vendor Evaluation Excel spreadsheet
on the CD accompanying this book). These studies have been prepared with the
primary objective of capturing new business and have not taken into consideration
various recurring and unexpected project costs that normally form part of any proj-
ect operation. Eighty percent cost saving may land a company in the hands of a
vendor that is not going to deliver a quality product within the schedule. Normally,
studies show that around 40 to 50 percent benefits accrue to outsourcing firms in
terms of cost. Any projections above this industry average are questionable.

© 2009 by Taylor & Francis Group, LLC

On-Site/Offshore Model ◾ 385

Step 3: determine the Selection Criteria
Outsourcing projects have become catastrophic to many firms in the United States
for the simple reason that the selection process adopted by them is wrong.

Geographical location: N The location of the outsourcing country is a primary
factor in selecting the outsourcing partner. Countries such as India and China
get more outsourcing projects owing to their geographical locations, because
the 24/7 work environment can be ensured in these locations. When U.S.
companies start their operations in the morning, already two rounds of shifts
have been completed for the requirement sent to these locations the previous
day. The project management group often finds it very difficult to evaluate
the output received as the day begins.
Optimum utilization: N Maximum usage of the previous hardware resources can
be done if the work is carried out 24/7 in different locations. Because the globe
is interconnected by IPLC and VPN, the load to the server can be distributed
across locations and maximum utilization of the servers can be ensured.
Quality deliverables: N The quality of the deliverables from the vendor should be
evaluated with respect to compliance with the company’s quality standards
and with respect to international quality standards.

Project Management and Monitoring
The success of the on-site/offshore model depends on the effective project manage-
ment practices adopted by the companies. Several companies that began experi-
menting with this model have backtracked. Unless clear project management
practices defining the role and responsibilities for the on-site/offshore team are
established, this model is bound to face several obstacles in delivering the expected
cost advantages.

outsourcing Methodology
Having decided to outsource, the outsourcing methodology should clearly define
what to outsource, and what cannot be outsourced. Potential activities that can be
outsourced are shown in Figure 33.1. Of course, the activities depend heavily on (1)
completeness of the requirements, (2) effectiveness of communication, (3) whether
the project supports operating effectiveness or strategy, and (4) the existence of
well-defined project management, quality assurance, and development.

Operational effectiveness is concerned with working cheaper or faster.
Strategy is about the creation of a long-term competitive advantage for the
business. An application development that is strategic and has multiple spiral

© 2009 by Taylor & Francis Group, LLC

386 ◾ Software Testing and Continuous Quality Improvement

iterations should not outsource the entire development and quality assurance
activities. An application development project with well-defined requirements
and that will not have a major effect on the operations of the business is a can-
didate for offshoring.

On-Site Activities

The initial feasibility study to decide whether the particular development/ N
testing/maintenance can be outsourced should be decided by the corpora-
tion. This part of the activity cannot be outsourced for obvious reasons. As
indicated, this study will result in a cost–benefit analysis and the advantages
and disadvantages of outsourcing.
When a decision has been made to outsource a part or whole process, a N
requirements analysis should be conducted to decide the portion of the busi-
ness process that is to be outsourced. These requirements should be clearly
documented so that there is no communication gap between the manage-
ment and the vendor on the deliveries and expectations.
The project management process for effectively monitoring and managing N
the outsourced projects should be established. The roles and responsibilities
of the on-site coordinator and offshore team should be clearly documented.
This should be decided by the management and should be signed off by both
senior management and the vendor.

On-site

Feasibility
Study

Requirement
Analysis

Outsourcing
Management

Process

Acceptance
Criteria

Business
Implementation

Offshore

Software
Development

System and
Detailed
Design

Quality
Assurance and

Software Testing

Application
Maintenance
and Support

Training and
Documentation

figure 33.1 onshore versus offshore activities.

© 2009 by Taylor & Francis Group, LLC

On-Site/Offshore Model ◾ 387

The acceptance criteria for the outsourced projects should be clearly doc- N
umented. The acceptance test should be conducted by the corporation by
involving the actual end users or business analysts. Proper guidelines and
checklists should be created for the acceptance criteria.
The business implementation should be done by the corporate office as this N
cannot be outsourced.

Offshore Activities

The following are potential activities that could be outsourced:

Development N —Outsourcing a software development process is the major
activity that has been stabilized across the globe. A number of software com-
panies have emerged in regions such as India, China, and Southeast Asia,
which lend effective support to businesses in the United Kingdom and the
United States in the development of software code. These companies accredit
themselves with the international standards such as CMM, ISO, and other
international auditing standards, and a clear process is established for verify-
ing the deliverables.
High-level and detailed design N —With the English-speaking knowledge gained
by these countries and the globe shrinking with networks, in addition to
software development, other related activities such as high-level design and
system design could be transferred offshore.
System testing N —With global connectivity made simple and inexpensive, many
of the testing activities can be outsourced. Because system design and devel-
opment happen in the offshore development centers, system testing can be
performed offshore. This reduces the cost of hiring additional resources at
higher cost or dislocating the business resources from their routines that will
indirectly affect business growth.
Quality assurance N —Quality assurance and software testing are other important
activities that are candidates for outsourcing by U.S. companies. This directly
relates to the outsourcing of development and other related activities. Most of
these vendors have developed expertise in modern software testing tools, and
they execute these automated test scripts from anywhere across the globe.
Support and maintenance N —Application maintenance and support (AMS)
is another critical activity that is extended to the long-term outsourcing of
maintenance and support of the critical applications. Many of the call centers
for critical applications of organizations such as U.K. Railways and major
telecom companies have already been moved to countries such as India.
Follow-up activities N —Any other documentation work pertaining to software
development, design development, or quality assurance can easily be out-
sourced by the standards for the deliverables. With the development of the

© 2009 by Taylor & Francis Group, LLC

388 ◾ Software Testing and Continuous Quality Improvement

Internet, tools such as Placeware, and even training, can be outsourced to
remote locations.

implementing the on-Site/offshore Model
Once it has been decided to outsource after the initial analysis phase, the outsourc-
ing should be managed in a phased manner. Phasing should not affect the existing
business activities of the company. The following five phases define the process.

Knowledge Transfer
In this phase, the offshore core team visits the client site to understand the applica-
tion that is to be outsourced. These technical and business resources communicate
with the existing client resources and internalize the functional, technical, and
operational aspects of the applications. Normally, a client coordinator is nominated
to plan, act as liaison, monitor, and evaluate knowledge transfer sessions with active
participation. The offshore team makes a reverse presentation of its understanding
of the system so that the client coordinator is convinced of its knowledge acquisi-
tion. This team will prepare training and other documentation to be passed on to
the rest of the offshore team.

This team will consist of identified process experts from the outsourced com-
pany who will document the processes followed at the client location. These pro-
cesses will be integrated or aligned with the vendor’s process so that the client
deliverables will pass any audit requirements.

Detailed Design
Once the initial knowledge acquisition phase is complete, the technical team will
prepare a detailed design for the hardware, software, and connectivity require-
ments, which are to be in place to start the operations from the remote locations.
The technical team from the client side will authenticate this design. Once the
technical details are approved, the infrastructure team at the remote location will
start to put the environment in place. The client’s server and applications will be
connected and a sanity test will be performed for verification.

The business analyst team will prepare a migration plan for migrating the planned
activities such as development, testing, design, or maintenance in a phased manner.

Milestone-Based Transfer
The on-site/offshore transition process provides a framework to shift the responsi-
bility of development, testing, design, support, and maintenance from on-site to

© 2009 by Taylor & Francis Group, LLC

On-Site/Offshore Model ◾ 389

offshore with a step-by-step methodology, without affecting the normal business of
the client. Key milestones for smooth transfer are the following:

Establish the environment at the offshore location. N
Train the offshore resources. N
Plan the move of the identified activities in a phased manner. N
Obtain offshore stability. N

Steady State
Over a period of time the offshore environment will be stabilized and the deliv-
erables will start flowing to the on-site location with the anticipation of improved
quality and less cost. This is a critical period, during which the on-site project man-
agement activities should focus on meticulously reviewing the deliverables, making
conference calls to clarify issues with the offshore team, and other related activities.
Once this steady state is achieved, the model has been established.

Application Management
Once the design, development, and testing are completed and the product has gone
live, further enhancements will be required (new requirements arising out of busi-
ness necessity will require changes in the code) and ongoing maintenance will be
needed. Moreover, during the normal business cycle, jobs such as data backup and
purging the data can be outsourced. As the vendor companies have specialized in
the business domain, they will be in a better position to offer these services on a
long-term basis at low cost.

Ideally, 20 to 30 percent of work is done on-site and 70 to 80 percent is out-
sourced offshore, depending on the criticality of the project. Usually, requirements
analysis, development of detailed specifications, critical support, and implementa-
tion are performed on-site, and development and testing are outsourced offshore.

Prerequisites
The following are the important prerequisites for an effective on-site/offshore model
to deliver the desired results.

Relationship Model
The relationship model should be established for a successful on-site/offshore model.
Figure 33.2 shows a higher-level relationship model. The roles and responsibilities
of the project manager at the on-site client, on-site vendor coordinator, and the
offshore team should be clearly established.

© 2009 by Taylor & Francis Group, LLC

390 ◾ Software Testing and Continuous Quality Improvement

Some of the generic responsibilities of the on-site client team are the following:

Initiate and participate in all status conference calls. N

Coordinate and provide information on testing requirements. N

Provide clarifications and other required data to the offshore team. N

Review offshore test deliverables and sign off on the quality of deliverables. N

Single point of contact with offshore project manager in obtaining clarifi- N

cations raised and in obtaining approvals on the test deliverables from the
respective on-site departments and divisions.
Establish and maintain optimal turnaround time for clarifications and N

deliverables.
Approve timesheets. N

Finalize timelines/schedule for test projects in consultation with offshore N

project manager.
Prepare and publish daily status of all test requests outstanding to all parties. N

Proactively inform requests or any other changes that will affect the deliver- N

ables of the offshore team.

The following are some of the generic responsibilities of the on-site client team:

A single point of contact for the offshore team in interacting with the on-site N

coordinator should be identified.
The time and methodology for the daily/weekly/monthly status review calls N

should be decided, and the participants in these various calls should be
decided at the various stakeholders’ levels.

On-site Offshore

On-site Project
Management and
Acceptance Team

On-site
Coordinator

Offshore
Team

Client Development
and Test Systems

Client Production
Systems

Offshore
Development/
Testing Center

figure 33.2 relationship model.

© 2009 by Taylor & Francis Group, LLC

On-Site/Offshore Model ◾ 391

Overall project management activities and the review process should be defined. N
A weekly/monthly status report format and contents should be decided. N
Prepare and publish daily progress through status report. N
Follow up with on-site coordinator in getting clarifications for issues raised N
by development/test team engineers.
Support and review process for all project-related test documents and deliver- N
ables prepared by development and test team engineers.
Allocate test projects to offshore test engineers. N
Identify resources for ramp-up and ramp-down depending on the project N
requirements at the various phases of the project.
Prepare a project plan and strategy document. N
Convey project-related issues proactively to on-site coordinator. N
Responsibility for the quality of the deliverables should be explicitly declared. N
Responsibility for project tracking and project control should be decided. N
Conduct daily and weekly team meetings. N
Collect timesheets and submit them to on-site coordinator. N
Finalize timelines/schedule for test projects in consultation with on-site N
coordinator.

Standards
Several companies that have experimented with on-site/offshore models to mini-
mize their costs ended up in failure primarily because of the incompatibility
between the sourced and vendor companies on the technical standards and guide-
lines. Although the companies are CMM compliant and ISO certified, there are
vast differences in the standards adopted between them for the same source code
or testing methodology.

The standards of the vendor companies should be evaluated and synchronized
with the standards and guidelines of the outsourced company. The development
standards, testing methodology, test automation standards, documentation stan-
dards, and training scope should be clearly defined in advance. Apart from the
foregoing, the following should also be taken into consideration:

Request for proposals (RFP) procedures N
Change request procedures N
Configuration management N
Tools N
Acceptance criteria N

The acceptance criterion is another critical factor that should be defined with the
help of the end users who are going to ultimately use the system. If the standards
and deliverables are not acceptable to them, the project is going to fail in the imple-
mentation phase.

© 2009 by Taylor & Francis Group, LLC

392 ◾ Software Testing and Continuous Quality Improvement

Benefits of on-Site/offshore Methodology
The ultimate advantages of this model are the savings in time, money, and commu-
nication. The case study described in Figure 33.3 demonstrates the ideal usage of
the offshore model and describes the approximate benefit that companies may reap
with the onshore/offshore model. The statistics may vary from 80 to 40 percent.

In the case study, the XYZ Company will have the following parameters to
evaluate in this analysis (critical success factors are noted in parameters 10 to 13):

Description Rate

No.
of

Days
No. of

Persons Total

(Amounts
in $)

1 On-site for 5 persons for 6
 months

640 132 5 422,400

PM effort 30 percent on the
 total cost

126,720

Total 549,120

2 Offshore for 5 persons for 6
 months

150 132 5 99,000

PM effort 30 percent on the
 total cost

29,700

Knowledge transfer at on-site 25,000

Initial network connectivity 50,000

Recurring cost
 (maintenance)

5,000

Communication expenses 5,000

Administrative expenses 5,000

Total 218,700

Analysis:

Diff. between on-site and offshore 330,420

Percent gain on offshore model over
 on-site model

60.17

figure 33.3 example cost–benefit case study: cost–benefit analysis between on-
site and offshore models.

© 2009 by Taylor & Francis Group, LLC

On-Site/Offshore Model ◾ 393

 1. The number of resources required—five.
 2. The schedule for the project is assumed to be 6 months.
 3. The cost of on-site existing resources is assumed to be $80 per hour.
 4. Eight hours per day and 22 days per month are considered.
 5. Offshore resources are considered at the cost of $150 per day.
 6. Initial knowledge transfer is assumed for 2 weeks at nominal cost.
 7. Project management cost is estimated at 30 percent of the resource cost.
 8. Initial environment establishment cost and subsequent maintenance cost are

assumed nominally.
 9. A percentage of recurring administrative cost included.
 10. The requirements have undergone complete reviews and sign-offs by the

stakeholders.
 11. Communication has been established by the project manager and is excellent.
 12. The project is nonstrategic to the business.
 13. Complete standards have been established and documented.

Although it can be quite difficult to satisfy the expected demand for IT resources in
Western countries, it is a completely different scenario in countries such as China
and India, where there are many available programmers with good academic back-
grounds. These vendor companies typically possess an extensive, highly specialized
knowledge base.

Another advantage is that we can engage these resources only for required
times, not on a continuous basis. This has the potential of substantially saving the
cost for the company.

Owing to the geographic location advantage of these regions, 24/7 service can
be achieved from these vendors. The service requests that are sent at the end of the
day in the United States are delivered at the beginning of the next working day.

Most of these outsourcing companies are CMM level 5 with ISO certification,
with established processes and procedures that enhance the quality of deliverables.

The onshore/offshore model can enable the organizations to concentrate on
their core business, carry out business reengineering, and provide information that
is valid, timely, and adequate to assist decision making at the top management level
as well as quality and cost control at the middle and lower levels.

On-Site/Offshore Model Challenges
The following are the key challenges:

Out of Sight

The offshore team being out of sight intensifies the fear of loss of control for the
on-site project managers. This can be overcome by visiting the stakeholders and
vendors’ facilities offshore to gain confidence. Second, the established processes,

© 2009 by Taylor & Francis Group, LLC

394 ◾ Software Testing and Continuous Quality Improvement

methodologies, and tools, which are industry standard due to CMM and ISO and
IEEE standards, will provide additional confidence.

Establish Transparency

The vendors should provide the clients with complete transparency and allow
them to actively participate in recruiting offshore resources and utilizing their own
resources on-site, as they deem appropriate.

Security Considerations

The security considerations on the secrecy of the data can be overcome by a dedi-
cated network set up exclusively for the client.

Project Monitoring

The failure of established project management practices can be attended to by tai-
loring the project management practices to suit the requirements of the clients.

Management Overhead

When the overall cost benefit is evaluated, the management overhead is additional,
and expenses using this model can be substantial.

Cultural Differences

Although fluency in the English language is considered an advantage for outsourc-
ing most of the projects from Europe and the United States, the cultural differences
can create difficulties. However, individuals tend to adapt to the different cultural
environment very quickly.

Software Licensing

This is another problem relating to global licensing or regional restrictions on the
use of software licenses that needs to be dealt with on a case-to-case basis.

future of the onshore/offshore Model
Several companies have attempted and are attempting to incorporate the onshore/
offshore model to reduce IT costs. Although the cost savings are clear, the quality
of the offshore deliverables depends heavily on the clear onshore project manage-
ment practices and standards. Even though there is a 24/7 work paradigm because

© 2009 by Taylor & Francis Group, LLC

On-Site/Offshore Model ◾ 395

of the overlap in global time differences, communication and cultural adjustments
are critical success factors.

However, offshoring is a mistake when technology companies confuse operat-
ing effectiveness and strategy. Operational effectiveness is concerned with working
cheaper or faster. Strategy is about the creation of a long-term competitive advantage,
which for technology companies is usually the ability to create innovative software.

Outsourcing developers and quality assurance testing is feasible when the soft-
ware developed is not a key part of the pipeline of innovation for products a com-
pany actually sells. For example, when Web site design or back-office software such
as accounts payable or inventory control is outsourced, that can be an effective
approach because it improves operational effectiveness. However, writing and test-
ing innovative software are skills that cannot be produced on an assembly line. It
requires hard-to-find development, design, and testing skills. Farming out develop-
ment efforts overseas will not create a competitive advantage. When a technology
company outsources a majority of its software development, that company may lose
its capacity to be innovative and grow its competitive edge.

© 2009 by Taylor & Francis Group, LLC

6Modern
Software
teSting toolS

Project management, according to the American Society for Quality (ASQ), is the
application of knowledge, skills, tools, and techniques to meet the requirements
of a project. Project management knowledge and practices are best described as a
set of processes. A critical project process is software testing. The following section
describes the implementation considerations for managing this endeavor.

The objectives of this section are to:

Describe basic project management principles. N
Contrast general project management and test management. N
Describe how to effectively estimate testing projects. N
Describe the defect management subprocess. N
Discuss the advantages and disadvantages of the offshore and onshore models. N
List the steps for integrating the testing activity into the development N
methodology.

© 2009 by Taylor & Francis Group, LLC

399

34Chapter

Software testing trends

Today, many companies are still struggling with the requirements phase, which is
often minimized (or bypassed) to get the application “out the door.” Testers con-
stantly ask, “How do you test software without a requirements specification?” The
answer is, you cannot. This lack of good requirements has resulted in losses of bil-
lions of dollars each year due to the rippling effect, which occurs when one phase
of the development life cycle has not been sufficiently completed before proceeding
to the next. For example, if the requirements are not fully defined, the design and
coding will reflect the wrong requirements. The application project will have to
constantly go back to redefine the requirements and then design and code. The effi-
ciency of 4GLs in some ways has diminished the importance of previously learned
lessons in software development.

Unfortunately, the foregoing historical development trends are being followed
in software testing, as listed in the following text.

automated Capture/replay testing tools
The original purpose of automated test tools was to automate regression testing to
verify that software changes do not adversely affect any portion of the application
that has already been tested. This requires that a tester has developed detailed test
cases that are repeatable, and the suite of tests is run every time after there is a
change to the application. With the emergence of automated testing tools, many
have embraced this as the final frontier for the testing effort.

However, on many occasions, testing tools are applied with no testing pro-
cess or methodology. A test process consists of test planning, test design, test
implementation, test execution, and defect management. Automated testing tools

© 2009 by Taylor & Francis Group, LLC

400 ◾ Software Testing and Continuous Quality Improvement

must integrate within the context of a testing process. The testing process must be
embedded into the development methodology to be successful. Also, having a test-
ing process is not enough. Many companies decline and even fail at the same time
they are reforming their processes. They are winning Baldrige awards and creating
dramatic new efficiencies, savings, and improvements in product quality and cus-
tomer service. Companies experiencing this paradox have clearly gotten a process
right. However, that is different from getting the right process right. The selection
and usage of an automated testing tool do not guarantee success.

test Case Builder tools
Companies purchase many automated testing tools but soon realize that they need
a programmer, or tester with programming experience, to create and maintain the
scripts. The emphasis shifts to getting the automated test script (a program) to
work. The scripting effort is a development project within a development project
and requires a great deal of programming effort. Many testers do not have a pro-
gramming background, and developers do not want to do testing.

Automated testing tools are just a delivery mechanism of the test data to the
target application under test. Automated testing tools are typically used for func-
tion/GUI testing. Tools are the interface between the test data and the GUI; they
verify that the target application responds as defined by the requirements (if there
are any). The creation of the test data/scenarios is a manual process in which a tester
(or business analyst) translates the requirements (usually written in a word proces-
sor such as Microsoft Word) to test data.

This is a very time-consuming and difficult problem in which humans are not
very efficient. There are numerous testing techniques (see Appendix G, “Software
Testing Techniques”) that aid in the translation, but this translation is still a human
effort from one formalism to another, for example, an English language statement
to test data/scenarios. It is ironic that so much attention has been given to develop-
ing test scenarios with little or no concern about the quality of the test data.

necessary and Sufficient Conditions
Automated testing tools to date do not satisfy the necessary and sufficient condi-
tions to achieve quality. These tools are as good as the quality of the test data input
from the automated test scripts.

GIGO stands for garbage in, garbage out. Computers, unlike humans, will
unquestioningly process the most nonsensical input data and produce nonsensical
output. Of course, a properly written program will reject input data that is obvi-
ously erroneous, but such checking is not always easy to specify and is tedious to
write. GIGO is usually said in response to users who complain that a program did

© 2009 by Taylor & Francis Group, LLC

Software Testing Trends ◾ 401

not “do the right thing” when given imperfect input. This term is also commonly
used to describe failures in human decision making due to faulty, incomplete, or
imprecise data. This is a sardonic comment on the tendency human beings have to
put excessive trust in “computerized” data.

The necessary and sufficient conditions for quality are that a robust tool be the
deliverer of quality test data/test scenarios to be exercised against the target applica-
tion based on what the application should or should not do. For most commercial
applications, the data is key to the test result. Testing is just entering or verifying
data values, but knowing what the state of the data is supposed to be so you can
predict expected results. Gaining control of the test data is fundamental for any
test effort, because a basic tenet of software testing is that you must know both the
input conditions of the data and the expected output results to perform a valid test.
If you do not know either of these, it is not a test; it is an experiment, because you
do not know what will happen. This predictability is important for manual testing,
but for automated testing it is essential.

However, for many systems you cannot even get started until you have enough
test data to make it meaningful, and if you need thousands or millions of data
records, you have got a whole new problem. In an extreme case, testing an airline
fare-pricing application required tens of thousands of setup transactions to create
the cities, flights, passengers, and fares needed to exercise all of the requirements.
The actual test itself took less time than the data setup. Other necessary conditions
are the people and process. The right people need to be trained, and there must be
a solid testing process in place before test automation can be attempted.

test data generation Strategies
Historically, there have been four basic strategies for assembling a test data envi-
ronment: production sampling, starting from scratch, seeding data, or generating
it from databases. Each strategy is considered, including the advantages and disad-
vantages of each. After this discussion, a fifth, or cutting-edge, approach generat-
ing not only test data but test scenarios and the expected results (based upon the
requirements) is discussed.

Sampling from Production
The most common test data acquisition technique is to take it from production.
This approach seems both logical and practical: production represents reality, in
that it contains the actual situations the software must deal with and it offers both
depth and breadth while ostensibly saving the time required to create new data.

There are at least three major drawbacks, however. The test platform seldom repli-
cates production capacity, and so a subset must be extracted. Acquiring this subset is
not as easy as taking every Nth record or some flat percentage of the data: the complex

© 2009 by Taylor & Francis Group, LLC

402 ◾ Software Testing and Continuous Quality Improvement

interrelationships between files means that the subset must be internally cohesive. For
example, the selected transactions must reference valid selected master accounts, and
the totals must coincide with balances and histories. Simply identifying these rela-
tionships and tracing through all of the files to ensure that the subset makes sense can
be a major undertaking in and of itself. Furthermore, it is difficult to know how large
a sample is necessary to achieve coverage of all critical states and combinations.

The second major drawback of this approach is that the tests themselves and the
extracted data must be constantly modified to work together. Going back to our basic
tenet, we must know the input conditions for a valid test, in this case, the data con-
tents. Each fresh extraction resets everything. If a payroll tax test requires an employee
whose year-to-date earnings will cross over the FICA limit on the next paycheck, for
example, the person performing the test must either find such an employee in the
subset, modify one, or add one. If the test is automated, it too must be modified
for the new employee number and related information. Searching for an employee
who meets all the conditions you are interested in is like searching for a needle in a
haystack. Thus, the time savings are illusory because there is limited repeatability: all
effort to establish the proper test conditions is lost every time the extract is refreshed.

And finally, this approach obviously cannot be employed for new systems under
development, inasmuch as no production data is available.

Starting from Scratch
The other extreme is to start from scratch, in effect reconstructing the test data each
time. This approach has the benefit of complete control; the content is always known
and can be enhanced or extended over time, preserving prior efforts. Internal cohe-
sion is ensured because the software itself creates and maintains the interrelationships,
and changes to file structures or record layouts are automatically incorporated.

However, reconstructing test data is not free from hazards. The most obvious is
that, without automation, it is highly impractical for large-scale applications. Less
obvious is the fact that some files cannot be created through online interaction:
they are system-generated only through interfaces or processing cycles. Thus, it may
not be possible to start from a truly clean slate.

A compelling argument also might be made that data created in a vacuum, so to
speak, lacks the expanse of production: unique or unusual situations that often arise
in the real world may not be contemplated by test designers. Granted, this technique
allows for steady and constant expansion of the test data as necessary circumstances
are discovered, but it lacks the randomness that makes production so appealing.

Seeding the Data
Seeding test data is a combination of using production files and creating new data
with specific conditions. This approach provides a dose of reality tempered by a
measure of control.

© 2009 by Taylor & Francis Group, LLC

Software Testing Trends ◾ 403

This was the strategy adopted by a major mutual fund to enable test automa-
tion. Without predictable repeatable data there was no practical means of reusing
automated tests across releases. Although much of the data, such as funds, custom-
ers, and accounts, could be created through the online interface, other data had
to be extracted from production. Testing statements and tax reports, for example,
required historical transactions that could not be generated except by multiple
execution cycles. So, the alternative to acquiring the data from production and per-
forming the necessary maintenance on the tests proved to be less time consuming.
Once the data was assembled, it was archived for reuse.

It is still not easy. You must still surmount the cohesion challenge, ensuring
that the subset you acquire makes sense, and you must still have an efficient means
of creating the additional data needed for test conditions. Furthermore, you must
treat the resulting data as the valuable asset that it is, instituting procedures for
archiving it safely so that it can be restored and reused.

Although a popular and sensible concept, reuse brings its own issues. For time-
sensitive applications, which many if not most are, reusing the same data over and
over is not viable unless you can roll the data dates forward or the system date back.
For example, an employee who is 64 one month may turn 65 the next, resulting in
different tax consequences for pension payouts.

Furthermore, modifications to file structures and record layouts demand data
conversions, but this may be seen as an advantage because, it is hoped, the conver-
sions are tested against the test bed before they are performed against production.

Generating Data Based on the Database
Generated test data can obviously be used to create databases with enough informa-
tion to approximate real-world conditions for testing capacity and performance. If
you need to ensure that your database design can support millions of customers or
billions of transactions and still deliver acceptable response times, generation may
be the only practical means of creating these volumes.

Test data generators begin with the description of the file or database that is to
be created. In most cases, the tools can read the database tables directly to deter-
mine the fields and their type, length, and format. The user can then add the rules,
relationships, and constraints that govern the generation of valid data.

Standard “profiles” are also offered, which can automatically produce billions of
names, addresses, cities, states, zip codes, Social Security numbers, test dates, and
other common data values such as random values, ranges, and type mixes. User-
customizable data types are also available in most products, which can be used for
generating unique SIC (standard industrialization classification) business codes,
e-mail addresses, and other data types.

A more critical feature, and more difficult to implement, is support for parent/
child and other relationships in complex databases. For example, a parent record,
such as a customer account master, must be linked with multiple child records,

© 2009 by Taylor & Francis Group, LLC

404 ◾ Software Testing and Continuous Quality Improvement

such as different accounts and transactions. This type of functionality is essential
for relational database environments in which referential integrity is key.

Some users have found it easier to use a test data generator to create data that
is then read by an automated test tool and entered into the application. This is an
interesting combination of data generating and seeding. The synergy between test
data generation and test automation tools is natural, and in some cases the test data
generation capability is being embedded in test execution products.

Databases can contain more than just data, such as stored procedures or derived
foreign keys that link other tables or databases. In these cases, it is not feasible to
generate data directly and populate the tables. Too often, maintaining database
integrity is a project in itself.

And, of course, in the end, volume is its own challenge. More is not necessarily
better. Too much data will take too long to generate, will require too much storage,
and may create even more issues than not having enough data will.

A Cutting-Edge Test Case Generator Based on Requirements
Because most test efforts require hundreds, if not thousands, of test cases, an exten-
sive development effort is the result when a capture/replay tool uses a scripting
language. This is time consuming, as automating an hour of manual testing can
require ten hours of coding and debugging. The net result is another development
effort within the test cycle, which is not planned, staffed, or budgeted for. For tes-
ters who do not have a programming background, there is a steep learning curve to
learn how to use these tools.

As the inevitable changes are made to the application, even minor modifica-
tions can have an extensive impact on the automated test library. A single change
to a widely used function can affect dozens of test cases or more. Not only do the
changes have to be mapped to the affected scripts and any necessary modifications
made, but the results also have to be tested. Eventually, the maintenance effort
takes so much of the test cycle time that testers are forced to revert to manual test-
ing to meet their deadlines. At this point, the tool becomes shelfware.

The focus of future automated testing tools will have a business perspective
rather than a programming view. Business analysts will be able to use such tools to
test applications from a business perspective without having to write test scripts.

Instead of requiring one to learn a scripting language, or to document their tests
so someone else can code them into scripts, the most advanced automated testing
tools let one document and automate in one step with no programming effort.
Application experts with business knowledge will be able to learn to develop and
execute robust automated tests using simple drop-down menus.

As pointed out previously, the focus of test automation to date has been on get-
ting the scripts to work. But where does the data come from? How does the tester
know the right test data is being used by the script and how does the tester know
there is adequate requirements coverage by the data?

© 2009 by Taylor & Francis Group, LLC

Software Testing Trends ◾ 405

This is a fundamental element that has typically been missing from capture/
replay automated tools up to now. What is not being addressed is the quality of the
test data input and test scenarios to the scripts. Typically, the automated testing tool
scripter is assigned to the testing department. Because this is a very specialized and
intensive programming effort, the focus is on getting the script working correctly.
It is assumed someone else will provide the test data/test scenarios.

The following is a description of a tool that derives the test data directly from
the test objects and requirements. The output of such tools is the input to the
automated testing tools. Such a tool bridges the gap between the requirements and
testing phases.

Smartware Technology’s SmartTest™ is an example of such a futuristic tool and
has the following major capabilities:

Enables manual inputs of parameters and values or imports from Excel N

Generates pairwise test data that can be input as variable data to automated N

tools (or manual testing) offered by the following:
HP’s Quick Test Pro −
IBM’s Computer Associate’s CA Verify −
Compuware’s TestPartner −
Empirix’s e-Test Suite −
Segue’s SilkTest −

Dynamically applies requirements/business rules to the pairwise test data N

Provides traceability between test cases and the requirements (business rules) N

Figure 34.1 shows the SmartTest™ tree structure in which the test cases are orga-
nized and housed. It also shows an Excel-like table format that contains the param-
eters and associated values. In this example, a parameter is a row in a GUI mortgage
application along with the respective values. These parameters are entered either
manually or through screen scraping of the target application GUI.

Figure 34.2 shows the SmartTest™ business rule builder. The rules are entered
by pointing at and clicking on predefined parameters and associated values to build
a Structured English if–then–else format. A built-in parameter called “Expected
Result” enables a rule to self-define the expected result from a test.

Figure 34.3 shows how SmartTest™ generates test cases and test data with pair-
wise interactions of the parameters and values. Each row is a test case. The business
rules are then dynamically applied to each test row. This adjusts the tests to reflect the
requirements (or business rules). Negative and positive test data can be constructed.

Figure 34.4 shows a bidirectional SmartTest™ report that associates which test
cases are associated with each business rule and vice versa. This feature is very useful
during maintenance to identify the test cases that should be executed based upon the
change on a requirement. (See www.smartwaretechnologies.com for more details.)

© 2009 by Taylor & Francis Group, LLC

http://www.smartwaretechnologies.com

406 ◾ Software Testing and Continuous Quality Improvement

figure 34.1 test case tree, test parameters, and values.

figure 34.2 Structured english business rules.

© 2009 by Taylor & Francis Group, LLC

Software Testing Trends ◾ 407

figure 34.3 Pairwise generated test data.

© 2009 by Taylor & Francis Group, LLC

408 ◾ Software Testing and Continuous Quality Improvement

figure 34.4 traceability matrix (business rules versus test cases). (See www.
smartwaretechnologies.com for more details.)

© 2009 by Taylor & Francis Group, LLC

http://www.smartwaretechnologies.com
http://www.smartwaretechnologies.com

409

35Chapter

taxonomy of Software
testing tools

testing tool Selection Checklist
Finding the appropriate tool can be difficult. Several questions need to be answered
before selecting a tool. Appendix F19, “Testing Tool Selection Checklist,” lists
questions to help the QA team evaluate and select an automated testing tool.

The following list categorizes currently available tool types on the basis of their
tool objectives and features. In the section “Commercial Vendor Tool Descriptions”
later in this chapter, popular vendors supporting each tool category are discussed.

Function/regression tools N —These tools help you test software through a native
graphical user interface (GUI) to ensure the functionality of the system.
Bug management tools N —These tools help you track software product defects
and manage product enhancement requests. They Manage defect states from
defect discovery to closure.
Test process/management tools N —These tools help organize and execute suites
of test cases at the command line, API, or protocol level. Some tools have
GUIs, but they do not have any special support for testing a product that has
a native GUI.
Requirements analysis tools N —These tools help you verify the completeness, and
locate ambiguities and conflicting requirements.

© 2009 by Taylor & Francis Group, LLC

410 ◾ Software Testing and Continuous Quality Improvement

Unit testing tools N —These tools help you unit test software, which is usually
performed by the developer, usually using interfaces below the public inter-
faces of the software under test.
Load/performance testing tools N —These tools help you analyze the performance
of the system under test under varying loads and stress.
Test data generation tools N —These tools help you create test data and test cases.
Site monitoring tools N —These tools help you measure and maximize value
across the IT service delivery life cycle to ensure applications meet quality,
performance, and availability goals.
Java testing tools N —These tools help you test Java Web site applets.
Embedded testing tools N —These tools help you verify systems that operate on
low-level devices, such as video chips.
Database testing tools N —These tools help you verify database integrity, business
rules, access, and refresh capabilities.
Web testing tools N —These tools help you locate broken Web links and evaluate
the performance of Web-based systems under heavy loads.
Security testing tools N —These tools help you evaluate the ability of the system
to ensure system integrity and protect resources.

Commercial vendor tool descriptions
Table 35.1 provides an overview of some commercial testing tools. The descriptions
are listed alphabetically. Tool name is listed and cross-referenced to the type of
software testing supported.

open-Source freeware vendor tools
Table 35.2 provides an overview of some open-source software testing tools. The
descriptions are listed alphabetically. Tool name is listed and cross-referenced to the
type of software testing supported.

when you Should Consider test automation
A testing tool should be considered on the basis of the test objectives. As a general
guideline, one should investigate the appropriateness of a testing tool when the
human manual process is inadequate. For example, if a system needs to be stress-
tested, a group of testers could simultaneously log on to the system and attempt
to simulate peak loads using stopwatches. However, this approach has limitations.
One cannot systematically measure the performance precisely or repeatably. For
this case, a load-testing tool can simulate several virtual users under controlled
stress conditions.

© 2009 by Taylor & Francis Group, LLC

Taxo
n

o
m

y o
f So

ftw
are Testin

g To
o

ls
◾

411

table 35.1 vendor testing tool versus tool Category

Tool Name*

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

B
u

g
M

an
ag

em
en

t

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t

Re
q

u
ir

em
en

t
A

n
al

ys
is

U
n

it
 T

es
ti

n
g

Lo
ad

/
Pe

rf
o

rm
an

ce

Te
st

in
g

Te
st

 D
at

a
G

en
er

at
io

n

Si
te

M

o
n

it
o

ri
n

g

Ja
va

 T
es

ti
n

g

Em
b

ed
d

ed

Te
st

in
g

D
at

ab
as

e
Te

st
in

g

W
eb

 T
es

ti
n

g

Se
cu

ri
ty

Te

st
in

g

Abbot X

AberroTest X

AccVerify/AccRepair X

actiWATE X

AdminiTrack X

ADT Web X

AETG Web X X

AgileTest X

Application Center Test X

Application Manager X

AppPerfectSevSuite X

ApTest Manager X

Aqitator X

Atomic Watch X

AutoIT X

Continued

© 2009 by Taylor & Francis Group, LLC

412
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 35.1 vendor testing tool versus tool Category (Continued)

Tool Name*

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

B
u

g
M

an
ag

em
en

t

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t

Re
q

u
ir

em
en

t
A

n
al

ys
is

U
n

it
 T

es
ti

n
g

Lo
ad

/
Pe

rf
o

rm
an

ce

Te
st

in
g

Te
st

 D
at

a
G

en
er

at
io

n

Si
te

M

o
n

it
o

ri
n

g

Ja
va

 T
es

ti
n

g

Em
b

ed
d

ed

Te
st

in
g

D
at

ab
as

e
Te

st
in

g

W
eb

 T
es

ti
n

g

Se
cu

ri
ty

Te

st
in

g

Automated Test Designer X

AutomatedQA X

AutomateTestManager X

Bug/Defect Tracking Expert X

BugAware X

Bugcentral X

BugHost X

BugHuntress X

Bugkilla X

BugRoster X

BugStation X

BugTimer X

BUGtrack X

Bugvisor X

Bugzero X

Bugzilla X

© 2009 by Taylor & Francis Group, LLC

Taxo
n

o
m

y o
f So

ftw
are Testin

g To
o

ls
◾

413

Cactus X

CAPBAK/MSW X

CAPBAK/X X

CARS X

Census BugTrack X

Certify X

ChangeAgent X

Citra Test X

CSE HTML Validator X

Cyber Spyder Link X

Data Generator X

Datatect X

DB Stgress X

DefectTracker X

DevTest X

DevTrack X

DigitaTester X

Dragonfly X

DTM DB Stress X

Eggplant X

Continued

© 2009 by Taylor & Francis Group, LLC

414
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 35.1 vendor testing tool versus tool Category (Continued)

Tool Name*

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

B
u

g
M

an
ag

em
en

t

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t

Re
q

u
ir

em
en

t
A

n
al

ys
is

U
n

it
 T

es
ti

n
g

Lo
ad

/
Pe

rf
o

rm
an

ce

Te
st

in
g

Te
st

 D
at

a
G

en
er

at
io

n

Si
te

M

o
n

it
o

ri
n

g

Ja
va

 T
es

ti
n

g

Em
b

ed
d

ed

Te
st

in
g

D
at

ab
as

e
Te

st
in

g

W
eb

 T
es

ti
n

g

Se
cu

ri
ty

Te

st
in

g

ER/Datagen X

Eventcorder X

ExDesk X

Extractor X

Fast BugTrack X

File-AID/CS X

FogBUGZ X

Footprints X

GJTester X

GUIdancer X

GUITAR X

Haven X

HTML Candy X

HTML PowerTools X

HTML Tidy X

httpUnit X

© 2009 by Taylor & Francis Group, LLC

Taxo
n

o
m

y o
f So

ftw
are Testin

g To
o

ls
◾

415

Infocus X

IssueTrak X

Jcover X

Jenny X

JIRA X

JStyle X

JSystem X

Jtest X

JTrac X

Jumpstart X

Junit X

JVerify X

KCC X

KenTestMan X

Link Checker Pro X

Link Runner X

Link Validator X

LinkScan X

LinkSleuth X

LISA X

Continued

© 2009 by Taylor & Francis Group, LLC

416
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 35.1 vendor testing tool versus tool Category (Continued)

Tool Name*

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

B
u

g
M

an
ag

em
en

t

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t

Re
q

u
ir

em
en

t
A

n
al

ys
is

U
n

it
 T

es
ti

n
g

Lo
ad

/
Pe

rf
o

rm
an

ce

Te
st

in
g

Te
st

 D
at

a
G

en
er

at
io

n

Si
te

M

o
n

it
o

ri
n

g

Ja
va

 T
es

ti
n

g

Em
b

ed
d

ed

Te
st

in
g

D
at

ab
as

e
Te

st
in

g

W
eb

 T
es

ti
n

g

Se
cu

ri
ty

Te

st
in

g

Loadea Test X

LoadRunner X

Lorem Ipsum Generator X

Mantis X

Marathon X

Message Magic X

MITS.GUI X

Monitor Master X

MyBugReport X

Nunit X

Ozibug X

Panorama X

ParaSoft.Test X

Perfect Tracker X

PETA X

Pro X

© 2009 by Taylor & Francis Group, LLC

Taxo
n

o
m

y o
f So

ftw
are Testin

g To
o

ls
◾

417

Problem Tracker X

PureLoad X

QA Inspect X

QA Wizard X

QACenter Performance X

QALoad X

QARun X

QA-Test X

QC Center X

QEngine X

QEngine X

QF-Test X

QStudio X

Quality Center X X

QuARS X

QuickTest Professional™ X

Ramp Ascend X

Ranoerex X

Rational Rational Rose X

Rational RequisitePro X

Continued

© 2009 by Taylor & Francis Group, LLC

418
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 35.1 vendor testing tool versus tool Category (Continued)

Tool Name*

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

B
u

g
M

an
ag

em
en

t

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t

Re
q

u
ir

em
en

t
A

n
al

ys
is

U
n

it
 T

es
ti

n
g

Lo
ad

/
Pe

rf
o

rm
an

ce

Te
st

in
g

Te
st

 D
at

a
G

en
er

at
io

n

Si
te

M

o
n

it
o

ri
n

g

Ja
va

 T
es

ti
n

g

Em
b

ed
d

ed

Te
st

in
g

D
at

ab
as

e
Te

st
in

g

W
eb

 T
es

ti
n

g

Se
cu

ri
ty

Te

st
in

g

Rational Robot X

Rational Test Manager X

Reactis Tester X

Real Validator X

RegressionTester X

Replay Xcessory X

Repro X

RR Tracker X

SAP Software Quality Assurance Testing
Tool

X

ScriptMap X

ScriptTech X

SeeDEV X

Shunra\Storm X

SilkCenter Test Manager X

SilkPerformer X

© 2009 by Taylor & Francis Group, LLC

Taxo
n

o
m

y o
f So

ftw
are Testin

g To
o

ls
◾

419

SilkTest X

SilkTest X

SiteMonitor X

SM2SMV X

Smalltalk Test Mentor X

* SMARTCHECK X

* SMARTPROCESS X

* SMARTTEST X X

SPRAT X

SQL DB Validator X

SQL Profiler X

SQS/Test Professional X

Squish X

TALC2000 X

Task Complete X

TBrun X

TCAT/Java X

TeamTrak X

Tessy X

TestArchitect X

Continued

© 2009 by Taylor & Francis Group, LLC

420
◾

So
ftw

are Testin
g an

d
 C

o
n

tin
u

o
u

s Q
u

ality Im
p

ro
vem

en
t

table 35.1 vendor testing tool versus tool Category (Continued)

Tool Name*

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

B
u

g
M

an
ag

em
en

t

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t

Re
q

u
ir

em
en

t
A

n
al

ys
is

U
n

it
 T

es
ti

n
g

Lo
ad

/
Pe

rf
o

rm
an

ce

Te
st

in
g

Te
st

 D
at

a
G

en
er

at
io

n

Si
te

M

o
n

it
o

ri
n

g

Ja
va

 T
es

ti
n

g

Em
b

ed
d

ed

Te
st

in
g

D
at

ab
as

e
Te

st
in

g

W
eb

 T
es

ti
n

g

Se
cu

ri
ty

Te

st
in

g

TestBench X

TestComplete X

TestDirector X X

TestDrive X

Testit! X

TestLoad X

TestPartner X

TestPlan X

TestQUest Pro X

TESTSMART (*) see original software X

TestWorks X

The Grinder X

T-Plan X

TrackStudio X

TurboData X

txLoad X

© 2009 by Taylor & Francis Group, LLC

Taxo
n

o
m

y o
f So

ftw
are Testin

g To
o

ls
◾

421

United Test Pro X

USBTester X

Vantage X

VectorCAST X

VisionProject X

VNCRobot X

WAPT X

WebLight X

WebLoad X

WebLoad X

WebQA X

WinFeedback

WinRunner® X

Woodpecker IT X

XtremeLoad

X-Unity X

yKAP X

* Cocial tools developed by author of this book through Smartware Technologies, Inc.

© 2009 by Taylor & Francis Group, LLC

422 ◾ Software Testing and Continuous Quality Improvement

table 35.2 open-Source testing tool versus tool Category

Tool Name

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

To

o
ls

Te
st

 D
es

ig
n

/
D

at
a

To
o

ls

Lo
ad

/
Pe

rf
o

rm
an

ce

 T
o

o
ls

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t
To

o
ls

U
n

it
 T

es
ti

n
g

To
o

ls

D
ef

ec
t

M
an

ag
em

en
t

To
o

ls

Se
cu

ri
ty

 T
es

ti
n

g
To

o
ls

Abbot Java GUI Test
Framework

X

ALLPAIRS X

Anteater X

Anthill Bug Manager X

Apache JMeter X

Apache Postage X

Apodora X

Appache Jelly X

Arbiter X

AUnit X

Autonet X

Avignon X

benerator X

BFBTester X

BTsys X

BugBye X

Buggit X

Bugs Online X

Bugtrack X

Bugzilla X

Canoo WebTest X

CLIF X

Codestriker X

CROSS X

Crosscheck X

csvdiff X

© 2009 by Taylor & Francis Group, LLC

Taxonomy of Software Testing Tools ◾ 423

table 35.2 open-Source testing tool versus tool Category (Continued)

Tool Name

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

To

o
ls

Te
st

 D
es

ig
n

/
D

at
a

To
o

ls

Lo
ad

/
Pe

rf
o

rm
an

ce

 T
o

o
ls

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t
To

o
ls

U
n

it
 T

es
ti

n
g

To
o

ls

D
ef

ec
t

M
an

ag
em

en
t

To
o

ls

Se
cu

ri
ty

 T
es

ti
n

g
To

o
ls

curl-loader X

Data Generator X

DBFeeder X

DbFit X

DBMonster X

DbUnit X

DejaGnu X

Deluge X

Dieseltest X

dogtail X

Doit X

DTraq X

EasyMock X

Eclipse TPTP X

EMOS Framework X

Enterprise Web Test X

Ethereal X

Expect X

Faban X

FindBugs X

Firefox Web Developer X

Fitnesse X

Flawfinder X

Frankenstein X

FunkLoad X

GITAK X

Continued

© 2009 by Taylor & Francis Group, LLC

424 ◾ Software Testing and Continuous Quality Improvement

table 35.2 open-Source testing tool versus tool Category (Continued)

Tool Name

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

To

o
ls

Te
st

 D
es

ig
n

/
D

at
a

To
o

ls

Lo
ad

/
Pe

rf
o

rm
an

ce

 T
o

o
ls

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t
To

o
ls

U
n

it
 T

es
ti

n
g

To
o

ls

D
ef

ec
t

M
an

ag
em

en
t

To
o

ls

Se
cu

ri
ty

Te

st
in

g
To

o
ls

GNU/Linux Desktop
Testing Project

X

Grinder X

Hammerhead 2 X

Harness X

http_load X

Httperf X

IBM® Optim X

IdMUnit X

Imprimatur X

IMS X

ItiN X

ITP X

ItsNat X

iValidator X

Jacobie X

Jameleon X

JChav X

JCrawler X

jDiffChaser X

Jemmy X

JFunc X

JMockit X

JWebUnit X

Latka X

Linux Test Project X

Linux Test Project test
suite

X

© 2009 by Taylor & Francis Group, LLC

Taxonomy of Software Testing Tools ◾ 425

table 35.2 open-Source testing tool versus tool Category (Continued)

Tool Name

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

To

o
ls

Te
st

 D
es

ig
n

/
D

at
a

To
o

ls

Lo
ad

/
Pe

rf
o

rm
an

ce

 T
o

o
ls

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t
To

o
ls

U
n

it
 T

es
ti

n
g

To
o

ls

D
ef

ec
t

M
an

ag
em

en
t

To
o

ls

Se
cu

ri
ty

Te

st
in

g
To

o
ls

Lobo X

LogiTest X

LReport X

MActor X

Mantis X

MaxQ X

Metasploit X

MozUnit X

Nessus X

Nikto X

NTime X

Oliver X

OpenSTA X

OpenWebLoad X

org.tigris.mbt X

Pamie X

Paros X

Pounder X

ProofPower X

p-unit

Pywinauto X

qaManager X

QAT X

QaTraq X

QMTest X

Roundup X

rth X

Continued

© 2009 by Taylor & Francis Group, LLC

426 ◾ Software Testing and Continuous Quality Improvement

table 35.2 open-Source testing tool versus tool Category (Continued)

Tool Name

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

To

o
ls

Te
st

 D
es

ig
n

/
D

at
a

To
o

ls

Lo
ad

/
Pe

rf
o

rm
an

ce

 T
o

o
ls

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t
To

o
ls

U
n

it
 T

es
ti

n
g

To
o

ls

D
ef

ec
t

M
an

ag
em

en
t

To
o

ls

Se
cu

ri
ty

Te

st
in

g
To

o
ls

RTH Turbo X

Sahi X

Samie X

Seagull X

Selenium X

SharpRobo X

Siege X

Sipp X

Slamd X

Soap-Stone X

soapUI X

Solex X

STAF X

stress_driver X

Systin X

tclwebtest X

TCW X

Tesly X

Test Environment Toolkit X

TestGen4Web X

Testitool X

TestLink X

TestMaker X

Testmaster X

Testopia X

TextTest X

tg X

© 2009 by Taylor & Francis Group, LLC

Taxonomy of Software Testing Tools ◾ 427

table 35.2 open-Source testing tool versus tool Category (Continued)

Tool Name

Fu
n

ct
io

n
/

Re
gr

es
si

o
n

To

o
ls

Te
st

 D
es

ig
n

/
D

at
a

To
o

ls

Lo
ad

/
Pe

rf
o

rm
an

ce

 T
o

o
ls

Te
st

 P
ro

ce
ss

/
M

an
ag

em
en

t
To

o
ls

U
n

it
 T

es
ti

n
g

To
o

ls

D
ef

ec
t

M
an

ag
em

en
t

To
o

ls

Se
cu

ri
ty

Te

st
in

g
To

o
ls

Toaster X

Tomato X

TPTEST X

Tsung X

Valgrind X

Visual Parser X

Watij X

WatiN X

Watir X

Web Application Load
Simulator

X

Web Form Flooder X

Web Polygraph X

WebGoat X

WebInject X

WebLOAD X

WebScarab X

WebTst X

WET X

Win32-IEAutomation-0.5 X

Wireshark X

XmlTestSuite X X

© 2009 by Taylor & Francis Group, LLC

428 ◾ Software Testing and Continuous Quality Improvement

A regression testing tool might be needed under the following circumstances:

Tests need to be run at every build of an application, for example, time- N
consuming, unreliable, and inconsistent use of human resources.
Tests are required using multiple data values for the same actions. N
Tests require detailed information from system internals, such as SQL and N
GUI attributes.
There is a need to stress a system to see how it performs. N

Testing tools have the following benefits:

Much faster than their human counterparts N
Run without human intervention N
Provide code coverage analysis after a test run N
Precisely repeatable N
Reusable, like programming subroutines N
Detailed test cases (including predictable “expected results”) that have been N
developed from functional specifications or technical design documentation
Stable testing environment with a test database that can be restored to a N
known constant, so that the test cases can be repeated each time modifica-
tions are made to the application

when you Should not Consider test automation
In spite of the compelling business case for test automation, and despite the signifi-
cant investments of money, time, and effort invested in test automation tools and
projects, the majority of testing is still performed manually. Why? There are three
primary reasons why test automation fails: the steep learning curve, the develop-
ment effort required, and the maintenance overhead.

The learning curve is an issue for the simple reason that traditional test script-
ing tools are basically specialized programming languages, but the best testers are
application experts, not programmers.

This creates a skills disconnect that requires an unreasonable learning curve.
Application experts, who make ideal testers because of their business knowledge, are
unlikely to have programming skills. Gaining these skills takes months if not years, and
without these skills the script libraries are usually not well designed for maintainability.

Most test tool vendors are aware of this shortcoming and attempt to address it
through a capture/replay facility. This is an approach that ostensibly allows a tester
to perform the test manually while it is automatically “recorded” into a test script
that can later be replayed. Although this approach appears to address the learning
curve, in reality it often causes more problems than it solves.

© 2009 by Taylor & Francis Group, LLC

Taxonomy of Software Testing Tools ◾ 429

First, a recorded test script is fragile and easily subject to failure. Because it has
no error handling or logic, the smallest deviation in the application behavior or data
will cause the script to either abort or make errors. Furthermore, it combines both
script and data into a single program, which yields no reusability or modularity.
The end result is essentially unstructured, poorly designed code.

Also, although it may appear easy to record a script, it is not as easy to modify
or maintain it. The reason software is tested is because something has changed,
which means the scripts must also be modified. Making extensive script changes
and debugging errors is time consuming and complex.

Once companies discover that capture/replay is not a viable long-term solution,
they either give up or begin a development effort.

Contrary to popular belief, it is not always wise to purchase a testing tool. Some
factors that limit a testing tool include the following:

Unrealistic expectations N —The IT industry is notorious for latching onto any
new technology solution thinking that it will be a panacea. It is human nature
to be optimistic about any new technology. The vendor salespeople present
the rosiest picture of their tool offerings. The result is expectations that are
often unrealistic.
Lack of a testing process N —A prerequisite for test automation is that a sound
manual testing process exist. The lack of good testing practices and standards
will be detrimental to test automation. Automated testing tools will not auto-
matically find defects unless well-defined test plans are in place.
False sense of security N —Even though a set of automated test scripts runs suc-
cessfully, this does not guarantee that the automated testing tool has located
all the defects. This assumption leads to a false sense of security. Automation
is as good as the test cases and test input data.
Technical difficulties N —Automated testing tools themselves unfortunately have
defects. Technical environmental changes such as the operating system can
severely limit automated testing tools.
Organizational issues N —Test automation will have an impact on the organiza-
tion, for it transcends projects and departments. For example, the use of data-
driven test scripts requires test input data, typically in the form of rows in an
Excel spreadsheet. This data will probably be supplied by another group, such
as the business system analysts, not the testing organization.
Cost N —A testing tool may not be affordable to the organization, for example,
the cost/performance trade-off.
Culture N —The development culture may not be ready for a testing tool, because
it lacks the proper skills and commitment to long-term quality.
Usability testing N —There are no automated testing tools that can test usability.
One-time testing N —If the test is going to be performed only once, a testing tool
may not be worth the required time and expense.

© 2009 by Taylor & Francis Group, LLC

430 ◾ Software Testing and Continuous Quality Improvement

Time crunch N —If there is pressure to complete testing within a fixed time
frame, a testing tool may not be feasible, because it takes time to learn, set up,
and integrate into the development methodology.
Ad hoc testing N —If there are no formal test design and test cases, a regression
testing tool will be useless.
Predictable results N —If tests do not have predictable results, a regression test-
ing tool will be useless.
Instability N —If the system is changing rapidly during each testing spiral, more
time will be spent maintaining a regression testing tool than it is worth.

© 2009 by Taylor & Francis Group, LLC

431

36Chapter

Methodology to evaluate
automated testing tools

This part provides an outline of the steps involved in acquiring, implementing,
and using testing tools. The management of any significant project requires that
the work be divided into tasks for which completion criteria can be defined. The
transition from one task to another occurs in steps; to permit the orderly progress
of the activities, the scheduling of these steps must be determined in advance. A
general outline for such a schedule is provided by the steps described. The actual
time schedule depends on many factors that must be determined for each specific
tool use.

Step 1: define your test requirements
The goals to be accomplished should be identified in a format that permits later
determination that they have been met (i.e., Step 15). Typical goals include reduc-
ing the average processing time of C++ programs by one fifth, achieving complete
interchangeability of programs or data sets with another organization, and adher-
ing to an established standard for documentation format. The statement of goals
should also identify responsibilities, particularly the role that headquarters staff
may have, and specify coordination requirements with other organizations. When a
centralized management method is employed, the statement of goals may include a
budget and a desired completion date. Once these constraints are specified, funding
management may delegate the approval of the acquisition plan to a lower level.

© 2009 by Taylor & Francis Group, LLC

432 ◾ Software Testing and Continuous Quality Improvement

Step 2: Set tool objectives
The goals generated in Step 1 should be translated into desired tool features and
requirements that arise from the development and operating environment identified.
Constraints on tool cost and availability may also be added at this step. For example,
a typical tool objective for a program format is to provide header identification, uni-
form indentation, and the facility to print listings and comments separately for all
Pascal programs. In addition, the program must be able to run on the organization’s
specific computer under its operating system. Only tools that have been in commer-
cial use for at least one year and at no fewer than N sites should be considered. (The
value of N is determined by the number of sites the organization has.)

Step 3a: Conduct Selection activities
for informal Procurement
The following tasks should be performed when an informal procurement plan is
in effect.

Task 1: Develop the Acquisition Plan

The acquisition plan communicates the actions of software management both up and
down the chain of command. The plan may also be combined with the statement of
tool objectives (Step 2). The acquisition plan includes the budgets and schedules for
subsequent steps in the tool introduction, a justification of resource requirements
in light of expected benefits, contributions to the introduction expected from other
organizations (e.g., the tool itself, modification patches, or training materials), and
the assignment of responsibility for subsequent events within the organization, par-
ticularly the identification of the software engineer. Minimum tool documentation
requirements are also specified in the plan.

Task 2: Define Selection Criteria

The selection criteria include a ranked listing of attributes that should support effec-
tive tool use. Typical selection criteria include the following:

The ability to accomplish specified tool objectives N
Ease of use N
Ease of installation N
Minimum processing time N
Compatibility with other tools N
Low purchase or lease cost N

© 2009 by Taylor & Francis Group, LLC

Methodology to Evaluate Automated Testing Tools ◾ 433

Most of these criteria must be considered further to permit objective evaluation,
but this step may be left to the individual who does the scoring. Constraints that
have been imposed by the preceding events or are generated at this step should be
summarized together with the criteria.

Task 3: Identify Candidate Tools

This is the first step for which the software engineer is responsible. The starting
point for preparing a list of candidate tools is a comprehensive tool catalogue. Two
lists are usually prepared, the first of which does not consider the constraints and
contains all tools that meet the functional requirements. For the feasible candidates,
literature should be requested from the developer and then examined for confor-
mance with the given constraints. At this point, the second list is generated, which
contains tools that meet both the functional requirements and the constraints. If
this list is too short, some constraints may be relaxed.

Task 4: Conduct the Candidate Review

The user must review the list of candidate tools prepared by the software engi-
neer. Because few users can be expected to be knowledgeable about software
tools, specific questions should be raised by software management, including the
following:

Will this tool handle the present file format? N
Are tool commands consistent with those of the editor? N
How much training is required? N

Adequate time should be allowed for this review, and a due date for responses
should be indicated. Because users often view this as a low-priority, long-term task,
considerable follow-up by line management is required. If possible, tools should be
obtained for trial use, or a demonstration at another facility should be arranged.

Task 5: Score the Candidates

For each criterion identified in Task 2, a numeric score should be generated on the
basis of the information obtained from the vendor’s literature, tool demonstrations,
the user’s review, observation in a working environment, or the comments of previ-
ous users. Once weighting factors for the criteria have been assigned, the score for
each criterion is multiplied by the appropriate factor; the sum of the products repre-
sents the overall tool score. If the criteria are merely ranked, the scoring will consist
of a ranking of each candidate under each criterion heading. Frequently during this
process, a single tool will be recognized as clearly superior.

© 2009 by Taylor & Francis Group, LLC

434 ◾ Software Testing and Continuous Quality Improvement

Task 6: Select the Tool

This decision is reserved for software managers; they can provide a review of the
scoring and permit additional factors that are not expressed in the criteria to be con-
sidered. For example, a report from another agency may state that the selected ven-
dor did not provide adequate service. If the selected tool did not receive the highest
score, the software engineer must review the tool characteristics thoroughly to avoid
unexpected installation difficulties. (Tool selection concludes the separate proce-
dure for informal procurement. The overall procedure continues with Step 4.)

Step 3b: Conduct Selection activities
for formal Procurement
The following tasks should be performed when a formal tool procurement plan is
in effect.

Task 1: Develop the Acquisition Plan

This plan must include all the elements mentioned for Task 1 of Step 3a, as well as
the constraints on the procurement process and the detailed responsibilities for all
procurement documents (e.g., statement of work and technical and administrative
provisions in the request for proposal).

Task 2: Create the Technical Requirements Document

The technical requirements document is an informal description of tool require-
ments and the constraints under which the tool must operate. It uses much of
the material from the acquisition plan, but should add enough detail to support a
meaningful review by the tool user.

Task 3: Review Requirements

The user must review the technical requirements for the proposed procurement. As
in the case of Step 3a, Task 4, the user may need to be prompted with pertinent
questions, and there should be close management follow-up for a timely response.

Task 4: Generate the Request for Proposal

The technical portions of the request for proposal should be generated from the
technical requirements document and any user comments on it. Technical consid-
erations typically include the following:

© 2009 by Taylor & Francis Group, LLC

Methodology to Evaluate Automated Testing Tools ◾ 435

A specification of the tool as it should be delivered, including applicable N
documents, a definition of the operating environment, and the quality assur-
ance provisions.
A statement of work for which the tool is procured. This includes any appli- N
cable standards for the process by which the tool is generated (e.g., config-
uration management of the tool) and documentation or test reports to be
furnished with the tool. Training and operational support requirements are
also identified in the statement of work.
Proposal evaluation criteria and format requirements. These criteria are listed N
in order of importance. Subfactors for each may be identified. Any restric-
tions on the proposal format (e.g., major headings, page count, or desired
sample outputs) may be included.

Task 5: Solicit Proposals

This activity should be carried out by administrative personnel. Capability lists
of potential sources are maintained by most purchasing organizations. When the
software organization knows of potential bidders, those bidders’ names should be
submitted to the procurement office. Responses should be screened for compliance
with major legal provisions of the request for proposal.

Task 6: Perform the Technical Evaluation

Each proposal received in response to the request for proposal should be evalu-
ated in light of the previously established criteria. Failure to meet major technical
requirements can lead to outright disqualification of a proposal. Those deemed
to be in the competitive range are assigned point scores that are then considered
together with cost and schedule factors, which are separately evaluated by admin-
istrative personnel.

The automated testing tool may need to be customized to the test automation
environment. To demonstrate the capability and compatibility of the tool with the
application, a proof of concept (POC) should be requested from the vendor. In the
POC, one of the business scenarios should be automated using the tool covering
various business verification points and actions.

Task 7: Select a Tool Source

On the basis of the combined cost, schedule, and technical factors, a source for the
tool is selected. If this is not the highest-rated technical proposal, managers should
require additional reviews by software management and the software engineer to
determine whether the tool is acceptable. (Source selection concludes the separate
procedure for formal procurement. The overall procedure continues with Step 4.)

© 2009 by Taylor & Francis Group, LLC

436 ◾ Software Testing and Continuous Quality Improvement

Step 4: Procure the testing tool
In addition to verifying that the cost of the selected tool is within the approved
budget, the procurement process considers the adequacy of licensing and other
contractual provisions and compliance with the fine print associated with all gov-
ernment procurements. The vendor must furnish the source program, meet specific
test and performance requirements, and maintain the tool. In informal procure-
ment, a trial period use may be considered if this has not already taken place under
one of the previous steps.

If the acquisition plan indicates the need for outside training, the ability of the
vendor to supply the training and any cost advantages from the combined procure-
ment of the tool and the training should be investigated. If substantial savings can
be realized through simultaneously purchasing the tool and training users, pro-
curement may be held up until outside training requirements are defined (Step 7).

Step 5: Create the evaluation Plan
The evaluation plan is based on the goals identified in Step 1 and the tool objec-
tives derived in Step 2. It describes how the attainment of these objectives should
be evaluated for the specific tool selected. Typical items to be covered in the plan
are milestones for installation and dates and performance levels for the initial
operational capability and for subsequent enhancements. When improvements
in throughput, response time, or turnaround time are expected, the reports for
obtaining these data should be identified. Responsibility for tests, reports, and
other actions must be assigned in the plan, and a topical outline of the evaluation
report should be included.

The acceptance test procedure is part of the evaluation plan, although for a
major tool procurement it may be a separate document. The procedure lists the
detailed steps that are necessary to test the tool in accordance with the procure-
ment provisions when it is received, to evaluate the interaction of the tool with the
computer environment (e.g., adverse effects on throughput), and to generate an
acceptance report.

Step 6: Create the tool Manager’s Plan
The tool manager’s plan describes how the tool manager is selected, the responsibil-
ities for the adaptation of the tool, and the training that is required. The tool man-
ager should be an experienced systems programmer who is familiar with the current
operating system. Training in the operation and installation of the selected tool in
the form of review of documentation, visits to the tool’s current users, or training
by the vendor must be arranged. The software engineer is responsible for the tool

© 2009 by Taylor & Francis Group, LLC

Methodology to Evaluate Automated Testing Tools ◾ 437

manager’s plan, and the tool manager should work under the software engineer’s
direction. The tool manager’s plan must be approved by software management.

Step 7: Create the training Plan
The training plan should first consider the training that is automatically provided
with the tool (e.g., documentation, test cases, and online diagnostics). These fea-
tures may be supplemented by standard training aids supplied by the vendor for in-
house training (e.g., audio- or videocassettes and lecturers). Because of the expense,
training sessions at other locations should be considered only when nothing else is
available. The personnel to receive formal training should also be specified in the
plan, and adequacy of in-house facilities (e.g., number of terminals and computer
time) should be addressed. If training by the tool vendor is desired, this need should
be identified as early as possible to permit training to be procured along with the
tool (see Step 4). Users must be involved in the preparation of the training plan;
coordination with users is essential. The training plan must be prepared by the soft-
ware engineer and approved by software management. Portions of the plan must be
furnished to the procurement staff if outside personnel or facilities are used.

Step 8: receive the tool
The tool is turned over by the procuring organization to the software engineer.

Step 9: Perform the acceptance test
The software engineer or staff should test the tool in an as-received condition with
only those modifications made that are essential for bringing the tool up on the
host computer. Once a report on the test has been issued and approved by the soft-
ware manager, the tool is officially accepted.

Step 10: Conduct orientation
When it has been determined that the tool has been received in a satisfactory con-
dition, software management should hold an orientation meeting for all personnel
involved in the use of the tool and tool products (e.g., reports or listings generated
by the tool). The objectives of tool use (e.g., increased throughput or improved leg-
ibility of listings) should be directly communicated. Highlights of the evaluation
plan should be presented, and any changes in duties associated with tool introduc-
tion should be described. Personnel should be reassured that allowances will be

© 2009 by Taylor & Francis Group, LLC

438 ◾ Software Testing and Continuous Quality Improvement

made for problems encountered during tool introduction and reminded that the
tool’s full benefits may not be realized for some time.

Step 11: implement Modifications
This step is carried out by the tool manager in accordance with the approved tool
manager plan. It includes modifications of the tool, the documentation, and the
operating system. In rare cases, some modification of the computer (e.g., channel
assignments) may also be necessary. Typical tool modifications involve deletion of
unused options, changes in prompts or diagnostics, and other adaptations made
for efficient use in the current environment. In addition, the modifications must be
thoroughly documented.

Vendor literature for the tool should be reviewed in detail and tailored to the
current computer environment and to any tool modifications that have been made.
Deleting sections that are not applicable is just as useful as adding material that
is required for the specific programming environment. Unused options should be
clearly marked or removed from the manuals. If the tool should not be used for some
resident software (e.g., because of language incompatibility or conflicts in the oper-
ating system interface), warning notices should be inserted in the tool manual.

Step 12: train tool users
Training is a joint responsibility of the software engineer and the tool users and
should help promote tool use. The software engineer is responsible for the con-
tent (in accordance with the approved training plan), and the tool user controls
the length and scheduling of sessions. The tool user should be able to terminate
training steps that are not helpful and to extend portions that are helpful but need
further explication. Retraining or training in the use of additional options may be
necessary and can provide an opportunity for users to talk about problems associ-
ated with the tool.

Step 13: use the tool in the operating environment
The first use of the tool in the operating environment should involve the most
qualified user personnel and minimal use of options. This first use should not be
on a project with tight schedule constraints. Resulting difficulties must be resolved
before expanded service is initiated. If the first use is successful, use by additional
personnel and use of further options may commence.

User comments on training, first use of the tool, and the use of extended
capabilities should be prepared and furnished to the software engineer. Desired

© 2009 by Taylor & Francis Group, LLC

Methodology to Evaluate Automated Testing Tools ◾ 439

improvements in the user interface, in the speed or format of response, and in the
use of computer resources are all appropriate topics. Formal comments may be
solicited shortly after the initial use, after six months, and again after one year.

Step 14: write the evaluation report
Using the outline generated in Step 5, the software engineer prepares the evaluation
report. User comments and toolsmith observations provide important input to this
document. Most of all, the document must discuss how the general goals and tool
objectives were met. The report may also include observations on the installation
and use of the tool, cooperation received from the vendor in installation or train-
ing, and any other lessons learned.

Tool and host computer modifications are also described in this report. It may
contain a section of comments useful to future tool users. The report should be
approved by software management and preferably by funding management as well.

Step 15: determine whether goals have Been Met
Funding management receives the evaluation report and should determine whether
the goals that were established in Step 1 have been met. This written determination
should address the following:

Attainment of technical objectives N
Adherence to budget and other resource constraints N
Timeliness of the effort N
Cooperation from other agencies N
Recommendations for future tool acquisitions N

© 2009 by Taylor & Francis Group, LLC

7aPPendiCeS

443

AAppendix

Spiral (agile) testing
Methodology

The following is a graphical representation of the spiral testing methodology and
consists of an overview relating the methodology to Deming’s Plan–Do–Check–
Act (PDCA) quality wheel, parts, steps, and tasks.

444 ◾ Software Testing and Continuous Quality Improvement

(STEPS) PLAN DO CHECK ACT

Information
Gathering

Test
Planning

Test
Case Design

Test
Development

Test
Execution/
Evaluation

Prepare
for Next

Spiral

System
Testing

Summary
Report

(INTERIM
REPORTS)

Acceptance
Testing

exhibit a.1 Continuous improvement.

Spiral (Agile) Testing Methodology ◾ 445

(TASKS)

Identify
Participants

Define Agenda

Understand
Project

Understand
Project

Objectives

Understand
Project Status

Understand
Project Plans

Understand Project
Development
Methodology

Identify High-Level
Business

Requirements

Perform
Risk Analysis

Summarize
Interview

Confirm
Interview Findings

(STEPS)

Prepare for
Interview

Conduct
Interview

Summarize
Findings

exhibit a.2 information gathering.

446 ◾ Software Testing and Continuous Quality Improvement

(STEPS)

Build Test Plan

Define Metrics
Objectives

Review/Approve
Plan

(TASKS)

Prepare Introduction

Define High-Level
Functional Requirements

Establish Regression
Test Strategy

Est. Defect Recording
Tracking Procedures

Establish Change
Request Procedures

Establish Version
Control Procedures

Establish Reporting
Procedures

Define Approval Procedures

Define Metrics

Define Metric Points

Obtain Approvals

Schedule/Conduct Review

Define Configuration
Build Procedures

Define Project Issue
Resolution Procedures

Define Test Deliverables

Organize Test Teams

Establish Test Environment

Define Dependencies

Create Test Schedule

Select Test Tools

Identify Test Exit Criteria

Identify Types of Tests

exhibit a.3 test planning.

Spiral (Agile) Testing Methodology ◾ 447

(STEPS) (TASKS)

Design
Function Tests

Design
GUI Tests

Define System/
Acceptance

Tests

Review/Approve
Design

Refine
Functional Test
Requirements

Build Function/
Test

Matrix

Define
Application GUI

Components

Design
GUI Tests

Identify
Potential

System Tests

Design System
Fragment Tests

Identify Potential
Acceptance Tests

Schedule/Prepare
for Review

Obtain Approvals

exhibit a.4 test case design.

448 ◾ Software Testing and Continuous Quality Improvement

(STEPS) (TASKS)

Develop Test
Scripts

Review/
Approve Test
Development

Script
GUI/Function

Tests

Script System
Fragment Tests

Schedule/Prepare
For Review

Obtain
Approvals

exhibit a.5 test development.

(STEPS) (TASKS)

Setup
and Testing

Evaluation

Regression Test
Spiral Fixes

Execute New
Spiral Tests

Document Spiral
Defects

Analyze Metrics

Refine
Test Schedule

Identify Requirement
Changes

exhibit a.6 test execution/evaluation.

Spiral (Agile) Testing Methodology ◾ 449

(STEPS) (TASKS)

Update Functional/
GUI Tests

Update System
Fragment Tests

Update Acceptance Tests

Evaluate Test Team

Review Test
Control Procedures

Update Test Environment

Publish Metric GraphicsPublish Interim
Test Report

Reassess
Team Procedures,
Test Environment

Refine Tests

exhibit a.7 Prepare for the next spiral.

450 ◾ Software Testing and Continuous Quality Improvement

Finalize System Test Types

(TASKS)(STEPS)

Complete System
Test Plan

Complete System
Test Cases

Review/Approve
System Tests

Execute System Tests

Finalize System Test Schedule

Organize System Test Team

Establish System Test Environment

Install System Test Tools

Design/Script Performance Tests

Design/Script Security Tests

Design/Script Volume Tests

Design/Script Stress Tests

Design/Script Compatibility Tests

Design/Script Converson Tests

Design/Script Usability Tests

Design/Script Documentation Tests

Design/Script Backup Tests

Design/Script Recovery Tests

Design/Script Installation Tests

Schedule/Conduct Review

Regression Test System Fixes

Execute New System Tests

Document System Defects

Obtain Approvals

Design/Script Other Types
of System Tests

exhibit a.8 Conduct system testing.

Spiral (Agile) Testing Methodology ◾ 451

Complete
Acceptance

Test Planning

Complete
Acceptance
Test Cases

Review/Approve
Acceptance

Test Plan

Execute
Acceptance Tests

Finalize Acceptance
Test Types

(TASKS)(STEPS)

Finalize Acceptance
Test Schedule

Organize Acceptance
Test Team

Establish Acceptance
Test Environment

Install Acceptance
Test Tools

Subset System-Level
Test Cases

Design/Script Additional
Acceptance Tests

Schedule/Conduct
Review

Regression Test
Acceptance Fixes

Execute New
Acceptance Tests

Document Acceptance
Test Defects

Obtain Approvals

exhibit a.9 Conduct acceptance testing.

452 ◾ Software Testing and Continuous Quality Improvement

(TASKS)
Ensure All Tests Were

Executed/Resolved

Perform Data
Reduction

Prepare Final
Test Report

Review/Approval
Final Test Report

Consolidate Test Defects
By Test Number

Post Remaining
Defects to a Matrix

Analyze/Consolidate
Metrics

Prepare Project
Overview

Summarize
Test Activities

Analyze/Create
Metric Graphics

Develop Findings/
Recommendations

Schedule/Conduct
Review

Obtain Approvals

Publish Final
Test Report

(STEPS)

exhibit a.10 Summarize/report spiral test results.

453

BAppendix

Software Quality
assurance Plan

This appendix provides a sample software quality assurance plan for an applica-
tion project. The details of the project are obscured to emphasize the plan’s general
philosophy and techniques.

 1. Purpose
 2. Reference Document
 2.1 The MIS Standard
 2.2 MIS Software Guidelines
 2.3 The Software Requirements Specification
 2.4 The Generic Project Plan
 2.5 The Generic Software Test Plan
 2.6 The Software Configuration Management Plan
 3. Management
 3.1 The Organizational Structure
 3.2 Tasks and Responsibilities
 3.2.1 Project Leader (Lead Software Engineer)
 3.2.2 Software Development Groups
 3.2.3 The Testing Subcommittee
 4. Documentation
 4.1 The Software Requirements Specification
 4.2 System User Guide
 4.3 The Installation Guide
 4.4 Test Results Summary

454 ◾ Software Testing and Continuous Quality Improvement

 4.5 Software Unit Documentation
 4.5.1 The Preliminary Design Document
 4.5.2 Detailed Design Document
 4.5.3 Other Documents
 4.6 Translator Software Units
 5. Standards, Practices, and Conventions
 6. Reviews and Inspections
 7. Software Configuration Management
 8. Problem Reporting and Corrective Action
 9. Tools, Techniques, and Methodologies
 10. Code Control
 11. Media Control
 12. Supplier Control
 13. Records Collection, Maintenance, and Retention
 14. Testing Methodology

455

CAppendix

requirements Specification

The requirements specification is a specification for a software product, program, or
application that performs functions in a specific environment organized by feature
(source: IEEE Recommended Practice for Software Requirements Specifications).

 1. Introduction
 1.1 Purpose
 1.2 Scope
 1.3 Definitions, Acronyms, and Abbreviations
 1.4 References
 1.5 Overview
 2. Overall Description
 2.1 Product Perspective
 2.1.1 System Interfaces
 2.1.2 User Interfaces
 2.1.3 Hardware and Interfaces
 2.1.4 Software Interfaces
 2.1.5 Communications Interfaces
 2.1.6 Memory Constraints
 2.1.7 Operations
 2.1.8 Site Adaptation Requirements
 2.2 Product Functions
 2.3 User Characteristics
 2.4 Constraints
 2.5 Assumptions and Dependencies
 2.6 Apportioning of Requirements

456 ◾ Software Testing and Continuous Quality Improvement

 3. Specific Requirements
 3.1 External Interface Requirements
 3.1.1 User Interfaces
 3.1.2 Hardware Interfaces
 3.1.3 Software Interfaces
 3.1.4 Communications Interfaces
 3.2 System Features
 3.2.1 System Feature 1
 3.2.1.1 Introduction/Purpose of Feature
 3.2.1.2 Stimulus/Response Sequence
 3.2.1.3 Associated Functional Requirements
 3.2.1.4 Introduction/Purpose of Feature
 3.2.1.5 Stimulus/Response Sequence
 3.2.1.6 Associated Functional Requirements
 3.2.1.6.1 Functional Requirements 1
 .
 .
 .
 3.2.1.6.n Functional Requirements n
 3.2.2 System Feature 2
 .
 .
 .
 3.2.m System Feature m
 .
 .
 .
 3.3 Performance Requirements
 3.4 Design Constraints
 3.5 Software System Attributes
 3.6 Other Requirements
 4. Supporting Information
 4.1 Table of Contents and Index
 4.2 Appendices

457

DAppendix

Change request form

The following sample change request form serves as the document vehicle to record
and disseminate the actions of change control:

Change request form

Report Number: _____________ Change Request No: _________________________

System Affected: __

Subsystem Affected: ___

Documentation Affected: __

Problem Statement:

__
__

__
__

__
__

__
__

Action Required:

__
__
__
__

__

__

__

459

EAppendix

test templates

e1: unit test Plan
The unit test plan is based on the program or design specification and is required for a
formal test environment. The following is a sample unit test plan table of contents:

 1. Introduction Section
 a. Test Strategy and Approach
 b. Test Scope
 c. Test Assumptions
 2. Walkthrough (Static Testing)
 a. Defects Discovered and Corrected
 b. Improvement Ideas
 c. Structured Programming Compliance
 d. Language Standards
 e. Development Documentation Standards
 3. Test Cases (Dynamic Testing)
 a. Input Test Data
 b. Initial Conditions
 c. Expected Results
 d. Test Log Status
 4. Environment Requirements
 a. Test Strategy and Approach
 b. Platform

460 ◾ Software Testing and Continuous Quality Improvement

 c. Libraries
 d. Tools
 e. Test Procedures
 f. Status Reporting

e2: System/acceptance test Plan
The system or acceptance test plan is based on the requirements specifications and
is required for a formal test environment. System testing evaluates the functionality
and performance of the whole application and consists of a variety of tests includ-
ing performance, usability, stress, documentation, security, volume, recovery, and
so on. Acceptance testing is a user-run test that demonstrates the application’s abil-
ity to meet the original business objectives and system requirements, and usually
consists of a subset of system tests.

The following is a sample test plan table of contents:

 1. Introduction
 a. System Description (i.e., brief description of system)
 b. Objective (i.e., objectives of the test plan)
 c. Assumptions (e.g., computers available for all working hours, etc.)
 d. Risks (i.e., risks if unit testing is not completed)
 e. Contingencies (e.g., backup procedures, etc.)
 f. Constraints (e.g., limited resources)
 g. Approval Signatures (e.g., authority to sign off on document)
 2. Test Approach and Strategy
 a. Scope of Testing (i.e., tests to be performed)
 b. Test Approach (e.g., test tools, black box)
 c. Types of Tests (e.g., unit, system, static, dynamic, manual)
 d. Logistics (e.g., location, site needs, etc.)
 e. Regression Policy (e.g., between each build)
 f. Test Facility (i.e., general description of where test will occur)
 g. Test Procedures (e.g., defect fix acceptance, defect priorities, etc.)
 h. Test Organization (e.g., description of QA/test team)
 i. Test Libraries (i.e., location and description)
 j. Test Tools (e.g., capture/playback regression testing tools)
 k. Version Control (i.e., procedures to control different versions)
 l. Configuration Building (i.e., how to build the system)
 m. Change Control (i.e., procedures to manage change requests)
 3. Test Execution Setup
 a. System Test Process (e.g., entrance criteria, readiness, etc.)
 b. Facility (e.g., details of test environment, laboratory)
 c. Resources (e.g., staffing, training, timeline)

Test Templates ◾ 461

 d. Tool Plan (e.g., specific tools, packages, special software)
 e. Test Organization (e.g., details of personnel, roles, responsibilities)
 4. Test Specifications
 a. Functional Decomposition (e.g., what functions to test from func-

tional specification)
 b. Functions Not to Be Tested (e.g., out of scope)
 c. Unit Test Cases (i.e., specific unit test cases)
 d. Integration Test Cases (i.e., specific integration test cases)
 e. System Test Cases (i.e., specific system test cases)
 f. Acceptance Test Cases (i.e., specific acceptance test cases)
 5. Test Procedures
 a. Test Case, Script, Data Development (e.g., procedures to develop and

maintain)
 b. Test Execution (i.e., procedures to execute the tests)
 c. Correction (i.e., procedures to correct discovered defects)
 d. Version Control (i.e., procedures to control software component versions)
 e. Maintaining Test Libraries
 f. Automated Test Tool Usage (i.e., tool standards)
 g. Project Management (i.e., issue and defect management)
 h. Monitoring and Status Reporting (i.e., interim versus summary reports)
 6. Test Tools
 a. Tools to Use (i.e., specific tools and features)
 b. Installation and Setup (i.e., instructions)
 c. Support and Help (e.g., vendor help line)
 7. Personnel Resources
 a. Required Skills (i.e., manual/automated testing skills)
 b. Roles and Responsibilities (i.e., who does what when)
 c. Numbers and Time Required (e.g., resource balancing)
 d. Training Needs (e.g., send staff for tool training)
 8. Test Schedule
 a. Development of Test Plan (e.g., start and end dates)
 b. Design of Test Cases (e.g., start and end dates by test type)
 c. Development of Test Cases (e.g., start and end dates by test type)
 d. Execution of Test Cases (e.g., start and end date by test type)
 e. Reporting of Problems (e.g., start and end dates)
 f. Developing Test Summary Report (e.g., start and end dates)
 g. Documenting Test Summary Report (e.g., start and end dates)

e3: requirements traceability Matrix
The following requirements traceability matrix is a document that traces user require-
ments from analysis through implementation. It can be used as a completeness

462 ◾ Software Testing and Continuous Quality Improvement

check to verify that all requirements are present or that there are no unnecessary/
extra features, and as a maintenance guide for new personnel. At each step in the
development cycle, the requirements, code, and associated test cases are recorded to
ensure that the user requirement is addressed in the final system. Both the user and
developer have the ability to easily cross-reference the requirements to the design
specifications, programming, and test cases.

User
Requirement

Reference

System
Requirements

Reference
Design

Specification

Coding
Component
Reference

Unit Test
Case

Reference

Integration
Test Case
Reference

System
Test Case
Reference

Acceptance
Test
Case

Reference

1.1 Customer
must be
valid

1.1.2 Online
customer
screen

Customer
screen
specification

CUS105,
CUS217

CUS105.1.1,
CUS2171.1

Int1.25,
Int1.26

Sys4.75,
Sys4.76

Acc2.25,
Acc2.26

• • • • • • • •

• • • • • • • •

• • • • • • • •

e4: test Plan (Client/Server and
internet Spiral testing)
The client/server test plan is based on the information gathered during the initial
interviews with development and any other information that becomes available
during the course of the project. Because requirements specifications are probably
not available in the spiral development environment, this test plan is a “living docu-
ment.” Through every spiral, new information is added, and old information is
updated as circumstances change. The major testing activities are the function,
GUI, system, acceptance, and regression testing. These tests, however, are not nec-
essarily performed in a specific order and may be concurrent.

The cover page of the test plan includes the title of the testing project, author,
current revision number, and date last changed. The next page includes an optional
section for sign-offs by the executive sponsor, development manager, testing man-
ager, quality assurance manager, and others as appropriate.

The following is a sample test plan table of contents:

 1. Introduction
 1.1 Purpose
 1.2 Executive Summary
 1.3 Project Documentation
 1.4 Risks
 2. Scope
 2.1 In Scope

Test Templates ◾ 463

 2.2 Test Requirements
 2.2.1 High-Level Functional Requirements
 2.2.2 User Business/Interface Rules
 2.3 GUI Testing
 2.4 Critical System/Acceptance Testing
 2.4.1 Performance Testing
 2.4.2 Security Testing
 2.4.3 Volume Testing
 2.4.4 Stress Testing
 2.4.5 Compatibility Testing
 2.4.6 Conversion Testing
 2.4.7 Usability Testing
 2.4.8 Documentation Testing
 2.4.9 Backup Testing
 2.4.10 Recovery Testing
 2.4.11 Installation Testing
 2.5 Regression Testing
 2.6 Out of Scope
 3. Test Approach
 3.1 General Test Structure
 3.2 Data
 3.3 Interfaces
 3.4 Environmental/System Requirements
 3.5 Dependencies
 3.6 Regression Test Strategy
 3.7 Defect Tracking and Resolution
 3.8 Issue Resolution
 3.9 Change Requests
 3.10 Resource Requirements
 3.10.1 People
 3.10.2 Hardware
 3.10.3 Test Environment
 3.11 Milestones/Schedule
 3.12 Software Configuration Management
 3.13 Test Deliverables
 3.14 Test Tools
 3.15 Metrics
 3.16 Test Entrance/Exit Criteria
 3.17 Interim and Summary Status Reports
 3.18 Approvals

464 ◾ Software Testing and Continuous Quality Improvement

e5: function/test Matrix
The following function/test matrix cross-references the tests to the functions. This
matrix provides proof of the completeness of the test strategies and illustrates in
graphic format which tests exercise which functions.

Test Case

1 2 3 4 5

Business Function

e6: gui Component test Matrix
(Client/Server and internet Spiral testing)
With the following GUI component test matrix, each GUI component is defined
and documented by name and GUI type. During GUI testing, each component is
tested against a predefined set of GUI tests.

GUI Type

Name Window Menu Form ICON Control P/F Date Tester

Main
Window

√

Customer-
Order
Window

√

Edit-Order
Window

√

Menu Bar √

Tool Bar √

.

.

.

Test Templates ◾ 465

e7: gui-Based functional test Matrix
(Client/Server and internet Spiral testing)
Below is a GUI-based function test matrix template that can be used to document
GUI-based test cases. It includes functions and associated GUI objects or founda-
tion components (windows, menus, forms, icons, and controls). Each test includes
a requirements number, test objective, test procedure (step or script), expected
results, whether the test passed or failed, the tester, and the date of the test. It thus
also serves as a test case log.

Function (Enter the Name)

Case
No.

REQ
No.

Test
Objective Case Steps

Expected
Results P/F Tester Date

1.

2.

3.

gui object (menu, icon, list box, etc.)

1.

2.

3.

gui object (menu, icon, list box, etc.)

1.

2.

3.

gui object (menu, icon, list box, etc.)

1.

2.

3.

gui object (menu, icon, list box, etc.)

1.

2.

3.

466 ◾ Software Testing and Continuous Quality Improvement

e8: test Case
The following test case defines the step-by-step process whereby a test is executed. It
includes the objectives and conditions of the test, the steps needed to set up the test,
the data inputs, and the expected and actual results. Other information, such as the
software, environment, version, test ID, screen, and test type, is also provided.

Date: ____________ Tested by: __

System: ____________ Environment: ___

Objective: ________________ Test ID ________________ Req. ID ________________

Function: _______________________________ Screen: __________________________

Version: ________________________________ Test Type: ________________________

(Unit, Integ., System, Accept.)

Condition to Test:
__
__
__

Data/Steps to Perform:
__
__
__
__

Expected Results:
__
__
__

Actual Results: Passed M Failed M
__
__
__
__

e9: test Case log
The following test case log documents the test cases for a test type to be executed dur-
ing testing. It also records the results of the tests, which provide the detailed evidence
for the test log summary report, and enables one to reconstruct the test, if necessary.

Test Templates ◾ 467

 Test Name: Enter name of test
 Test Case Author: Enter test case author name
 Tester Name: Enter tester name
 Project ID/Name: Enter name of project
 Test Cycle ID: Enter test cycle ID
 Date Tested: Enter date test case was completed

Test
Case

ID

Test
Objective

ID Category Condition
Expected
Results

Actual
Results

Requirement
ID

Enter
ID

Enter ID
from test
plan

Enter the test
category
(edit,
numeric,
presentation,
etc.)

Enter
specific
test
condition

Describe
the
specific
results
expected
upon
executing
the
condition

Record
“Pass” or
“Fail”

Enter the ID
that traces
back to the
specific
requirement

468 ◾ Software Testing and Continuous Quality Improvement

e10: test log Summary report
The following test log summary report documents the test cases from the tester’s test
logs, either in progress or completed, for status reporting and metric collection.

Completed By: Enter the tester
name of the
report

report date: Enter date of the
report

Project id/name Enter project
identifier/name

testing name/
event:

Enter the name
of the type of
test (unit,
integration,
system,
acceptance)

total number of
test Cases

Enter total
number of test
cases

testing Subtype: Enter name of
testing subtype
(interface,
volume, stress,
user, parallel
testing)

Week/
Month

Current
Period

Project
to Date % Started

Current
Period % Open

Current
Period

Project
to Date

%
Completed

Enter
test
period

Enter
number
of test
cases
started
for the
period

Enter total
test
cases
started
to date

Total
number
of test
cases
started/
total
number
of test
cases

Enter
number
of test
cases
started
for this
period

Total
number
of test
cases
started/
total
number
of test
cases

Enter
number
of test
cases
started
for this
period

Enter total
test
cases
started
to date

Total
number
of test
cases
started/
total
number
of test
cases

Total:

Test Templates ◾ 469

e11: System Summary report
A system summary report should be prepared for every major testing event.
Sometimes it summarizes all the tests. The following is an outline of the informa-
tion that should be provided.

 1. General Information
 1.1 Test Objectives. The objectives of the test, including the general func-

tions of the software tested and the test analysis performed, should be
summarized. Objectives include functionality, performance, etc.

 1.2 Environment. The software sponsor, development manager, the user orga-
nization, and the computer center at which the software is to be installed
should be identified. The manner in which the test environment may
be different from the operation environment should be noted, and the
effects of this difference assessed.

 1.3 References. Applicable references should be listed, including the following:
 a. Project authorization
 b. Previously published documents on the project
 c. Documentation concerning related projects
 d. Standards and other reference documents
 2. Test Results and Findings

 The results and findings of each test should be presented separately.
 2.1 Test (Identify)
 2.1.1 Validation Tests. Data input and output results of this test,

including the output of internally generated data, should be com-
pared with the data input and output requirements. Findings should
be included.

 2.1.2 Verification Tests. Variances with expected results should be listed.
 2.2 Test (Identify). The results and findings of the second and succeeding tests

should be presented in a manner similar to the previous paragraphs.
 3. Software Function and Findings
 3.1 Function (Identify)
 3.1.1 Performance. The function should be briefly described. The soft-

ware capabilities that were designed to satisfy this function should be
described. The findings on the demonstrated capabilities from one or
more tests should be included.

 3.1.2 Limits. The range of data values tested should be identified. The
deficiencies, limitations, and constraints detected in the software
during the testing with respect to this function should be noted.

 3.2 Function (Identify). The findings on the second and succeeding func-
tions should be presented in a manner similar to Paragraph 3.1.

470 ◾ Software Testing and Continuous Quality Improvement

 4. Analysis Summary
 4.1 Capabilities. The capabilities of the software as demonstrated by the tests

should be described. When tests were to demonstrate fulfillment of one or
more specific performance requirements, findings showing the compari-
son of the results with these requirements should be prepared. The effects
of any differences in the test environment compared with the operational
environment should be assessed.

 4.2 Deficiencies. Software deficiencies as demonstrated by the tests should
be listed, and their impact on the performance of the software should be
assessed. The cumulative or overall impact on performance of all detected
deficiencies should be summarized.

 4.3 Graphical Analysis. Graphs can be used to demonstrate the history of the
development project, including defect trend analysis, root-cause analysis,
and so on. (Project wrap-up graphs are recommended as illustrations.)

 4.4 Risks. The business risks faced if the software is placed in production
should be listed.

 4.5 Recommendations and Estimates. For each deficiency, estimates of time
and effort required for its correction should be provided along with rec-
ommendations on the following:

 a. Urgency of each correction
 b. Parties responsible for corrections
 c. How the corrections should be made
 4.6 Opinion. The readiness of the software for production should be assessed.

e12: defect report
The following defect report documents an anomaly discovered during testing.
It includes all the information needed to reproduce the problem, including the
author, release/build number, open/close dates, problem area, problem description,
test environment, defect type, how it was detected, who detected it, priority, sever-
ity, status, and so on.

Software Problem Report

Defect ID: (Required)
Computer-generated

Author: (Required)
Computer-generated

Release/Build#: (Required)
Build where issue was discovered

Open Date: (Required)
Computer-generated

Close Date: (Required)

Test Templates ◾ 471

Computer-generated when QA closes
Problem Area: (Required)

e.g., add order, etc.
Defect or Enhancement: (Required)

Defect (default)
Enhancement

Problem Title: (Required)
Brief one-line description

Problem Description:
A precise problem description with screen captures, if possible

Current Environment: (Required)
e.g., Win95T/Oracle 4.0 NT

Other Environments:
e.g., WinNT/Oracle 4.0 NT

Defect Type: (Required)
Architectural
Connectivity
Consistency
Database integrity
Documentation
Functionality (default)
GUI
Installation
Memory
Performance
Security and controls
Standards and conventions
Stress
Usability

Who Detected: (Required)
External customer
Internal customer
Development
Quality assurance (default)

How Detected: (Required)
Review
Walkthrough
JAD
Testing (default)

Assigned To: (Required)
Individual assigned to investigate problem

Priority: (Required)
Critical

472 ◾ Software Testing and Continuous Quality Improvement

High (default)
Medium
Low

Severity: (Required)
Critical
High (default)
Medium
Low

Status: (Required)
Open (default)
Being reviewed by development
Returned by development
Ready for testing in the next build
Closed (QA)
Returned by (QA)
Deferred to the next release

Status Description:
(Required when status = “returned by development,” “ready for testing in the

next build”)
Fixed by:

(Required when status = “ready for testing in the next build”)
Planned Fix Build#:

(Required when status = “ready for testing in the next build”)

e13: test Schedule
The following test schedule includes the testing steps (and perhaps tasks), the target
begin and end dates, and responsibilities. It should also describe how the test will
be reviewed, tracked, and approved.

Test Step Begin Date End Date
Responsible

Staff Member

first Spiral

Information Gathering

Prepare for interview xx/xx/xx xx/xx/xx

Conduct interview xx/xx/xx xx/xx/xx

Summarize findings xx/xx/xx xx/xx/xx

Test Templates ◾ 473

Test Step Begin Date End Date
Responsible

Staff Member

Test Planning

Build test plan xx/xx/xx xx/xx/xx

Define the metric objectives xx/xx/xx xx/xx/xx

Review/approve plan xx/xx/xx xx/xx/xx

Test Case Design

Design function tests xx/xx/xx xx/xx/xx

Design GUI tests xx/xx/xx xx/xx/xx

Define the system/acceptance tests xx/xx/xx xx/xx/xx

Review/approve design xx/xx/xx xx/xx/xx

Test Development

Develop test scripts xx/xx/xx xx/xx/xx

Review/approve test development xx/xx/xx xx/xx/xx

Test Execution/Evaluation

Setup and testing xx/xx/xx xx/xx/xx

Evaluation xx/xx/xx xx/xx/xx

Prepare for the Next Spiral

Refine the tests xx/xx/xx xx/xx/xx

Reassess team, procedures, and test
environment

xx/xx/xx xx/xx/xx

Publish interim report xx/xx/xx xx/xx/xx

•

•

•

last Spiral

Test Execution/Evaluation

Setup and testing xx/xx/xx xx/xx/xx

Evaluation xx/xx/xx xx/xx/xx

474 ◾ Software Testing and Continuous Quality Improvement

Test Step Begin Date End Date
Responsible

Staff Member

•

•

•

Conduct System Testing

Complete system test plan xx/xx/xx xx/xx/xx

Complete system test cases xx/xx/xx xx/xx/xx

Review/approve system tests xx/xx/xx xx/xx/xx

Execute the system tests xx/xx/xx xx/xx/xx

Conduct Acceptance Testing

Complete acceptance test plan xx/xx/xx xx/xx/xx

Complete acceptance test cases xx/xx/xx xx/xx/xx

Review/approve acceptance test
plan

xx/xx/xx xx/xx/xx

Execute the acceptance tests xx/xx/xx xx/xx/xx

Summarize/Report Spiral Test Results

Perform data reduction xx/xx/xx xx/xx/xx

Prepare final test report xx/xx/xx xx/xx/xx

Review/approve the final test report xx/xx/xx xx/xx/xx

e14: retest Matrix
A retest matrix is a tool that relates test cases to functions (or program units) as
shown in the following table. A check entry in the matrix indicates that the test
case is to be retested when the function (or program unit) has been modified due to
enhancements or corrections. The absence of an entry indicates that the test does
not need to be retested. The retest matrix can be built before the first testing spiral
but needs to be maintained during subsequent spirals. As functions (or program
units) are modified during a development spiral, existing or new test cases need to
be created and checked in the retest matrix in preparation for the next test spiral.
Over time with subsequent spirals, some functions (or program units) may be stable

Test Templates ◾ 475

with no recent modifications. Selective removal of their check entries should be
considered, and undertaken between testing spirals.

Business Function

Test Case

1 2 3 4 5

Order Processing

 Create New Order

 Fulfill Order

 Edit Order

 Delete Order

Customer Processing

 Create New Customer

 Edit Customer

 Delete Customer

Financial Processing

 Receive Customer Payment

 Deposit Payment

 Pay Vendor

 Write a Check

 Display Register

Inventory Processing

 Acquire Vendor Products

 Maintain Stock

 Handle Back Orders

 Audit Inventory

 Adjust Product Price

Reports

 Create Order Report

 Create Account Receivables Report

 Create Account Payables

 Create Inventory Report

476 ◾ Software Testing and Continuous Quality Improvement

e15: Spiral testing Summary report
(Client/Server and internet Spiral testing)
The objective of the final spiral test report is to describe the results of the testing,
including not only what works and what does not, but the test team’s evaluation
regarding performance of the application when it is placed into production.

For some projects, informal reports are the practice, whereas in others, very for-
mal reports are required. The following is a compromise between the two extremes to
provide essential information not requiring an inordinate amount of preparation:

 I. Project Overview
 II. Test Activities
 A. Test Team
 B. Test Environment
 C. Types of Tests
 D. Test Schedule
 E. Test Tools
 III. Metric Graphics
 IV. Findings/Recommendations

e16: Minutes of the Meeting
The following Minutes of the Meeting is used to document the results and fol-
low-up actions for the project information-gathering session. This sample is also
included in the CD at the back of the book.

Meeting Purpose Meeting Date

Start Time End Time

Attended By

Distribution List

Test Templates ◾ 477

Important Discussions

Discussion Item #1 Details Comments

Discussion Item #2 Details Comments

Discussion Item #3 Details Comments

Discussion Item #4 Details Comments

478 ◾ Software Testing and Continuous Quality Improvement

Action Items

a.

b.

c.

d.

e.

f.

g.

h.

i.

j.

k.

e17: test approvals
The Test Approvals matrix is to formally document management approvals for test
deliverables. The following is a sample that is also included in the CD at the back
of the book.

Deliverable Approvals

Test Deliverable
Name Approval Status Approver Approved Date

Test Templates ◾ 479

e18: test execution Plan
The following Test Execution Plan is used to plan the activities for the execution
phase. This sample is also included in the CD at the back of the book.

Project name: ___
Project Code: __

Activity
No.

Activities/
Subtasks

Planned
Date

Resource

Total Test
Cases/
Scripts

Test Cases/
Scripts

Completed Comments
Start
Date

End
Date

Date: __

480 ◾ Software Testing and Continuous Quality Improvement

e19: test Project Milestones
The following Test Project Milestones matrix is used to identify and track the key
test milestones. This sample is also included in the CD at the back of the book.

Milestone Date Due Actual Due

Test Templates ◾ 481

e20: PdCa test Schedule
The following PDCA Test Schedule matrix is used to plan and track the Plan–Do–
Check–Act test phases. This sample is also included in the CD at the back of the book.

Test Step Start Date End Date Responsible

Information Gathering

Test Planning

Test Case Design

Test Development

Test Execution/Evaluation

Prepare for the Next Test Iteration

Conduct System Testing

Conduct Acceptance Testing

Summarize Tests/Project Closure

e21: test Strategy
The following Test Strategy is used to document the overall testing approach for
the project. This sample table of contents is also included in the CD in the back of
the book.

482 ◾ Software Testing and Continuous Quality Improvement

 1. Introduction
 1.1 Project Overview
 <An introduction to the project, including an outline of the project scope>
 1.2 About the Client
 <Client’s business in association with the project>
 1.3 Application/System Overview
 <A concise and high-level explanation of our understanding of the func-

tionality of the application and the breakup of business functions>
 2. Testing Scope
 <General application scope should be provided in this section>
 2.1 Testing Objectives
 <Test objectives as they relate to specific requirements>
 2.2 Types of Tests
 <Types of testing such as functionality testing, nonfunctionality testing,

operational acceptance testing, regression testing, performance testing,
and so on, should be mentioned here>

 2.3 Within Scope
 <Transactions, reports, interfaces, business functions, and so on>
 2.4 Out of Scope
 <Define what is not specifically covered in testing>
 2.5 Assumptions
 <Test assumptions in conjunction with the test scope>
 2.6 Baseline Documents
 <The list of baseline documents, prototype with version numbers>
 3. Testing Approach
 3.1 Testing Methodology
 3.3.1 Entry Criteria
 <List of criteria that need to be fulfilled before test planning can

begin>
 3.3.2 Test Planning Approach
 <The approach to be adopted in preparing necessary testware, for

example, manual test cases or automated test scripts, approach for
creating test data, and so on>

 3.3.3 Test Documents
 <List of test documents, their definition and purpose>
 3.3.4 Test Execution Methodology
 <A description of how the tests will be executed>
 3.3.5 Test Execution Checklist
 <List of items that need to be available to the test team prior to the

start of test execution>
 3.3.6 Test Iterations
 <Number of iterations of testing planned for execution, the entry

and exit criteria, and the scope of each test iteration>

Test Templates ◾ 483

 3.3.7 Defect Management
 <Entire defect management process. It includes defect meeting,

defect resolution, and so on>
 3.3.8 Defect Logging and Defect Reporting
 <A note on the defect-logging process and a sample defect log template

that will be used during test execution should be mentioned here>
 3.3.9 Defect Classification and Defect Life Cycle
 <A detailed note on the life cycle of a defect, the different defect

severity levels, and defect categories>
 3.3.10 Defect Meetings
 <A detailed defect meeting procedure indicating the parties to the

defect meeting, their responsibilities, and the frequency of defect
meetings>

 3.3.11 Exit Criteria
 <Exit criteria for test execution>

 4. Resources
 4.1 Skills Required for the Project

 <An analysis of the skills required for executing the project>
 4.2 Training Schedule

 <Project-specific training needs with a timetable>
 4.3 Offshore
 4.3.1 Test Personnel

 <List of test team personnel and their roles in the project along
with date of inclusion in the project>

 4.3.2 Roles and Responsibilities
 4.4 On-Site
 4.4.1 Test Personnel

 <List of test team personnel and their roles in the project along
with date of inclusion in the project>

 4.4.2 Roles and Responsibilities
 4.5 Client

 <Roles and responsibilities of client or client’s representative>
 4.6 Test Infrastructure
 4.6.1 Hardware

 <List of hardware requirements for test execution>
 4.6.2 Software

 <List of software requirements for test execution>
 5. Project Organization and Communication
 <Project organization chart, the turnaround time for the review, and sign-off

for the documents submitted to the clients>
 5.1 Escalation Model

<In case of issues and concerns, the escalation procedure and timelines
to escalate>

484 ◾ Software Testing and Continuous Quality Improvement

 5.2 Suspension and Resumption Criteria
 <List of circumstances under which test activities will be suspended or

resumed should be mentioned here>
 5.3 Risk, Contingency, and Mitigation Plan

 <Risks of the project, contingency, and mitigation plan for the risks
identified>

 5.4 Schedule
 5.4.1 Milestones
 <A high-level schedule for the different stages of the project with

clear indication of milestones planned with a list of activities>
 5.4.2 Detailed Plan
 <A detailed project plan using MS-Project with all identified tasks

and subtasks, resources to be used with dates fitting into the mile-
stones as mentioned in the high-level schedule>

 5.4.3 Deliverables
 <A list of deliverables associated with the project as mentioned

in the test documents, the mechanism for obtaining client accep-
tance for the deliverables>

 6. Appendix
 <Appendix, as mentioned in any of the foregoing sections, should be

mentioned here>

e22: Clarification request
The following Clarification Request matrix is used to document questions that may
arise while the tester analyzes the requirements. This sample is also included in the
CD at the back of the book.

Project name: ___
Project Code: __

Issue
No.

Document
Reference

Application/
Function

Date
Raised

Clarification
Requested

Raised
By Status Response

Test Templates ◾ 485

Issue
No.

Document
Reference

Application/
Function

Date
Raised

Clarification
Requested

Raised
By Status Response

e23: Screen data Mapping
The following Screen Data Mapping matrix is used to document the properties of
the screen data. This sample is also included in the CD at the back of the book.

Item
No.

Test
Case

ID

Screen
Reference
(Optional)

Field
Name

Data
Required

Data
Type

Data
Format Comments

1 TS-01 Account
Number

aabbcc alphabets

2 TS-01 Account
Number

10099 numeric ######

3 TS-05 As-of
Date

31101999 date dd-mm-yyyy

486 ◾ Software Testing and Continuous Quality Improvement

e24: test Condition versus test Case
The following Test Condition versus Test Case matrix is used to associate a require-
ment with each condition that is mapped to one or more test cases. This sample is
also included in the CD at the back of the book.

Item
No.

Requirement Details/Source
(Fun. Spec./Bus. Req./Other)

Condition
No.

Test
Condition

Test
Case No.

e25: Project Status report
The following Project Status Report is used to report the status of the testing proj-
ect for all key process areas. This sample is also included in the CD at the back of
the book.

Purpose: This template consolidates the QA project-related activities in all key
process areas. It is published to all project stakeholders weekly.

Test Templates ◾ 487

Project Name _____________________ Project Code ___________________________

Project Start Date ______________________Project Manager _____________________

Project Phase ______________________ Week No. & Date ________________________

Distribution __

key activities

Details Remarks

deliverables

decisions

weekly Progress for this week

Item
Key

Processes

Planned Actual

Status/
Remarks Owner

Activities/
Milestone,
Deliverable

Start
Date

End
Date

Start
Date

End
Date

unplanned activities

Item Activities Start Date End Date
Effort

(Person-Hours) Comments

activities Planned for next week

Item Activities Start Date End Date
Effort

(Person-Hours) Comments

488 ◾ Software Testing and Continuous Quality Improvement

Planned but Not Completed

Change Requests (New)

Change Requests (Outstanding)

Issues (New)

Issues (Outstanding)

Test Templates ◾ 489

e26: test defect details report
The following Test Defect Details Report is used to report the detailed defect status
of the testing project for all key process areas. This sample is also included in the
CD at the back of the book.

It
em

 N
o

.

D
ef

ec
t I

D

Sc
ri

p
t I

D

Te
st

 C
as

e
D

es
cr

ip
ti

o
n

Ex
p

ec
te

d

Re
su

lt

A
ct

u
al

Re

su
lt

s

D
et

ec
te

d
 B

y

D
ef

ec
t S

ta
tu

s

Se
ve

ri
ty

Pr
io

ri
ty

Re
p

o
rt

ed

D
at

e

C
lo

se
d

 D
at

e

1 Log-in
page not
getting
displayed

Log-in page
should be
displayed

Log-in page
is not
displaying

Bill Open 3 1

2 Text box is
not
enabled

Text box
should be
enabled

Joe Closed 2 2

3 User is not
allowed
to enter
values

User
should be
allowed to
enter
values

Sam Fixed 3 3

4 Area 3 is
not
getting
displayed
on the
list

Module 3
should get
displayed
on the list

Sally Closed 2 4

5 Error
message
is
displayed

Error
message
should not
be
displayed

June Open 2 5

490 ◾ Software Testing and Continuous Quality Improvement

e27: defect report
The following Defect Report is used to report the details of a specific defect. This
sample is also included in the CD at the back of the book.

D
ef

ec
t I

D

D
at

e

Te
st

 S
cr

ip
t

ID

Te
st

 C
as

e
D

es
cr

ip
ti

o
n

Ex
p

ec
te

d

Re
su

lt

A
ct

u
al

Re

su
lt

St
at

u
s

Se
ve

ri
ty

D
ef

ec
t T

yp
e

Te
st

er

C
o

m
m

en
t

D
ev

el
o

p
er

C

o
m

m
en

t

C
lie

n
t

C
o

m
m

en
t

e28: test execution tracking Manager
The Test Execution Tracking Manager is an Excel spreadsheet that provides a com-
prehensive and test cycle view of the number of test cases that passed/failed, the
number of defects discovered by application area, the status of the defects, percent-
age completed, and the defect severities by defect type. The template is located in
the CD at the back of the book.

Test Templates ◾ 491

e29: final test Summary report
The following Final Test Summary Report is used as a final report of the test project
with key findings.

The following is a sample table of contents that is also included in the CD at
the back of the book.

 1. Introduction
 1.1 Executive Summary

 <Highlights of the project in terms of schedule, size, and defect counts,
as well as important events that occurred during the life of the project,
which would be of interest to the management>

 1.2 Project Overview
 <This section covers the business of the client and overview of the

project>
 1.3 Scope of Testing

 <A note on the scope of testing and details regarding the scope of
testing>

 2. Test Methodology
 2.1 Test Documents

 <A brief note on the test documents>
 2.2 Test Iterations

 <The details of test iterations carried out>
 2.3 Defect Management

 <A brief note explaining the Defect Management process followed dur-
ing execution>

 3. Measurements
 3.1 Traceability Matrix

 <The details of the trace from the requirements through to the scripts>
 3.2 Planned versus Actual

 <Details of Planned versus Actual schedule with reasons for variation>
 3.3 Test Scripts Summary

 <The Final Test Scripts summary at the end of Test Execution>
 3.4 Features Untested/Invalid

 <Details pertaining to the scripts that were untested, invalid, or not deliv-
ered and the reasons>

 4. Findings
 4.1 Final Defect Summary

 <Summary of Defects at the end of test execution>
 4.2 Deferred Defects

 <Details of test cases that failed and are in deferred status with reasons for
deferring the defect>

492 ◾ Software Testing and Continuous Quality Improvement

 5. Analysis
 5.1 Categorywise Defects

 <A chart should be generated to display the count of defects categorywise>
 5.2 Statuswise Defects

 <A chart should be generated to display the count of defects statuswise>
 5.3 Severitywise Defects

 <A chart should be generated to display the count of defects severitywise>
 5.4 Issues

 <Details of issues encountered during the course of the project that were
documented and brought to the attention of management>

 5.5 Risks
 <Defects reported should be analyzed and also any foreseeable risks that

could affect the business>
 5.6 Observations

 <Any other critical events that cannot be classified under issues and
risks>

 6. Test Team
<Names and roles of personnel from all parties involved during the project>

 7. Appendices
 <Appendices, as referred to in any of the foregoing sections, should be men-

tioned here>

e30: test automation Strategy
The following is the standard format of a Test Automation Strategy that will be
customized depending upon the test requirements.

Overview of the Project N
Automation Purpose and Objectives N
Scope of Automation — Inclusions and Exclusions N
Automation Approach N
Test Environment N
Tools Used — Scripting and Test Management N
Script Naming Conventions N
Resources and Scheduling N
Training Requirements N
Risk and Mitigation N
Assumptions and Constraints N
Entry and Exit Criteria N
Acceptance Criteria N
Deliverables N

493

FAppendix

Checklists

A very powerful quality control testing tool is a checklist. It is powerful because
it statistically differentiates between two extremes. It can be used for fact gather-
ing during problem identification, cause analysis, or for checking progress during
implementation of a solution.

Observed results or conditions are recorded by entering or not entering check
marks opposite items on a list. Information gathered in this way is limited to simple
yes/no answers. It also quantifies or counts the data entered for subsequent tallying
and analysis.

f1: requirements Phase defect Checklist
The following requirements phase defect checklist is used to verify the functional
needs and specifications for the system. A check in the Missing column means
that the item was not included. A check in the Wrong column means the item
was incorrectly used. A check in the Extra column means that the item has been
discovered but was not originally identified. The Total column totals the number
of missing and extra items.

Defect Category Missing Wrong Extra Total

 1. Business rules (or information) are
inadequate or partially missing.

 2. Performance criteria (or information)
are inadequate or partially missing.

© 2009 by Taylor & Francis Group, LLC

494 ◾ Software Testing and Continuous Quality Improvement

Defect Category Missing Wrong Extra Total

 3. Environment information is
inadequate or partially missing.

 4. System mission information is
inadequate or partially missing.

 5. Requirements are incompatible.

 6. Requirements are incomplete.

 7. Requirements are missing.

 8. Requirements are incorrect.

 9. The accuracy specified does not
conform to the actual need.

 10. The data environment is inadequately
described.

 11. The external interface definitions are
erroneous.

 12. User training has not been considered
adequately.

 13. Initialization of the system state has
not been considered.

 14. The functions have not been
adequately defined.

 15. The user needs are inadequately
stated.

 16. Quality metrics have not been
specified adequately, e.g.,
maintainability, transportability, etc.

f2: logical design Phase defect Checklist
The following logical design phase defect checklist is used to verify the logical design
of the system. A check in the Missing column means that the item was not included.
A check in the Wrong column means that the item was incorrectly used. A check in
the Extra column means that the item has been discovered but was not originally
identified. The Total column totals the number of missing and extra items.

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 495

Defect Category Missing Wrong Extra Total

 1. The data has not been adequately
defined.

 2. Entity definition is incomplete.

 3. Entity cardinality is incorrect.

 4. Entity attribute is incomplete.

 5. Normalization is violated.

 6. Incorrect primary key.

 7. Incorrect foreign key.

 8. Incorrect compound key.

 9. Incorrect entity subtype.

 10. The process has not been adequately
defined.

 11. Parent process is incomplete.

 12. Child process is incomplete.

 13. Process inputs/outputs are incorrect.

 14. Elementary processes are not defined
correctly.

 15. Mutually exclusive process problem.

 16. Parallel links problem.

 17. Event-triggered processes not defined
properly.

 18. Incorrect entity/process create
association.

 19. Incorrect entity/process read
association.

 20. Incorrect entity/process update
association.

 21. Incorrect entity/process delete
association.

© 2009 by Taylor & Francis Group, LLC

496 ◾ Software Testing and Continuous Quality Improvement

f3: Physical design Phase defect Checklist
The following physical design phase defect checklist is used to verify the physical
design of the system. A check in the Missing column means that the item was not
included. A check in the Wrong column means the item was incorrectly used. A
check in the Extra column means that the item has been discovered but was not orig-
inally identified. The Total column totals the number of missing and extra items.

Defect Category Missing Wrong Extra Total

 1. Logic or sequencing is erroneous.

 2. Processing is inaccurate.

 3. Routine does not input or output
required parameters.

 4. Routine does not accept all data within
the allowable range.

 5. Limit and validity checks are made on
input data.

 6. Recovery procedures are not
implemented or are inadequate.

 7. Required processing is missing or
inadequate.

 8. Values are erroneous or ambiguous.

 9. Data storage is erroneous or
inadequate.

 10. Variables are missing.

 11. Design requirements are inaccurately
or incorrectly understood.

 12. Database is not compatible with the
data environment.

 13. Modular decomposition reflects a
high intermodular dependence.

 14. Major algorithms are not evaluated for
accuracy or speed.

 15. Control structure is not expandable.

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 497

Defect Category Missing Wrong Extra Total

 16. Control structure ignores the
processing priorities.

 17. Interface protocols are incorrect.

 18. Logic implementing algorithms is
incorrect.

 19. Data is not converted according to
correct format.

 20. No consideration is given to the
effects of round-off or truncation.

 21. Indices are not checked for validity.

 22. Infinite loops are permitted.

 23. Module specifications are incorrectly
understood.

 24. Database rules are violated.

 25. Logic is incomplete for all cases.

 26. Special cases are neglected.

 27. Error handling is deficient.

 28. Timing considerations are neglected.

 29. Requirement specifications are
misallocated among the various
software modules.

 30. Interface specifications are
misunderstood or misimplemented.

 31. System is functionally correct but does
not meet performance requirements.

 32. Software is not sufficiently complex to
match the problem being solved.

 33. Arithmetic overflow and underflow
are not properly addressed.

 34. Actions in response to given inputs
are inappropriate or missing.

© 2009 by Taylor & Francis Group, LLC

498 ◾ Software Testing and Continuous Quality Improvement

Defect Category Missing Wrong Extra Total

 35. Algorithmic approximations provide
insufficient accuracy or erroneous
results for certain values of the input.

 36. There are errors in the detailed logic
developed to solve a particular
problem.

 37. Singular or critical input values may
yield unexpected results that are not
appropriately accounted for in the
code.

 38. An algorithm is inefficient or does not
compute the result as rapidly as a
more efficient algorithm.

 39. An algorithm does not cover all the
necessary cases.

 40. An algorithm is incorrect or converges
to the wrong solution.

 41. Logical errors exist.

 42. A design oversight occurs.

f4: Program unit design Phase defect Checklist
The following program unit design phase defect checklist is used to verify the unit
design of the system. A check in the Missing column means that the item was not
included. A check in the Wrong column means the item was incorrectly used. A
check in the Extra column means that the item has been discovered but was not orig-
inally identified. The Total column totals the number of missing and extra items.

Defect Category Missing Wrong Extra Total

 1. Is the if-then-else construct used
incorrectly?

 2. Is the dowhile construct used
incorrectly?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 499

Defect Category Missing Wrong Extra Total

 3. Is the dountil construct used
incorrectly?

 4. Is the case construct used incorrectly?

 5. Are there infinite loops?

 6. Is it a proper program?

 7. Are there goto statements?

 8. Is the program readable?

 9. Is the program efficient?

 10. Does the case construct contain all the
conditions?

 11. Is there dead code?

 12. Does the program have self-modifying
code?

 13. Is the algorithm expression too
simple?

 14. Is the algorithm expression too
complicated?

 15. Is the nesting too deep?

 16. Is there negative Boolean logic?

 17. Are there compounded Boolean
expressions?

 18. Is there jumping in and out of loops?

f5: Coding Phase defect Checklist
The following coding phase defect checklist is used to verify the conversion of the
design specifications into executable code. A check in the Missing column means
that the item was not included. A check in the Wrong column means the item
was incorrectly used. A check in the Extra column means that the item has been
discovered but was not originally identified. The Total column totals the number
of missing and extra items.

© 2009 by Taylor & Francis Group, LLC

500 ◾ Software Testing and Continuous Quality Improvement

Defect Category Missing Wrong Extra Total

 1. Decision logic or sequencing is
erroneous or inadequate.

 2. Arithmetic computations are
erroneous or inadequate.

 3. Branching is erroneous.

 4. Branching or other testing is
performed incorrectly.

 5. There are undefined loop
terminations.

 6. Programming language rules are
violated.

 7. Programming standards are violated.

 8. The programmer misinterprets
language constructs.

 9. Typographical errors exist.

 10. Main storage allocation errors exist.

 11. Iteration schemes are unsuccessful.

 12. I/O format errors exist.

 13. Parameters or subscripts are violated.

 14. Subprogram invocations are violated.

 15. Data errors exist.

 16. A subprogram is nonterminating.

 17. There are errors in preparing or
processing input data.

 18. Tape-handling errors exist.

 19. Disk-handling errors exist.

 20. Output-processing errors exist.

 21. Error-message-processing errors exist.

 22. Software interface errors exist.

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 501

Defect Category Missing Wrong Extra Total

 23. Database interface errors exist.

 24. User interface errors exist.

 25. Indexing and subscripting errors exist.

 26. Iterative procedural errors exist.

 27. Bit manipulation errors exist.

 28. Syntax errors exist.

 29. Initialization errors exist.

 30. There is confusion in the use of
parameters.

 31. There are errors in loop counters.

 32. Decision results are incorrectly
handled.

 33. Variables are given multiple names or
are not defined.

 34. Errors are made in writing out variable
names.

 35. Variable type and dimensions are
incorrectly declared.

 36. There is confusion about library
program names.

 37. External symbols are incorrectly
resolved.

 38. Compiler errors exist.

 39. Singularities and external points exist.

 40. Floating point underflow errors exist.

 41. Floating point overflow errors exist.

 42. Floating point and integer division by
zero are allowed.

 43. A sequencing error exists.

© 2009 by Taylor & Francis Group, LLC

502 ◾ Software Testing and Continuous Quality Improvement

Defect Category Missing Wrong Extra Total

 44. There is a failure to save and restore
appropriate registers in real-time
systems.

 45. The software interface to connected
hardware systems is incorrect.

f6: field testing Checklist
The following field test is limited to a specific field or data element and is intended to
validate that all of the processing related to that specific field is performed correctly.

Item Yes No N/A Comments

 1. Were all codes validated?

 2. Can fields be updated properly?

 3. Is the field large enough for collecting
the totals?

 4. Is the field adequately described in the
program?

 5. Can the field be initialized properly?

 6. Do all references to the field use the
proper field name?

 7. If the field’s contents are restricted, are
those restrictions validated?

 8. Were rules established for identifying
and processing invalid field data? (If not,
this data must be developed for the
error-handling transaction type. If so, test
conditions must be prepared to validate
the specification processing for invalid
field data.)

 9. Is a wide range of typical valid processing
values included in the test conditions?

 10. For numerical fields, have the upper and
lower values been tested?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 503

Item Yes No N/A Comments

 11. For numerical fields, has a zero value
been tested?

 12. For numerical fields, has a negative test
condition been prepared?

 13. For alphabetical fields, has a blank
condition been prepared?

 14. For an alphabetic or alphanumeric field,
has a test condition longer than the field
length been prepared to check
truncation processing?

 15. Were all valid conditions tested on the
basis of the data dictionary printout?

 16. Were systems specifications reviewed to
determine whether all valid conditions
were tested?

 17. Do owners of data elements know
whether all valid conditions were tested?

 18. Have owners of data elements reported
their results?

f7: record testing Checklist
The following record test validates that records can be created, entered, processed,
stored, and output correctly.

Item Yes No N/A Comments

 1. Were conditions prepared for testing the
processing of the first record?

 2. Were conditions determined for
validating the processing of the last
record?

 3. Were all multiple records per transaction
processed correctly?

© 2009 by Taylor & Francis Group, LLC

504 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 4. Were all multiple records on a storage
medium (i.e., permanent or temporary
file) processed correctly?

 5. Were all variations in record size tested
(e.g., a header with variable length
trailers)?

 6. Can the job control language be checked
for each record type?

 7. Can processing be done for two records
with the same identifier (e.g., two
payments for the same accounts
receivable file)?

 8. Can the first record stored on a storage
file be retrieved?

 9. Can the last record stored on a storage
file be retrieved?

 10. Can all of the records entered be stored
properly?

 11. Can all of the stored records be
retrieved?

 12. Do interconnecting modules have the
same identifier for each record type?

 13. Can the data entry function prepare the
proper records from the data entry
documentation?

 14. Is the user documentation useful to
users?

 15. Do individual module record
descriptions conform to the system
record descriptions?

 16. Does the storage definition of records
conform to the system definition of
records?

 17. Are record descriptions common
throughout the entire software system?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 505

Item Yes No N/A Comments

 18. Do current record formats coincide with
the formats used on files created by
other systems?

f8: file test Checklist
The following file test verifies that all needed files are included in the system being
tested, that they are properly documented in the operating infrastructure, and that the
files connect properly with the software components that need data from those files.

Item Yes No N/A Comments

 1. Is a condition available for testing each
file?

 2. Is a condition available for testing each
file’s interface with each module?

 3. Are test conditions available for
validating each job control condition (or
the equivalent in environments in which
there is no JCL)?

 4. Is a condition available for validating that
the correct version of each file will be
used?

 5. Is a condition available for testing that
records placed on a file will be returned
intact?

 6. Are conditions available for validating
that each file is properly closed after the
last record is processed for that file?

 7. Are conditions available for validating
that each record type can be processed
from beginning to end of the system
intact?

 8. Are conditions available for validating
that all records entered are processed by
the system?

© 2009 by Taylor & Francis Group, LLC

506 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 9. Are conditions available for validating
that files that are mounted but not used
are properly closed at the end of
processing?

 10. Are test conditions available for creating
a file for which no prior records exist?

 11. Is a condition available for validating the
correct closing of a file when all records
on the file have been deleted?

 12. Are conditions available for validating the
correctness of all the job control
statements?

f9: error testing Checklist
The following error test identifies errors in data elements, data element relation-
ships, record and file relationships, as well as logical processing conditions.

Item Yes No N/A Comments

 1. Were functional errors identified by the
brainstorming session with end users/
customers?

 2. Were structural error conditions
identified by the brainstorming session
with project personnel?

 3. Were functional error conditions
identified for the following cases:

 Rejection of invalid codes?

 Rejection of out-of-range values?

 Rejection of improper data
relationships?

 Rejection of invalid dates?

 Rejection of unauthorized transactions
of the following types:

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 507

Item Yes No N/A Comments

	 	 	 	 	•	Invalid	value?

	 	 	 	 	•	Invalid	customer?

	 	 	 	 	•	Invalid	product?

	 	 	 	 	•	Invalid	transaction	type?

	 	 	 	 	•	Invalid	price?

 Alphabetic data in numeric fields?

 Blanks in a numeric field?

 An all-blank condition in a numeric
field?

 Negative values in a positive field?

 Positive values in a negative field?

 Negative balances in a financial
account?

 Numeric in an alphabetic field?

 Blanks in an alphabetic field?

 Values longer than the field permits?

 Totals that exceed maximum size of
total fields?

 Proper accumulation of totals (at all
levels for multiple-level totals)?

 Incomplete transactions (i.e., one or
more fields missing)?

 Obsolete data in the field (i.e., a
formerly valid code that is no longer
valid)?

 A new value that will become
acceptable but is not acceptable now
(e.g., a new district code for which the
district has not yet been established)?

 A postdated transaction?

© 2009 by Taylor & Francis Group, LLC

508 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 Change of a value that affects a
relationship (e.g., if the unit digit is
used to control year, switching from 9
in 89 to 0 in 90 should still be
processed)?

 4. Does the data dictionary list of field
specifications generate invalid
specifications?

 5. Are tests performed for the following
architectural error conditions:

 Page overflow?

 Report format conformance to design
layout?

 Posting of data to correct portion of
reports?

 Printed error messages representative
of the actual error condition?

 All instructions executed?

 All paths executed?

 All internal tables?

 All loops?

 All PERFORM-type routines?

 All compiler warning messages?

 The correct version of the program?

 Unchanged portions of the system
revalidated after any part of the system
is changed?

f10: use test Checklist
The following use test checks the end user’s ability to use the system and involves
an understanding of both system output and that output’s ability to lead to a cor-
rect action.

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 509

Item Yes No N/A Comments

 1. Are all end-user actions identified?

 2. Are they identified in enough detail that
contribution of information system
output items can be related to those
actions?

 3. Is all the information used in taking an
action identified and related to the
action?

 4. Is the output from the system under test
related to specific actions?

 5. Does the end user correctly understand
the output reports and screens?

 6. Does the end user understand the type
of logic and computation performed to
produce the output?

 7. Can the end user identify the
contribution the output makes to the
actions taken?

 8. Can the end user identify whether the
actions taken are correct?

 9. If not, can another party determine the
correctness of the actions taken?

 10. Is the relationship between system
output and business actions defined?

 11. Does interpretation of the matrix
indicate that the end user does not have
adequate information to take an action?

 12. Does analysis of the matrix indicate that
the end user is making an abnormal
number of mistakes?

 13. If so, is the end user willing to let the
system be modified to provide better
information so that mistakes can be
eliminated?

© 2009 by Taylor & Francis Group, LLC

510 ◾ Software Testing and Continuous Quality Improvement

f11: Search test Checklist
The following search test verifies the locations of records, fields, and other variables,
and helps validate that the search logic is correct.

Item Yes No N/A Comments

 1. Were all internal tables identified?

 2. Were all internal lists of error messages
identified?

 3. Were all internal logic paths (when there
are multiple choices) identified?

 4. Was the search logic identified? (In some
cases, algorithms are used to identify the
needed entity.)

 5. Were all authorization routines
identified?

 6. Were all password routines identified?

 7. Was all business processing logic
requiring a search identified (e.g., logic
requiring the lookup of a customer
record)?

 8. Were database search routines
identified?

 9. Were subsystem searches identified (e.g.,
finding a tax rate in a sales tax
subsystem)?

 10. Was complex search logic identified (e.g.,
those requiring two or more conditions
or two or more records; for example,
searching for accounts more than both 90
days old and $100)?

 11. Were search routines for processing
modules identified?

 12. Were test conditions graded for all of the
preceding search conditions?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 511

Item Yes No N/A Comments

 13. Was the end user interviewed to
determine the type of one-time searches
that might be encountered in the future?

 14. If so, can these searches be performed
with reasonable effort (confirmed by the
project group)?

 15. If no, was the end user informed of the
cost of conducting the searches or
reconstructing the system to meet those
needs?

f12: Match/Merge Checklist
The following match/merge test ensures that all the combinations of merging and
matching are adequately addressed. The test typically involves two or more files: an
input transaction and one or more files or an input transaction and an internal table.

Item Yes No N/A Comments

 1. Were all files associated with the
application identified? (In this
transaction, files include specialized files,
databases, and internal groupings of
records used for matching and merging.)

 2. Were the following match/merge
conditions addressed?

 Match/merge of records of two
different identifiers (e.g., inserting a
new employee on the payroll file)?

 A match/merge on which there are no
records on the matched/merged file?

 A match/merge in which the matched/
merged record is the lowest value on
the file?

© 2009 by Taylor & Francis Group, LLC

512 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 A match/merge in which the matched/
merged record is the highest value on
the file?

 A match/merge in which the matched/
merged record is the same value as an
item on a file (e.g., adding a new
employee when the employee’s payroll
number is the same as an existing
payroll number on the file)?

 A match/merge for which there is no
input file or transactions being matched/
merged? (The objective is to see that the
matched/merged file is adequately
closed.)

 A match/merge in which the first item
on the file is deleted?

 A match/merge in which the last item
on the attached/merged file is deleted?

 A match/merge in which two incoming
records have the same value?

 A match/merge in which two incoming
records indicate a value on the
matched/merged file is to be deleted?

 A match/merge condition when the
last remaining record on the matched/
merged file is deleted?

 A match/merge condition in which the
incoming matched/merged file is out
of sequence or has a single record out
of sequence?

 Were these test conditions applied to
the totality of match/merge conditions
that can occur in the software being
tested?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 513

f13: Stress test Checklist
The following stress test validates the performance of software that is subjected to
a large volume of transactions.

Item Yes No N/A Comments

 1. Were all desired performance
capabilities identified?

 2. Were all system features contributing to
the test identified?

 3. Were the following system performance
capabilities identified?

 Data entry operator performance?

 Communications line performance?

 Turnaround performance?

 Availability and uptime performance?

 Response time performance?

 Error-handling performance?

 Report generation performance?

 Internal computational performance?

 Performance in developing actions?

 4. Are the following system features (that
can lower performance) identified?

 Internal computer processing speed?

 Communications line transmission
speed?

 Efficiency of programming language?

 Efficiency of database management
system?

 Number of input terminals and entry
stations?

 Skill level of data entry staff?

 Backup for computer terminals?

© 2009 by Taylor & Francis Group, LLC

514 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 Backup for data entry staff?

 Expected downtime with central
processing site?

 Expected frequency and duration of
abnormal software terminations?

 Queuing capabilities?

 File-storage capabilities?

 5. Are the stress conditions realistic for
validating software performance (as
confirmed by project personnel)?

f14: attributes testing Checklist
The following attributes test involves verifying the attributes that are quality and
productivity characteristics of a system being tested. An example includes the ease
of introducing changes into the software.

Item Yes No N/A Comments

 1. Have software attributes been identified?

 2. Have software attributes been ranked?

 3. Do end users or customers agree with
the attribute ranking?

 4. Have test conditions been developed for
the very important attributes?

 5. For correctness attributes, are the
functions accurate and complete?

 6. For the file integrity attribute, is the
integrity of each file or subschema
validated?

 7. For the authorization attribute, are there
authorization procedures for each
transaction?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 515

Item Yes No N/A Comments

 8. For the audit trail attribute, do test
conditions verify that each business
transaction can be reconstructed?

 9. For the continuity-of-processing
attribute, can the system be recovered
within a reasonable time span and
transactions captured or processed
during the recovery period?

 10. For the service attribute, do turnaround
and response times meet user needs?

 11. For the access control attribute, is the
system limited to authorized users?

 12. Does the compliance attribute conform
to MIS standards, the systems
development methodology, and
appropriate policies, procedures, and
regulations?

 13. For the reliability attribute, is incorrect,
incomplete, or obsolete data processed
properly?

 14. For the ease-of-use attribute, can users
employ the system effectively, efficiently,
and economically?

 15. For the maintainability attribute, can the
system be changed or enhanced with
reasonable effort and on a timely basis?

 16. For the portability attribute, can the
software be moved efficiently to other
platforms?

 17. For the coupling attribute, can the
software integrate properly with other
systems?

 18. For the performance attribute, do end
users consider the software’s
performance acceptable?

© 2009 by Taylor & Francis Group, LLC

516 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 19. For the ease-of-operation attribute, are
operations personnel able to effectively,
economically, and efficiently operate the
software?

f15: States testing Checklist
The following states test verifies special conditions relating to both the operating
and functional environments that may occur.

Item Yes No N/A Comments

 1. Has the state of empty master files been
validated?

 2. Has the state of empty transaction files
been validated?

 3. Has the state of missing master records
been validated?

 4. Has the state of duplicate master records
been validated?

 5. Has the state of empty tables been
validated?

 6. Has the state of insufficient quantity
been validated?

 7. Has the state of negative balances been
validated?

 8. Has the state of duplicate input been
validated?

 9. Has the state of entering the same
transaction twice (particularly from a
terminal) been validated?

 10. Has the state of concurrent updates (i.e.,
two terminals calling on the same master
record at the same time) been validated?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 517

Item Yes No N/A Comments

 11. Has the state in which there are more
requests for service or products than
there are services and products to
support them been validated?

f16: Procedures testing Checklist
The following procedures test verifies the software to verify the operating, terminal,
and communications procedures.

Item Yes No N/A Comments

 1. Have start-up procedures been
validated?

 2. Have query procedures been validated?

 3. Have file-mounting procedures been
validated?

 4. Have updating procedures been
validated?

 5. Have backup procedures been validated?

 6. Have off-site storage procedures been
validated?

 7. Have recovery procedures been
validated?

 8. Have terminal operating procedures
been validated?

 9. Have procedures needed to operate the
terminal when the main computer is
down been validated?

 10. Have procedures needed to capture data
when the terminals are down been
validated?

© 2009 by Taylor & Francis Group, LLC

518 ◾ Software Testing and Continuous Quality Improvement

f17: Control testing Checklist
The following control test validates the ability of internal controls to support accurate,
complete, timely, and authorized processing. These controls are usually validated by
auditors assessing the adequacy of control, which is typically dictated by law.

Item Yes No N/A Comments

 1. Have the business transactions processed
by the software been identified?

 2. Has a transaction flow analysis been
prepared for each transaction?

 3. Have controls for the transaction flow
been documented?

 4. Do data input controls address:

 Accuracy of data input?

 Completeness of data input?

 Timeliness of data input?

 Conversion of data input into a
machine-readable format?

 The keying of input?

 Data input processing schedules?

 Assignment of data input duties (e.g.,
originating, entering, and processing
data and distributing output)?

 End users’ input (with the help of the
control group)?

 Input of all source documents?

 Batching techniques?

 Record counts?

 Predetermined control totals?

 Control logs?

 Key verification?

 Preprogrammed keying formats?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 519

Item Yes No N/A Comments

 Editing for input?

 Input data elements?

 Data validation editing techniques?

 Monitoring for overrides and bypasses?

 Restriction of overrides and bypasses
to supervisory personnel?

 Automatic recording and submission of
overrides and bypasses to supervisors
for analysis?

 Automatic development of control
counts during data entry?

 Recording of transaction errors?

 Monitoring of rejected transactions for
correcting and reentering them on a
timely basis?

 Written procedures for data input
processes?

 Appropriate error messages for all data
error conditions?

 Security for data entry terminals?

 Passwords for entering business
transactions through terminals?

 Shutting down of terminals after
predefined periods of inactivity?

 Reports of unauthorized terminal use?

 Built-in identification codes for
terminals?

 Logs of transactions entered through
terminals? Interactive displays that tell
terminal operators which data is
entered?

© 2009 by Taylor & Francis Group, LLC

520 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 5. Do data entry controls include the
following controls?

 Accuracy of new data

 Completeness of new data

 Timely recording of new data

 Procedures and methods for creating
new data

 Security for blank source documents

 Checking of cross-referenced fields

 Prenumbered documents

 Transaction authorization

 System overrides

 Manual adjustments

 Batching of source documents

 Control totals for source documents

 A correction procedure for errors made
on source documents

 A retention repository for source
documents

 Transmission of source documents for
data entry

 Confirmation by the data entry
function to the source document
function that the documents are
entered (For online systems, data
origination and data entry are
performed concurrently.)

 Prompt messages for data entry
operators

 6. Do processing controls address:

 Input throughout processing?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 521

Item Yes No N/A Comments

 Instructions for operations personnel
on how to control processing?

 Abnormal termination or conditions?

 Operation logs for review by
supervisors?

 Procedures for reconciling record
counts and control totals?

 Reconciliation of processing control
totals and manually developed control
totals?

 Procedures ensuring that the right
versions of programs are run?

 Procedures ensuring that the right
versions of files are used?

 Maintenance of run-to-run totals?

 Reconciliation of processing from last
to current run (or between different
time periods)?

 Validation of new data?

 Manual validation of override and
bypass procedures after processing?

 Maintenance of transaction history
files?

 Procedures for controlling errors?

 Correct and timely reentry of rejected
transactions?

 Recording of correct accounting
classifications?

 Concurrent update protection
procedures?

 Error messages printed out for each
error condition?

© 2009 by Taylor & Francis Group, LLC

522 ◾ Software Testing and Continuous Quality Improvement

Item Yes No N/A Comments

 Identical procedures for processing
corrected and original transactions?

 7. Do data output controls address:

 Accountable documents (e.g., bank
checks)?

 Accountable documents damaged in
output preparation?

 Completeness of output?

 Review of output documents for
acceptability and completeness?

 Reconciliation of output documents for
record counts and control totals?

 Identification of output products?

 Delivery of output products to the right
locations?

 Delivery of output products on a timely
basis?

 Appropriate security for output
products?

 The end user’s assigned responsibility
for the accuracy of all output?

 Logs for output production and
delivery?

 Clear output error messages?

 A history of output errors?

 Users informed of output product
errors?

 Users informed of abnormal
terminations?

 A phone number users can call for help
in understanding output?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 523

Item Yes No N/A Comments

 A phone number users can call for
information about the output
production schedule?

 The number of copies of output?

 Procedures that determine who gets
online output?

 Control totals for online output?

 Written procedures for online output?

 Procedures for user responses made
on the basis of output information?

 8. Has the level of risk for each control area
been identified?

 9. Has this level of risk been confirmed by
the audit function?

 10. Have end users or customers been
notified of the level of control risk?

f18: Control flow testing Checklist
The following control flow test validates the control flow of transactions through
the system under test. It determines whether records can be lost or misprocessed
during processing.

Item Yes No N/A Comments

 1. Have all branches been tested in both
directions?

 2. Have all statements been executed?

 3. Have all loops been tested?

 4. Have all iterations of each loop been
tested?

 5. Have all execution paths been tested?

 6. Have all subroutines and libraries been
called in and executed during testing?

© 2009 by Taylor & Francis Group, LLC

524 ◾ Software Testing and Continuous Quality Improvement

f19: testing tool Selection Checklist
Finding the tool that is appropriate for a project can be difficult. Several questions
need to be answered before selecting a tool. The following testing tool selection
checklist lists the questions that can help the QA team evaluate and select an auto-
mated testing tool.

Item Yes No N/A Comments

 1. How easy is the tool for your testers to
use? Is it something that can be picked
up quickly, or is training going to be
required?

 2. Do any of the team members already
have experience using the tool?

 3. If training is necessary, are classes,
books, or other forms of instruction
available?

 4. Will the tool work effectively with the
computer system currently in place?

 5. Are more memory, faster processors, etc.
going to be needed?

 6. Is the tool itself easy to use?

 7. Does it have a user-friendly interface?

 8. Is it prone to user error?

 9. Is the tool physically capable of testing
your application? Many testing tools can
only test in a GUI environment, whereas
others test in non-GUI environments.

 10. Can the tool handle full project testing?
That is, is it able to run hundreds if not
thousands of test cases for extended
periods of time?

 11. Can it run for long periods of time
without crashing, or is the tool itself full
of bugs?

 12. Talk to customers who currently or
previously have used the tool. Did it
meet their needs?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 525

Item Yes No N/A Comments

 13. How similar were their testing needs to
yours and how well did the tool perform?

 14. Try to select a tool that is advanced
enough so the costs of updating tests do
not overwhelm any benefits of testing.

 15. If a demo version is available, try it out
before you make any decisions.

 16. Does the price of the tool fit in the QA
department or company budget?

 17. Does the tool meet the requirements of
the company’s testing methodology?

f20: Project information gathering Checklist
This checklist is used to verify the information available and is required at the
beginning of the project. The QA testing manager will assess the impact of every
negative response and document it as an issue to the concerned parties for resolu-
tion. This can be accomplished through weekly status reports or e-mail. The follow-
ing is a sample that is also included in the CD at the back of the book.

Context Activity Yes No Comments

Proposal Phase

Is the QA team prepared to make
QA estimates?

M M

Has the proposal been reviewed and
approved?

M M

Have estimation and risk assessment
been completed?

M M

Have initial work products been sent
to the project server?

M M

Vendor contract (if applicable) M M

Has the contract been reviewed and
approved?

M M Need process
defined in QA
Project Plan

© 2009 by Taylor & Francis Group, LLC

526 ◾ Software Testing and Continuous Quality Improvement

Context Activity Yes No Comments

Do the master contract and proposal
exist?

M M

Have the proposal and
communications been defined?

M M

Have the project acceptance notes/
communication been defined?

M M

Project initiation

Has a project folder been created? M M

Has the project manager been
trained on his role?

M M

Has the project kick-off meeting
been completed?

M M

Was the manager who made the
proposal present at the project
kick-off meeting?

M M

Project Plan & Scheduling

Have audits and reviews been
planned?

M M

Have the project goals been
identified?

M M

Has configuration management
been discussed?

M M

Has the staffing plan been
discussed?

M M

Has the training plan been
discussed?

M M

Has the status-reporting method
and frequency been discussed?

M M

Has the project scheduling been
discussed?

M M

Does the project schedule include
all the activities in the project?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 527

Context Activity Yes No Comments

Has the QA project management
plan been reviewed by the project
manager and others?

M M

Has the QA project schedule been
reviewed by the team?

M M

testing Process overview

Has the testing process been
reviewed and approved by project
manager?

M M

Project folder

Have the estimation and risk been
discussed?

M M

Have the roles and responsibilities
been discussed?

M M

Have the critical resources been
planned?

M M

Have the project dependencies
been identified?

M M

Has the project folder been
reviewed by the quality test for
completeness?

M M

f21: impact analysis Checklist
The impact analysis checklist is used to help analyze the impacts of changes to
the system. The test manager will assess the impact of each negative response and
document it as an issue to the concerned parties. This can be accomplished through
weekly status reports or e-mail. The following is a sample that is also included in the
CD at the back of the book.

Context Activity Yes No Comments

Is the enhanced business requirement
available?

M M

© 2009 by Taylor & Francis Group, LLC

528 ◾ Software Testing and Continuous Quality Improvement

Context Activity Yes No Comments

Is the new functional specification
document for new requirements
available?

M M

Have you understood the additional/new
requirements?

M M

Is the prototype document for new
release available?

M M

Are you able to identify the proposed
changes?

M M

Are you able to identify the applications
affected by the enhancements?

M M

Has the test scope been adequately
defined for the enhancements?

M M

Have the test conditions/cases been
prepared for the enhancements and
impacted application areas?

M M

Have you prepared a test plan/strategy? M M

Have you prepared the test data
requirements for all the conditions/
cases?

M M

Has the automation scope for the new/
additional requirements been
completed?

M M

Has the impact on the existing scripts
been analyzed?

M M

Has the test execution plan been
documented for the new release?

M M

Has the traceability matrix document
been prepared?

M M

Are there any architectural changes due
to new requirements?

M M

Are there any changes to the databases
due to new requirements?

M M

Have the GUI changes due to new
requirements been analyzed?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 529

f22: environment readiness Checklist
The purpose of the environment readiness checklist is to verify the readiness of the
environment for testing before starting test execution. The test manager will assess
the impact of each negative response and document it as an issue to the concerned
parties. This can be accomplished through weekly status reports or e-mail. The fol-
lowing is a sample that is also included in the CD at the back of the book.

Context Items to Be Checked Yes No Comments

Has the client signed off on the test
strategy?

M M

Is the test environment ready? M M

Hardware M M

<Input each component> M M

Software M M

<Input each component> M M

Is the test bed created? M M

Is data available as per expected format
(test data guidelines—planning)?

M M

Is the data actually populated? M M

Is the populated data sufficient? M M

Has the software transfer been
completed and the initial version been
loaded (load management)?

M M

Have the user IDs and passwords been
set up to access the environment from
client/developers?

M M

Logistics M M

Is the testing team available and ready to
start testing?

M M

Is the test laboratory setup complete? M M

Is the interaction model (project
planning) defined and established as
documented in the test strategy?

M M

© 2009 by Taylor & Francis Group, LLC

530 ◾ Software Testing and Continuous Quality Improvement

Context Items to Be Checked Yes No Comments

Is the client aware of the defect
management process as defined in the
strategy?

M M

Are the entry criteria defined and
established per the project strategy
plan?

M M

<Enter each criterion here> M M

any other Potential issues:

f23: Project Completion Checklist
The project completion checklist is used to confirm that all the key activities have
been completed for the project. The following is a sample that is also included in
the CD at the back of the book.

Context Activity

Status

CommentsYes No
Required/
Optional

Are all the test cases
executed?

M M R

Are all the defects either
closed or deferred?

M M R

Are all change requests
closed?

M M R

Is the soft base delivered
certified?

M M O

Has user training been
completed?

M M O

Are the deliverables
handed over to the
customer?

M M R

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 531

Context Activity

Status

CommentsYes No
Required/
Optional

Has project sign-off been
obtained from the
customer?

M M O

Does the project directory
contain the latest version
of the documents?

M M R

Are all the documents
archived and put in data
warehouse?

M M R

Have customer feedback
forms been sent to the
customer?

M M O

Has the customer-supplied
material been returned or
released to other projects
and the same
communicated to the
customer?

M M R

Has the formal project
closure been
communicated? (customer,
senior manager, onsite
team, quality team, inter
groups, and project team)

M M R

Have the project directories
been backed up?

M M R

Have the media been
stored in a fireproof
cabinet?

M M R

Has the project directory
been withdrawn from the
server?

M M R

Has the project been
marked as closed in
project database?

M M R

© 2009 by Taylor & Francis Group, LLC

532 ◾ Software Testing and Continuous Quality Improvement

Context Activity

Status

CommentsYes No
Required/
Optional

Have all metric data
collection been
completed?

M M R

Has the skill database been
updated?

M M O

f24: unit testing Checklist
The unit testing checklist is used to verify that unit testing has been thorough and
comprehensive. The following is a sample that is also included in the CD at the
back of the book.

Expected Testing Actions

Completed
Comments/
ExplanationYes No N/A

Was every field verified to allow only data of
the correct format to be entered (e.g.,
numeric [signed/unsigned], alphabetic,
alphanumeric [special characters], date,
valid and invalid)? Check error messages
for invalid data?

Was every field verified to allow only data of
allowable values to be entered (e.g., tables,
ranges, minimum, maximum)? Check error
messages for invalid data?

Was it verified that business rules for every
field were enforced (e.g., mandatory/not
mandatory when another field is present,
relational edits)?

Was every error message tested?

Was every field verified to handle all invalid
values?

Were all upper- and lowercase field
conditions verified?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 533

Expected Testing Actions

Completed
Comments/
ExplanationYes No N/A

Were all internal tables verified or
addressed to have sufficient capacity to
provide for maximum volumes (e.g.,
dataset population, number of transactions
to accept)? Check error messages?

For numerical fields, have all zero values
been tested?

Were all valid data conditions tested against
data dictionary definitions?

Were the specifications reviewed to ensure
that conditions have been tested?

Were all alpha fields validated for “blank”
conditions?

Was it verified that all data is being retrieved
from and written to the correct physical
database?

Were all fields initialized properly?

Were all fields that are protected validated?

Was all data being retrieved from and written
to appropriate files and fields verified?

Was every calculation verified to provide
correct results over the entire ranges of
involved data items based on the business
rules?

Was every output value and its format
verified (e.g., rounding/truncation)?

Was data passed to all other systems verified
to be in the correct format by the receiving
system?

Was data passed from other systems verified
to be in the correct format?

Were all required security requirements, as
specified in the design specification,
verified?

© 2009 by Taylor & Francis Group, LLC

534 ◾ Software Testing and Continuous Quality Improvement

Expected Testing Actions

Completed
Comments/
ExplanationYes No N/A

Were all outputs verified to identify the
security level classification appropriate to
the information being presented?

Were all error conditions trapped and
handled according to the standards for the
environments in which the software item
will execute (e.g., error codes, error
messages, etc.)?

Was it verified that the software items do
not leave corrupted data when unexpected
error conditions occur (e.g., general
protection fault, syntax error, abnormal
exit)?

Were all messages verified to be clear and
understandable by typical end users of the
software item?

Did typical users of the instructions verify
all the instructions to be concise and
understandable?

Did the typical audience of the
documentation verify that documentation
was clear and understandable?

Were all tabs, buttons, hyperlinks, and field
tabbing operated in a logical manner
according to the REL IT standards in which
the software item will execute?

Were all commands verified to be available
using either a mouse or keyboard?

Were tests performed to indicate that
response times meet requirements as
specified and will be acceptable in the
environments where the software item will
execute (run-time for large volumes)?

Was the code reviewed?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 535

Expected Testing Actions

Completed
Comments/
ExplanationYes No N/A

Were all undefined loop iterations verified?

Were all the programming standards
satisfied?

Were invalid codes verified?

Were invalid data relationships verified?

Were invalid date formats verified?

Were page overflows verified?

Was it verified that the software items meet
all standards applicable to the
environments in which the software item is
expected to execute?

Was it verified that the software items meet
all requirements imposed by corporate
standards regarding financial controls and
privacy?

Was it verified that the software could be
adapted to execute in the specific
environments in which it is required to
execute?

Comments:

Completed by: ________________
Date ________________
Developer

Accepted by: ________________
Date ________________
Development Manager

© 2009 by Taylor & Francis Group, LLC

536 ◾ Software Testing and Continuous Quality Improvement

f25: ambiguity review Checklist
The ambiguity review checklist is used to assist in the review of a functional speci-
fication of structural ambiguity (not to be confused with content reviews). The QA
project manager will assess and document every negative response as an issue to the
concerned parties for resolution. This can be accomplished through weekly status
reports or e-mail. The following is a sample that is also included in the CD at the
back of the book.

Context Task Yes No Comments

Complexity Are the requirements
overly complex?

M M

Dangling else Are there cases where the
else part of a condition
is missing?

M M

Ambiguity of
references

Are there references that
are not clearly defined?

M M

Scope of action Are there cases where the
scope of the action for a
condition is not clearly
defined?

M M

Omissions Are there causes without
effects?

M M

Are there missing effects? M M

Are there effects without
causes?

M M

Are there missing causes? M M

Ambiguous logical
operators

Is there compound usage
of “and/or” that is not
clear?

M M

Are there implicit
connectors?

M M

Is “or” correctly used? M M

Negation Are there cases of scope
negation?

M M

Are there cases of
unnecessary negation?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 537

Context Task Yes No Comments

Are there cases of double
negation?

M M

Ambiguous statements Are there ambiguous
verbs?

M M

Are there ambiguous
adverbs?

M M

Are there ambiguous
adjectives?

M M

Are there ambiguous
variables?

M M

Are there aliases? M M

Random organization Are there mixed causes
and effects?

M M

Are there random case
sequences?

M M

Built-in assumptions Are there cases of
functional/
environmental
knowledge?

M M

Ambiguous
precedence
relationships

Are there cases where the
sequences of events are
not clear?

M M

Implicit cases Are there implicit cases? M M

Etc. Are there examples of
“etc.”?

M M

I.e. versus e.g. Are “i.e.” and “e.g.” used
correctly?

M M

Temporal ambiguity Are there cases of timing
ambiguities?

M M

Boundary ambiguity Are there boundary
ambiguities?

M M

© 2009 by Taylor & Francis Group, LLC

538 ◾ Software Testing and Continuous Quality Improvement

f26: architecture review Checklist
The architecture review checklist is used to review the architecture for completeness
and clarity. The test manager will assess and document every negative response as
an issue to the concerned parties for resolution. This can be accomplished through
weekly status reports or e-mail. The following is a sample that is also included in
the CD at the back of the book.

Area Task Yes No Comments

Has an overview description of the system
been documented?

Has the 2- or 3-tier architecture been
defined?

Have the database and access been
defined?

Have servers been defined?

Have the protocols been defined, e.g., HTTP,
JSP, PeopleSoft, Tuxedo?

Is the vendor in-house or outsourced?

Has the point of contact to resolve technical
architecture problems been defined?

Has the platform been defined?

Is there a network diagram?

Has the test equipment been defined?

Has load balancing been defined?

Have the business processes been defined?

Are there common tasks that may be
performed more often than others?

Have peak volumes been defined?

Have the Web servers been identified?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 539

f27: data design review Checklist
The data design review checklist is used to review the logical and physical design for
clarity and completeness. The QA project manager will assess and document every
negative response as an issue to the concerned parties for resolution. This can be
accomplished through weekly status reports or e-mail, depending on the severity.
The following is a sample that is also included in the CD at the back of the book.

Context Task

Status

Yes No Remarks

logical design

Has the data been inadequately defined? M M

Are the data entity definitions incomplete? M M

Are the cardinalities defined incorrectly? M M

Are the attributes defined adequately? M M

Are there normalization violations? M M

Are the primary keys defined incorrectly? M M

Are the foreign keys defined incorrectly? M M

Are the compound keys defined
incorrectly?

M M

Are the entity subtypes defined
incorrectly?

M M

Are the parent processes incomplete? M M

Are the child processes incomplete? M M

Are the process inputs and outputs
interactions with the entities incomplete?

M M

Are the elementary entities defined
correctly?

M M

Are there parallel linkage problems? M M

Are event-trigger processes designed
incorrectly?

M M

Are entity/process associations incorrectly
defined?

M M

© 2009 by Taylor & Francis Group, LLC

540 ◾ Software Testing and Continuous Quality Improvement

Context Task

Status

Yes No Remarks

Are entity/process read associations
incorrectly defined?

M M

Are entity/process update associations
incorrectly defined?

M M

Are entity/process delete associations
incorrectly defined?

M M

f28: functional Specification review Checklist
The functional specification review checklist is used to review a functional speci-
fication for content completeness and clarity (not to be confused with ambiguity
reviews). The QA project manager will assess and document every negative response
as an issue to the concerned parties for resolution. This can be accomplished through
weekly status reports or e-mail. The following is a sample that is also included in
the CD at the back of the book.

Context Task Yes No Comments

introduction

Are the purpose, scope, and
organization of the functional
specification documented?

M M

Software overview

Product
description

Is there a description of why
the product is being
developed and a list of the
important features and
capabilities?

M M

Product
functional
capabilities

Is there a list of the functions
that the software will be
required to perform?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 541

Context Task Yes No Comments

For several functional
capabilities, is there a table (or
some other format) to
illustrate the relationships
between the functional
capabilities? Note: This may be
an update to the requirements
documentation.

M M

User
characteristics

Are the intended users of the
software in terms of job
function, specialized
knowledge, or skill levels
described?

M M

User operations
and practices

Is there a description of how
the users will normally use the
software, and the tasks they
will frequently perform?

M M

General
constraints

Are algorithmic, user interface,
and data limitations
described?

M M

Assumptions Are all the assumptions
described?

M M

Other software Is there a description of how
the system interfaces with
other software?

M M

Specific functional descriptions

Description Is the role of each function
described?

M M

Inputs Are all input sources specified? M M

Are all input accuracy
requirements specified?

M M

Are all input range values
specified?

M M

Are all input frequencies
specified?

M M

Are all input formats specified? M M

© 2009 by Taylor & Francis Group, LLC

542 ◾ Software Testing and Continuous Quality Improvement

Context Task Yes No Comments

Processing If calculations using methods
or specific standards are used,
are they referenced?

M M

Are database definitions
included?

M M

Outputs Are the outputs of the function
described?

M M

Where there is a user interface,
is it included?

M M

Are all output destinations
specified?

M M

Are all output accuracy
requirements specified?

M M

Are all output range values
specified?

M M

Are all output frequencies
specified?

M M

Are all output formats
specified?

M M

reports

Are all report formats
specified?

M M

Are all calculations/formulas
used in reports specified?

M M

Are all report data filter
requirements specified?

M M

Are all report-sorting
requirements specified?

M M

Is a report-totaling
requirements specified?

M M

Are all report-formatting
requirements specified?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 543

Context Task Yes No Comments

nonfunctional

Are all performance
requirements specified for
each function?

M M

Are all design constraints
specified for each function?

M M

Are all attributes specified for
each function?

M M

Are all security requirements
specified for each function?

M M

Are all maintainability
requirements specified for
each function?

M M

Are all database requirements
specified for each function?

M M

Are all operational
requirements specified for
each function?

M M

Are all installation
requirements specified for
each function?

M M

interfaces

Are all user interfaces
specified?

M M

Are all batch interfaces
specified?

M M

Are all hardware interfaces
specified?

M M

Are all software interfaces
specified?

M M

Are all communications
interfaces specified?

M M

Are all interface design
constraints specified?

M M

© 2009 by Taylor & Francis Group, LLC

544 ◾ Software Testing and Continuous Quality Improvement

Context Task Yes No Comments

Are all interface security
requirements specified?

M M

Are all interface maintainability
requirements specified?

M M

Are all human–computer
interactions specified for user
interfaces?

M M

Have all internal interfaces
been identified?

M M

Have all internal interface
characteristics been specified?

M M

Are error message
requirements described?

M M

Are input range-checking
requirements described?

M M

Is the order of choices and
screens corresponding to user
preferences defined?

M M

additional requirements

Database Are any specific requirements
relating to the database, such
as database type, capability to
handle large text fields,
real-time capability, multi-user
capability, and special
requirements relating to
queries and forms, defined?

M M

Administration Are periodic updating or data
management requirements
defined?

M M

User
documentation

Are there user-documentation
requirements to be delivered
with the software defined?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 545

Context Task Yes No Comments

Other
requirements

Are there requirements not
already covered earlier that
need to be considered during
the design of the software?

M M

timing

Are all expected processing
times specified?

M M

Are all data transfer rates
specified?

M M

Are all system throughput rates
specified?

M M

Hardware Is the minimum memory
specified?

M M

Is the minimum storage
specified?

M M

Is the maximum memory
specified?

M M

Is the maximum storage
specified?

M M

Software Are the required software
environments/OSs specified?

M M

Are all of the required software
utilities specified?

M M

Are all purchased software
products that are to be used
with the system specified?

M M

Network Is the target network specified? M M

Are the required network
protocols specified?

M M

Is the required network
capacity specified?

M M

Is the required/estimated
network throughput rate
specified?

M M

© 2009 by Taylor & Francis Group, LLC

546 ◾ Software Testing and Continuous Quality Improvement

Context Task Yes No Comments

Is the estimated number of
network connections
specified?

M M

Are minimum network
performance requirements
specified?

M M

Are the maximum network
performance requirements
specified?

M M

f29: Prototype review Checklist
The prototype review checklist is used to review a prototype for content complete-
ness and clarity. The test manager will assess and document every negative response
as an issue to the concerned parties for resolution. This can be accomplished through
weekly status reports or e-mail. The following is a sample that is also included in
the CD at the back of the book.

Context Item Yes No Comments

Does the prototype reflect the initial
client requirements?

Does the prototype design reflect the
initial requirements?

Has a detailed interactive/visual user
interface been created?

Is there an easy connection of the user
interface components to the underlying
functional behavior?

Does the prototyping tool provide an
easy way to learn the language?

Is modification to the resulting
prototyping tool language easy to
perform?

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 547

Context Item Yes No Comments

Simplicity: Does the user interface
provide an appropriate means of
allowing a client to assess the
underlying functional behavior as
described by the initial requirements?

Is the prototype simple to use?

Conciseness: Does the prototype
contain full-scale user interfaces
without extraneous details?

Does the prototype contain a data
model defining the data structures for
the application itself?

Is the volatility/persistence of the data
represented?

Does the prototype accommodate new
requirements?

Does the prototype address poorly
defined requirements?

f30: requirements review Checklist
The requirements review checklist is used to verify that the testing project require-
ments are comprehensive and complete. The test manager will assess and document
every negative response as an issue to the concerned parties for resolution. This can
be accomplished through weekly status reports or e-mail. The following is a sample
that is also included in the CD at the back of the book.

Context Task

Status

CommentsYes No

Clarity

Are the requirements written in
nontechnical, understandable
language?

M M

Is each characteristic of the final product
described with a unique terminology?

M M

© 2009 by Taylor & Francis Group, LLC

548 ◾ Software Testing and Continuous Quality Improvement

Context Task

Status

CommentsYes No

Is there a glossary in which the specific
meaning of each term is defined?

M M

Could the requirements be understood
and implemented by an independent
group?

M M

Completeness

Is there an indexed table of contents? M M

Are all figures, tables, and diagrams
labeled?

M M

Are all figures, tables, and diagrams
cross-referenced?

M M

Are all of the requirements defined? M M

Are all of the requirements related to
functionality included?

M M

Are all of the requirements related to
performance included?

M M

Are all of the requirements related to
design constraints included?

M M

Are all of the requirements related to
attributes included?

M M

Are all of the requirements related to
external interfaces included?

M M

Are all of the requirements related to
databases included?

M M

Are all of the requirements related to
software included?

M M

Are all of the requirements related to
hardware included?

M M

Are all of the requirements related to
inputs included?

M M

Are all of the requirements related to
outputs included?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 549

Context Task

Status

CommentsYes No

Are all of the requirements related to
reporting included?

M M

Are all of the requirements related to
security included?

M M

Are all of the requirements related to
maintainability included?

M M

Are all of the requirements related to
criticality included?

M M

Are possible changes to the
requirements specified?

M M

Consistency

Are there any requirements describing
the same object that conflict with other
requirements with respect to
terminology?

M M

Are there any requirements describing
the same object that conflict with
respect to attributes?

M M

Are there any requirements that
describe two or more actions that
conflict logically?

M M

Are there any requirements that
describe two or more actions that
conflict temporally?

M M

traceability

Are all requirements traceable back to a
specific user need?

M M

Are all requirements traceable back to a
specific source document or person?

M M

Are all requirements traceable forward to
a specific design document?

M M

Are all requirements traceable forward
to a specific software module?

M M

© 2009 by Taylor & Francis Group, LLC

550 ◾ Software Testing and Continuous Quality Improvement

Context Task

Status

CommentsYes No

verifiability

Are any requirements included that are
impossible to implement?

M M

For each requirement, is there a process
that can be executed by either a human
or a machine to verify the requirement?

M M

Are there any requirements that will be
expressed in verifiable terms at a later
time?

M M

Modifiability

Is the requirements document clearly
and logically organized?

M M

Does the organization adhere to an
accepted standard?

M M

Content

General

Is each requirement relevant to the
problem and its solution?

M M

Are any of the defined requirements
really designing details?

M M

Are any of the defined requirements
really verification details?

M M

Are any of the defined requirements really
project management details?

M M

Is there an introduction section? M M

Is there a general description section? M M

Is there a scope section? M M

Is there a definitions, acronyms, and
abbreviations section?

M M

Is there a product perspective section? M M

Is there a product functions section? M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 551

Context Task

Status

CommentsYes No

Is there a user characteristics section? M M

Is there a general constraints section? M M

Is there an assumptions and
dependencies section?

M M

Is there a specific requirements section? M M

Are all of the necessary appendices
present?

M M

Are all of the necessary figures present? M M

Are all of the necessary tables present? M M

Are all of the necessary diagrams
present?

M M

Reliability

Are the consequences of software
failure specified for each requirement?

M M

Is the information to protect from failure
specified?

M M

Is a strategy for error detection
specified?

M M

Is a strategy for error correction
specified?

M M

Hardware

Are the hardware details specified? M M

Software

Are the required software details
specified?

M M

Communications

Are the required communication/
network details specified?

M M

© 2009 by Taylor & Francis Group, LLC

552 ◾ Software Testing and Continuous Quality Improvement

f31: technical design review Checklist
The technical design review checklist is used to review the technical design for
clarity and completeness. The QA project manager will assess and document every
negative response as an issue to the concerned parties for resolution. This can be
accomplished through weekly status reports or e-mail, depending on the severity.
The following is a sample that is also included in the CD at the back of the book.

Context Task Yes No Comments

technical design

Is the logic sequencing erroneous? M M

Is the processing inaccurate? M M

Do procedures handle input or output
parameters incorrectly?

M M

Do procedures not accept all data within
allowable ranges?

M M

Are limit and validity checks made on
input data?

M M

Are there recovery procedures not
implemented or that are inadequate?

M M

Is required logic missing or inadequate? M M

Are values erroneous or ambiguous? M M

Is data storage erroneous or inadequate? M M

Is a variable missing or not declared
properly?

M M

Is the database not compatible with the
data environment?

M M

Does the modular structure reflect a high
intermodular dependence?

M M

Are there algorithms not evaluated for
accuracy or speed?

M M

Is the control structure not expandable? M M

Do control structures ignore the
processing priorities?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 553

Context Task Yes No Comments

Are the interface protocols incorrectly
used?

M M

Is data not converted according to the
correct format?

M M

Has round-off or truncation been
considered?

M M

Are the indices used incorrectly? M M

Are there infinite loops? M M

Are database rules violated? M M

Are special cases not covered? M M

Is error handling deficient? M M

Are timing considerations neglected? M M

Are interface specifications
misunderstood or implemented
wrongly?

M M

Are the functional specifications
misallocated among the various
software modules?

M M

Is the system functionality correct but
does not meet performance
requirements?

M M

Is the system not sufficiently complex to
match the problem being solved?

M M

Are there actions in response to given
inputs that are inappropriate or
missing?

M M

Do algorithmic approximations provide
insufficient accuracy or erroneous
results for certain values of the input?

M M

Are there errors in the detailed logic
developed to solve a particular
problem?

M M

© 2009 by Taylor & Francis Group, LLC

554 ◾ Software Testing and Continuous Quality Improvement

Context Task Yes No Comments

Do singular or critical input values yield
unexpected results that are not
appropriately accounted for in the
code?

M M

Are there algorithms that do not cover all
the necessary cases?

M M

Are there algorithms that are incorrect or
produce the wrong solution?

M M

f32: test Case Preparation review Checklist
This is used to ensure that test cases have been prepared as per specifications. The
test manager will assess the impact of every negative response and document it as
an issue to the concerned parties for resolution. This can be accomplished through
weekly status reports or e-mail. The following is a sample that is also included in
the CD at the back of the book.

Context Activity

Status

CommentsYes No

Is the approved test plan available? M M

Have the resources to implement the
test plan been identified?

M M

Are the baseline documents available? M M

Has the domain knowledge to work with
the application been imparted to team
members?

M M

Has the test condition document been
completed?

M M

Have test cases have been developed for
all the requirements?

M M

Has the traceability been verified? M M

Have all the basic flows in use cases
been covered?

M M

© 2009 by Taylor & Francis Group, LLC

Checklists ◾ 555

Context Activity

Status

CommentsYes No

Have all the alternate flows in use cases
been covered?

M M

Have changed requirements been
covered fully?

M M

Have nontestable requirements been
escalated?

M M

Have the test cases been written for data
flow across interfaces?

M M

Have the test cases been written for all
types of tests defined in the project
plan?

M M

Have all the positive and negative cases
been identified?

M M

Are all boundary cases identified? M M

Have test cases been written for
nonfunctional requirements?

M M

Have test cases been written for GUI/
hyperlink testing in Web applications?

M M

Have test cases been written to test date
integrity?

M M

© 2009 by Taylor & Francis Group, LLC

557

GAppendix

Software testing
techniques

g1: Basis Path testing
Basis path testing is a white-box technique that identifies test cases on the basis of
flows or logical paths that can be taken through a program. A basis path is a unique
path through the program where no iterations are allowed. Basis paths are atomic-
level paths, and all possible paths through the system are linear combinations of
them. Basis path testing also produces a cyclomatic metric, which measures the
complexity of a source code module by examining the control structures.

Consider the following small program, which reads records from a file and tal-
lies the numerical ranges of a field on each record to illustrate the technique.

PROGRAM: FIELD-COUNT
Node Statement
1. Dowhile not EOF
 read record
2. if FIELD_COUNTER > 7 then
3. increment COUNTER_7 by 1
 else
4. if FIELD_COUNTER > 3 then
5. increment COUNTER_3 by 1
 else

© 2009 by Taylor & Francis Group, LLC

558 ◾ Software Testing and Continuous Quality Improvement

6. increment COUNTER_1 by 1
7. endif
8. endif
9. End_While
10. End

In theory, if the loop were to be iterated 100 times, 1.5 × 10 test cases would be
required to perform exhaustive testing, which is not achievable. On the other hand,
with basis testing there are four basis test cases required to test the program:

 1 → 10
 1 → 2 → 3 → 8 → 9 → 1 → 10
 1 → 2 → 4 → 5 → 7 → 8 → 9 → 1 → 10
 1 → 2 → 4 → 6 → 7 → 8 → 9 → 1 → 10

Mathematically, all possible paths in the program can be generated by linear
combinations of the four basis paths. Experience shows that most of the potential
defects will be discovered by executing the four basis path test cases, which demon-
strates the power of the technique. The number of basis paths is also the cyclomatic
complexity metric. It is recommended that the cyclomatic for a program module not
exceed 10. As the calculations are very labor intensive, there are testing tools to auto-
mate the process. See Section 6, “Modern Software Testing Tools,” for more details.

Basis path testing can also be applied to integration testing when program
modules are integrated. The use of the technique quantifies the integration effort
involved as well as the design-level complexity.

g2: Black-Box testing
Black-box, or functional, testing is one in which test conditions are developed on
the basis of the program or system’s functionality; that is, the tester requires infor-
mation about the input data and observed output, but does not know how the
program or system works. Just as one does not have to know how a car works inter-
nally to drive it, it is not necessary to know the internal structure of a program to
execute it. The technique focuses on testing the program’s functionality against the
specification. With black-box testing, the tester views the program as a black-box
and is completely unconcerned with the internal structure of the program or sys-
tem. Some examples in this category include the following: decision tables, equiva-
lence partitioning, range testing, boundary value testing, database integrity testing,
cause-effect graphing, orthogonal array testing, array and table testing, exception
testing, limit testing, and random testing.

A major advantage of black-box testing is that the tests are geared to what the
program or system is supposed to do, and it is natural and understood by every-
one. This should be verified with techniques such as structured walkthroughs,

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 559

inspections, and JADs. A limitation is that exhaustive input testing is not achiev-
able, because this requires that every possible input condition or combination be
tested. In addition, because there is no knowledge of the internal structure or logic,
there could be errors or deliberate mischief on the part of a programmer that may
not be detectable with black-box testing. For example, suppose a disgruntled pay-
roll programmer wanted to insert some job security into a payroll application he
is developing. By inserting the following extra code into the application, if the
employee were to be terminated, that is, if his employee ID no longer exists in the
system, justice would sooner or later prevail.

Extra Program Logic
if my employee ID exists
 deposit regular pay check into my bank account
else
 deposit an enormous amount of money into my bank account
 erase any possible financial audit trails
 erase this code

g3: Bottom-up testing
The bottom-up testing technique is an incremental testing approach in which
the lowest-level modules or system components are integrated and tested first.
Testing then proceeds hierarchically to the top level. A driver, or temporary test
program that invokes the test module or system component, is often required.
Bottom-up testing starts with the lowest-level modules or system components
with the drivers to invoke them. After these components have been tested, the
next logical level in the program or system component hierarchy is added and
tested driving upward.

Bottom-up testing is common for large complex systems, and it takes a relatively
long time to make the system visible. The menus and external user interfaces are
tested last, so users cannot have an early review of these interfaces and functions.
A potential drawback is that it requires a lot of effort to create drivers, which can
add additional errors.

g4: Boundary value testing
The boundary-value-testing technique is a black-box technique that focuses on
the boundaries of the input and output equivalence classes (see Equivalence Class
Partitioning Testing). Errors tend to congregate at the boundaries. Focusing testing
in these areas increases the probability of detecting errors.

© 2009 by Taylor & Francis Group, LLC

560 ◾ Software Testing and Continuous Quality Improvement

Boundary value testing is a variation of the equivalence class partitioning tech-
nique, which focuses on the bounds of each equivalence class, for example, on,
above, and below each class. Rather than select an arbitrary test point within an
equivalence class, boundary value analysis selects one or more test cases to chal-
lenge each edge. Focus is on the input space (input equivalence classes) and output
space (output equivalence classes). It is more difficult to define output equivalence
classes and, therefore, boundary value tests.

Boundary value testing can require a large number of test cases to be created
because of the large number of input and output variations. It is recommended that
at least nine test cases be created for each input variable. The inputs need to be thor-
oughly understood, and the behavior must be consistent for the equivalence class.
One limitation is that it may be very difficult to define the range of the equivalence
class if it involves complex calculations. It is, therefore, imperative that the require-
ments be as detailed as possible. The following are some examples of how to apply
the technique.

Numeric Input Data

Field Ranges

Example: “Input can range from integers 0 to 100,” test cases include –1, 0, 100,
101.

Example: “Input can range from real numbers 0 to 100.0,” test cases include
–0.00001, 0.0, 100.0, 100.00001.

Numeric Output Data

Output Range of Values

Example: “Numerical range outputs of actuarial tables can be from $0.0 to
$100,000.00”; for example, an attempt to create conditions that produce a negative
amount, $0.0, $100,000.00, $100,000.01.

Nonnumeric Input Data

Tables or Arrays

Example: Focus on the first and last rows, for example, read, update, write, delete.
Example: Try to access a nonexistent table or array.

Number of Items

Example: “Number of products associated with a model is up to 10”; for example,
enter 0, 10, 11 items.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 561

Nonnumeric Output Data

Tables or Arrays

Example: Focus on the first and last rows, for example, update, delete, insert
operations.

Number of Outputs

Example: “Up to 10 stocks can be displayed”; for example, attempt to display 0, 10,
and 11 stocks.

GUI

 1. Vertically and horizontally scroll to the end of scroll bars.
 2. Upper and lower limits of color selection.
 3. Upper and lower limits of sound selection.
 4. Boundary gizmos, for example, bounds available sets of available input

values.
 5. Spinners, for example, small edit field with two half-height buttons.
 6. Flip-flop menu items.
 7. List box bounds.

g5: Branch Coverage testing
Branch coverage, or decision coverage, is a white-box testing technique in which
test cases are written to ensure that every decision has a true and false outcome at
least once; for example, each branch is traversed at least once. Branch coverage gen-
erally satisfies statement coverage (see G31, “Statement Coverage Testing”), because
every statement is on the same subpath from either branch statement.

Consider the following small program, which reads records from a file and tal-
lies the numerical ranges of a field on each record to illustrate the technique.

PROGRAM: FIELD-COUNT
Dowhile not EOF
 read record
 if FIELD_COUNTER > 7 then
 increment COUNTER_7 by 1
 else
 if FIELD_COUNTER > 3 then
 increment COUNTER_3 by 1

© 2009 by Taylor & Francis Group, LLC

562 ◾ Software Testing and Continuous Quality Improvement

 else
 increment COUNTER_1 by 1
 endif
 endif
End_While
End

The test cases to satisfy branch coverage are as follows:

Test Case Value (FIELD_COUNTER)

1 >7, ex. 8

2 <= 7, ex. 7

3 >3, ex. 4

4 <= 3, ex. 3

For this particular example, Test Case 2 is redundant and can be eliminated.

g6: Branch/Condition Coverage testing
Branch/condition coverage is a white-box testing technique in which test cases are
written to ensure that each decision and the conditions within a decision take on all
possible values at least once. It is a stronger logic-coverage technique than decision
or condition coverage because it covers all the conditions that may not be tested
with decision coverage alone. It also satisfies statement coverage.

One method of creating testing cases using this technique is to build a truth
table and write down all conditions and their complements. Then, if they exist,
duplicate test cases are eliminated. Consider the following small program, which
reads records from a file and tallies the numerical ranges of a field on each record
to illustrate the technique.

PROGRAM: FIELD-COUNT
Dowhile not EOF
 read record
 if FIELD_COUNTER > 7 then
 increment COUNTER_7 by 1
else
 if FIELD_COUNTER > 3 then
 increment COUNTER_3 by 1
else
 increment COUNTER_1 by 1

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 563

 endif
 endif
End_While
End

The test cases to satisfy branch/condition coverage are as follows:

Test Case Value (FIELD_COUNTER)

1 >7, ex. 8

2 <= 7, ex. 7

3 >3, ex. 4

4 <= 3, ex. 3

For this particular example there is only one condition for each decision. If
there were more, each condition and its complement would be tested. Again, Test
Case 2 is redundant and can be eliminated.

g7: Cause-effect graphing
Cause-effect diagrams (also known as Ishikawa or Fishbone diagrams) are use-
ful tools to analyze the causes of an unsatisfactory condition. They have several
advantages. One is that they provide a visual display of the relationship of one
cause to another. This has proved to be an effective way to stimulate ideas during
the initial search. Another benefit is that they provide a way to keep searching
for root causes by asking why, what, where, who, and how. Yet another benefit
is that they are graphical representations in which the cause-relationships are
easily discernible.

One application of cause-effect graphs was undertaken to understand the inspec-
tion process. It discovered that (1) excessive size of materials to be inspected leads
to a preparation rate that is too high, (2) a preparation rate that is too high con-
tributes to an excessive rate of inspection, and (3) an excessive rate of inspection
causes fewer defects to be found. This analysis using cause-effect graphics provided
insights to optimize the inspection process by limiting the size of materials to be
inspected and the preparation rate.

Proper preparation for construction of cause-effect diagrams is essential.
Visibility is a key requirement. It is advisable to leave a good deal of space between
the causes as they are listed, so there can be room for additional notation as the
work continues.

Several stages of construction should be expected before a “finished” product
is developed. This often consists of enlarging a smaller section of the cause-effect

© 2009 by Taylor & Francis Group, LLC

564 ◾ Software Testing and Continuous Quality Improvement

diagram by taking one significant cause and making it the “effect” to be analyzed
on another cause-effect diagram.

Cause-effect graphics can also be applied to test case design, particularly func-
tion testing. They are used to systematically select a set of test cases that have high
probability of detecting program errors. This technique explores the input and com-
binations of input conditions of a program to develop test cases, but does not exam-
ine the internal behavior of the program. For each test case derived, the technique
also identifies the expected output. The input and output are determined through
the analysis of the requirement specifications (see Section 6, “Modern Software
Testing Tools,” which automates the process).

The following is a brief overview of the methodology to convert requirements to
test cases using cause-effect diagrams. It is followed by an example of how to apply
the methodology.

Cause-Effect Methodology

 1. Identify all the requirements.
 2. Analyze the requirements, and identify all the causes and effects.
 3. Assign each cause and effect a unique number.
 4. Analyze the requirements, and translate them into a Boolean graph linking

the causes and effects.
 5. Convert the graph into a decision table.
 6. Convert the columns in the decision table into test cases.

Example: A database management system requires that each file in the data-
base have its name listed in a master index identifying the location of each file.
The index is divided into ten sections. A small system is being developed that
allows the user to interactively enter a command to display any section of the
index at the terminal. Cause-effect graphing is used to develop a set of test cases
for the system. The specification for this system is explained in the following
paragraphs.

Specification

To display one of the ten possible index sections, a command must be entered con-
sisting of a letter and a digit. The first character entered must be a D (for display) or
an L (for list), and it must be in column 1. The second character entered must be a
digit (0 through 9) in column 2. If this command occurs, the index section identi-
fied by the digit is displayed on the terminal. If the first character is incorrect, the
error message “Invalid Command” is printed. If the second character is incorrect,
the error message “Invalid Index Number” is printed.

The causes and effects are identified as follows.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 565

Causes

 1. Character in column 1 is D.
 2. Character in column 1 is L.
 3. Character in column 2 is a digit.

Effects

 1. Index section is displayed.
 2. Error message “Invalid Command” is displayed.
 3. Error message “Invalid Index Number” is displayed.

A Boolean graph (see Exhibit G.1) is constructed through analysis of the speci-
fication. This is accomplished by (1) representing each cause and effect by a node
and its unique number; (2) listing all the cause nodes vertically on the left side of a
sheet of paper and listing the effect nodes on the right side; (3) interconnecting the
cause and effect nodes by analyzing the specification. Each cause and effect can be
in one of two states: true or false. Using Boolean logic, set the possible states of the
causes and determine under what conditions each effect is present; and (4) annotat-
ing the graph with constraints describing combinations of causes and effects that
are impossible because of syntactic or environmental constraints.

Node 20 is an intermediate node representing the Boolean state of node 1 or
node 2. The state of node 50 is true if the states of nodes 20 and 3 are both true.
The state of node 20 is true if the state of node 1 or node 2 is true. The state of node
51 is true if the state of node 20 is not true. The state of node 52 is true if the state
of node 3 is not true. Nodes 1 and 2 are also annotated with a constraint that states
that causes 1 and 2 cannot be true simultaneously.

Exhibit G.2 shows Exhibit G.1 converted into a decision table. This is accom-
plished by (1) tracing back through the graph to find all combinations of causes

511

2E

3 52Not

Or

And

Not

20 50

exhibit g.1 Cause-effect graph

© 2009 by Taylor & Francis Group, LLC

566 ◾ Software Testing and Continuous Quality Improvement

that make the effect true for each effect, (2) representing each combination as a
column in the decision table, and (3) determining the state of all other effects for
each such combination. After completing this, each column in Exhibit G.2 repre-
sents a test case.

For each test case, the bottom of Exhibit G.2 indicates which effect is present
(indicated by a “1”). For each effect, all combinations of causes that result in the
effect are represented by the entries in the columns of the table. Blanks in the table
mean that the state of the cause is irrelevant.

Each column in the decision table is converted into the four test cases shown in
the following table.

Test Case Number Input Expected Results

1 D5 Index Section 5 is displayed

2 L4 Index Section 4 is displayed

3 B2 “Invalid Command”

4 DA “Invalid Index Number”

Cause-effect graphing can produce a useful set of test cases and can point out
incompleteness and ambiguities in the requirement specification. It can be applied
to generate test cases in any type of computing application when the specification
is clearly stated and combinations of input conditions can be identified. Although
manual application of this technique is tedious, long, and moderately complex,

Test Cases

1 2 3 4

Causes

 1 1 0 0

 2 0 1 0

 3 1 1 1

effects

50 1 1 0 0

51 0 0 1 0

52 0 0 0 1

exhibit g.2 decision table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 567

there are automated testing tools that will automatically help convert the require-
ments to a graph, decision table, and test cases. See Section 6, “Modern Software
Testing Tools,” for more details.

g8: Condition Coverage
Condition coverage is a white-box testing technique in which test cases are written
to ensure that each condition in a decision takes on all possible outcomes at least
once. It is not necessary to consider the decision branches with condition coverage
using this technique. Condition coverage guarantees that every condition within
a decision is covered. However, it does not necessarily traverse the true and false
outcomes of each decision.

One method of creating testing cases using this technique is to build a truth
table and write down all conditions and their complements. If they exist, duplicate
test cases are eliminated.

Consider the following small program, which reads records from a file and tal-
lies the numerical ranges of a field on each record to illustrate the technique.

PROGRAM: FIELD-COUNT
Dowhile not EOF
 read record
 if FIELD_COUNTER > 7 then
 increment COUNTER_7 by 1
 else
 if FIELD_COUNTER > 3 then
 increment COUNTER_3 by 1
 else
 increment COUNTER_1 by 1
 endif
 endif
End_While
End

The initial test cases to satisfy condition coverage are as follows:

Test Case Values (FIELD_COUNTER)

1 >7, e.g., 8

2 <= 7, e.g., 7

3 >3, e.g., 6

4 <= 3, e.g., 3

© 2009 by Taylor & Francis Group, LLC

568 ◾ Software Testing and Continuous Quality Improvement

Notice that test cases 2 and 3 are redundant and one of them can be eliminated,
resulting in three test cases.

g9: Crud testing
A CRUD matrix, or process/data matrix, is optionally developed during the analy-
sis phase of application development, which links data and process models. It helps
ensure that the data and processes are discovered and assessed. It identifies and
resolves matrix omissions and conflicts and helps refine the data and process mod-
els, as necessary. It maps processes against entities, showing which processes create,
read, update, or delete the instances in an entity.

The CRUD matrix in Exhibit G.3 is developed at the analysis level of develop-
ment before the physical system or GUI (physical screens, menus, etc.) has been
designed and developed. As the GUI evolves, a CRUD test matrix can be built, as
shown in Exhibit G.3. It is a testing technique that verifies the life cycle of all busi-
ness objects. In Exhibit G.3, each CRUD cell object is tested. When an object does
not have full life-cycle operations, a “–” can be placed in a cell.

A variation of this is to also make unit performance measurements for each
operation during system fragment testing.

g10: database testing
The following subsections provide a description of how to test databases. An over-
view of relational database concept is also presented, which will serve as a reference
to the tester.

Database Integrity Testing

Database integrity testing verifies the structure and format, compliance with integ-
rity constraints, business rules and relationships, edit controls on updates that
refresh databases, and database normalization, or denormalization per performance
constraints. There are at least six types of integrity tests that need to be performed
to verify the integrity of the database.

Entity Integrity

Entity integrity states that each row must always have a primary key value. For
example, if team ID is the primary key of the team table, no team can lack a team
ID. This can be tested and verified with database integrity reports or queries.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 569

Primary Key Integrity

The value of each primary key must be unique and valid. For example, two teams
cannot have the same team ID, and a team ID of “ABC” is invalid when numeric
values are required. Another rule is that the primary key must not contain a null
value (be empty). This can be tested and verified with database integrity reports
or queries.

Column Key Integrity

The values in a column have column-specific rules. For example, the values in a
column for the number of members on a team must always be a positive number
and not exceed 7. This can be tested and verified with database integrity reports or

Object

C
(Pass/
Fail)

R
(Pass/
Fail)

U
(Pass/
Fail)

D
(Pass/
Fail)

Delete
Confirm
(Yes/No) Tester

Date
(MM/DD/YY)

Customer x x x x

Order - x x -

Payment - x x -

Vendor x x x x

Check x x - x

Register x x x x

Product - x x -

Stock x x x x

Back Order - x x -

Inventory x - x -

Report x x - -

.

.

.

.

exhibit g.3 Crud testing

© 2009 by Taylor & Francis Group, LLC

570 ◾ Software Testing and Continuous Quality Improvement

queries. It can also be verified with the following testing techniques: range testing,
boundary value testing, field integrity testing, and positive and negative testing.

Domain Integrity

A domain is an object that is a set of data and characteristics that describe those values.
For example, “date” could be defined as a basic data type that has a field length, format,
and validation rules. Columns can be defined on the basis of domains; in this case a
column might be defined as an order date. This can be tested and verified with data-
base queries. It can also be verified with the following testing techniques: range testing,
boundary value testing, field integrity testing, and positive and negative testing.

User-Defined Integrity

User-defined integrity checks are specialized validation rules that go beyond the
standard row and column checks. User-defined rules for particular data items often
must be written manually, using a procedural language.

Another option instead of writing procedures is the use of assertions, if avail-
able. Assertions are stand-alone validation checks that are not linked to a particular
row or column, but that are automatically applied.

Referential Integrity

The primary key is a candidate key that uniquely identifies a particular entity. With
a table of teams, the primary key could be the team number. A foreign key is a key
that refers to a primary key in another entity, as a cross-reference. For example, part
of the key to a member name (from a member entity) may be a team ID, which is
the primary key to the team entity.

A table has business rules that govern the relationships among entities. For
example, a member must be related to a team, and only one team. A team, on the
other hand, may at any given time have no members, only one member, or many
members. This is referred to as the cardinality of the entity relationship. Any mem-
ber “floating around” in the system, without being associated with a team, is an
invalid order. A record such as this is referred to as an orphan.

As an example, assume that a team can have one, no, or more members, but a
member cannot exist without a team. The test cases shown in Exhibit G.4 should
be created to verify referential integrity.

Other database testing approaches include the following:

Control testing N — Includes a variety of control issues that need to be tested.
Security testing − — Protects the database from unauthorized access.
Backup testing − — Verifies the ability to back up the system.
Recovery testing − — Verifies the restoration of a database to a state known
to be correct after a failure has rendered it unreliable.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 571

Concurrency testing − — Ensures that parallel processes such as queries and
updates do not interfere with each other.
Deadlock control − — Ensures that two concurrent processes do not form a
“gridlock” and mutually exclude each other from adequate completion.

Data content verification N — Provides periodic audits and comparisons with
known reference sources.
Refresh verification N — Verifies external systems that refresh the database and
data conversions.
Data usage N — Includes verifying database editing and updating. Often, the
developer does not create enough, or may include too many, characters for
the columns of an entity. The tester should compare the number of characters
on each GUI field to the respective entity field lengths to verify that they are
the same. Tip: One way to make sure the database column lengths are large
enough is to copy a very large document using the Windows “copy edit” fea-
ture and then paste it into each GUI field. Some of the testing techniques that
can be employed to generate data include range testing, boundary value test-
ing, field integrity testing, and positive and negative testing. Most databases
have query facilities that enable the tester to verify that the data is updated
and edited correctly in the database.
Stored Procedures N — These are stored and invoked when specific triggers from
the application occur.

Data Modeling Essentials

The purpose of this section is to familiarize the reader with data modeling concepts
and terminology involved in performing database and GUI field testing against a
relational design (see G10, “Database Testing,” “Database Integrity Testing”; G26,

Test Case Expected Results

 1. Insert a team No association with the member
entity for this record

 2. Insert a member There exists a foreign key relationship
to the team entity

 3. Attempt to delete a team that has
a relationship (foreign key) in the
member

Should not do so automatically but
provide a confirmation prompt

 4. Update a member Team foreign key relation exists to the
team entity

exhibit g.4 referential integrity test Cases

© 2009 by Taylor & Francis Group, LLC

572 ◾ Software Testing and Continuous Quality Improvement

“Range Testing”; G22, “Positive and Negative Testing”; G36, “Table Testing”; and
G20, “Orthogonal Array Testing”). It will also serve as a useful reference to rela-
tional database design in the context of testing.

What Is a Model?

A model is a simplified description of a real-world system that assists the user in
making calculations and predictions. Only those aspects of the system that are of
interest to the user are included in the model; all others are omitted.

Three different materials are used in creating models:

 1. Metal
 2. Wood
 3. Clay

The most appropriate material is used for the model, even though it may differ
from the material used for the system being modeled. The written specifications of
a system may be used by themselves as a model of the real world.

A model may be considered to have two features:

 1. Shape or structure
 2. Content

The structure of the model reflects the invariant aspects of the system, and the
content reflects the dynamic aspects. For example, the structure of a predictive
meteorological model consists of formulas, whereas the content consists of data
(temperature, humidity, wind speed, and atmospheric pressure) gathered from
many points over a period of time.

Why Do We Create Models?

We must be able to measure real-world systems to be able to understand them,
use them effectively, monitor their performance, and predict their future per-
formance. Often, it is impossible to measure the actual system. It may be too
expensive or too dangerous. Before an aircraft manufacturer sends a pilot up in
a new plane, there must be some assurance that the plane will fly. An automo-
bile manufacturer wants to know what a car will look like before tooling up an
assembly line to make it.

We have a requirement to understand, measure, and control a real-world system:
the user’s business. The easiest way to make timely, cost-effective measurements
and predictions about the business system is to create a model of the business.
Data is the most appropriate material for our model; hence the name “data model.”
The structure of our data model should represent the aspects of the user’s business

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 573

that change very little over time. The content of the model (the values stored in
the model) represents the information that changes with time. The result is a data
model whose structure is stable and, therefore, easily maintained.

Applications that we create will be responsible for adding, changing, and delet-
ing the content of the model and for reporting on the content.

The use of this technique results in the following benefits:

The relatively stable nature of the data model will allow us to be more respon- N
sive to changing business needs. Business changes usually result in changes in
how the content is maintained and reported. Changes to the structure of the
model occur less frequently and are usually minor.
The technique we will use will create a data model that is independent of N
both current business processes (but not business policy) and current data
processing technology.
An additional benefit of this technique is that it can be used when current N
process-oriented techniques do not work. For example, there are no clearly
identifiable processes involved in a management information application. The
users cannot specify exactly how data will be used. By creating a data model
whose structure reflects the structure of the business, we can support any
reasonable inquiry against the data.
Data analysis starts with the development of the data model. N

Tables: A Definition

A table is a list of facts, numbers, and the like, systematically arranged in
columns.

Tables are used whenever we need to order information for storage or presenta-
tion. They are relatively easy to create and maintain, and present information in a
clear, unambiguous, simple format. Examples of tables that we may encounter are
the following:

Table of Contents N
Metric Conversion Table N
Table of Weights and Measures N
Tax Table N

Exhibit G.5 illustrates the features of a table.

Table Names

A table is identified by its name. Therefore, its name must be unique within the
scope of the business.

© 2009 by Taylor & Francis Group, LLC

574 ◾ Software Testing and Continuous Quality Improvement

Columns

A table is divided vertically into columns. All entries in a given column are of the
same type and have the same format. A column contains a single piece of data
about all rows in the table. Each column must have a name unique within the
table. The combination of table name and column name is unique within the
business. Examples might be CUSTOMER.NAME, CUSTOMER.NUMBER,
EMPLOYEE.NAME, and EMPLOYEE.NUMBER.

Rows

A table is divided horizontally into rows. Each row must be uniquely identifiable.
Each row has the same number of cells and contains a piece of data of a different
type and format.

Order

The order of rows and columns in a table is arbitrary. That is, the order in which
rows and columns are presented does not affect the meaning of the data. In fact,
each user of a table may have unique requirements for ordering rows and columns.
For this reason, there must be no special significance attached to the ordering of
rows and columns.

From the foregoing definition, it is clear that tables are useful for documenting data
requirements. They can be easily understood by both development and user personnel.

We define a table to represent each object in our model. The table columns
provide descriptive information about the object, and the rows provide examples of
occurrences of the object.

Entities: A Definition
An entity is a uniquely identifiable person, place, thing, or event of interest to the
user, about which the application is to maintain and report data.

Name Address
Telephone

Number

Bill Smith 3290 Oak Lane, Dallas, Texas (972) 329-6723

Joe Jones 129 Cliff Avenue, Austin, Texas (812) 456-2198

Sue Maddox 1421 Millington Drive, Boca Raton, Florida (305) 402-5954

Jerry Jones 112 Cowboys Drive, Portland, Oregon (265) 693-2319

exhibit g.5 Sample table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 575

When we create a data model, we must first decide which real-world objects
are to be included. We include only those objects that are of interest to the users.
Furthermore, we include only those objects required by computer applications.

We organize the objects (entities) to be included into groups called entity types.
For example, a clothing store might identify customers, products sold, and suppliers
of those products as objects to be included in a data model. This grouping, how-
ever, is not adequate for a useful model of the real world. Depending on the type
of clothing sold by the store, the user may wish to group products by style, type,
size, color, and so on. The identification of objects is made difficult by the fuzzy
definitions used in the real world. In our model, we must be specific; therefore, we
will define as entity types only groups of objects in which each occurrence can be
uniquely identified.

Each entity type is given a unique name. Examples are CUSTOMER,
SUPPLIER, and EMPLOYEE.

Identification: Primary Key
Every entity must have a primary key.

To allow us to uniquely identify each occurrence of an entity type, we must
define a key called the primary key. Its value may be assigned by the user or by the
application. There may be more than one choice for the primary key. For the entity
type EMPLOYEE, we might choose SOCIAL INSURANCE NUMBER or invent
an EMPLOYEE NUMBER. The major requirement is that each value be unique.
It is also important that the primary key be one by which the user would naturally
identify an occurrence of the entity. You should also choose a key that is not likely
to change. It should be as short as possible. This is why serial numbers are popular
keys; they are assigned once, they do not change, and they are unique. (Be careful.
In the real world, duplicate serial numbers may be inadvertently assigned.)

Note: A key is not an access path. It is only a unique identifier.

Compound Primary Keys

A primary key may be composed of more than one column. For example, an auto-
mobile can be uniquely identified only by the combination MAKE + MODEL +
VEHICLE IDENTIFICATION NUMBER. A key composed of more than one
column is a compound key.

Null Values

In any descriptive information about an entity, it is possible to have a situation
where a piece of data for a particular occurrence is not known. For example, when
an employee description is added to a personnel application for the first time, the
employee’s department number or phone number might not be known. The correct

© 2009 by Taylor & Francis Group, LLC

576 ◾ Software Testing and Continuous Quality Improvement

value is not zero or blank; it is unknown. We refer to an unknown value as a null
value. We might use blanks or zero or some special indicator to reflect this in a
computer application. However, because null means unknown, you cannot com-
pare null values (e.g., for equal). You also cannot use them in numeric computa-
tions, because the result would also be unknown. In our data model, we indicate
which columns may contain null values.

We bring this point up here because of the following rule:

A primary key may not be null.

It is important to remember this. A null value means we do not know what the
correct value is, but primary key values must be known to uniquely identify each
occurrence of the entity type to which they refer. In a compound key, it is possible
for the key to contain null values in some, but not all, columns.

Identifying Entities

Consider the following list:

Which is an entity type? N
Which is an entity occurrence? N
Which is neither? N
What would be a suitable key? N

Automobile −
Ford −
Superman −
Nietzsche −
Telephone −
Telephone number −
House −
Postal code −
Aquamarine −
Seven −
Marriage −

One thing you will discover when trying to identify the entity types and occur-
rences in the above list is that the user context is important. Consider Automobile. If
the user is an automobile dealer, then automobile could be an entity type. However,
if the user is attempting to keep track of types of transportation, automobile could
be an entity occurrence. Ford might be a make of automobile, a U.S. president, or
a way to cross a river.

Telephone number is often treated as if it were an entity type. You might instead
think of it as the key that identifies a telephone. It cannot identify a specific physical

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 577

phone, however, because you can replace the phone with a new one without chang-
ing the telephone number. It does not identify a specific telephone line, because you
can often take the phone number with you when you move to a new location. In
fact, the telephone number really identifies a telephone company account.

Aquamarine might be an entity occurrence. What would be the entity type? If
your user is a jeweler, the entity type might be Precious Stone; if a paint manufac-
turer, Color.

Entity Classes

Entities may be grouped for convenience into various classes. Consider the following:

Major entity: N An entity that can exist without reference to other entities (e.g.,
CUSTOMER, ORDER). These entity types are typically identified early in
the data analysis process. In most cases, the primary key of a major entity will
consist of a single column.
Dependent entity: N An entity that depends on and further defines another
entity (e.g., ORDER LINE ITEM). These entity types will often be identi-
fied during the process of defining relationships or normalizing and refining
the model. The primary key of a dependent entity is always a compound key.
These topics are covered later.
Minor entity: N An entity that is used primarily to define valid values within the
model (e.g., EMPLOYEE TYPE, CREDIT CODE). These may be ignored
in some cases (e.g., if the only valid values are Y and N). The primary key of
a minor entity is almost always a single column.

Relationships: A Definition
Each entity in a data model does not exist in solitary splendor. Entities are linked
by relationships. A relationship is an association between two or more entities, of
interest to the user, about which the application is to maintain and report data.

This is similar to the definition of an entity, and we show that a relationship can
be considered a special type of entity.

Relationship Types

There are three types of relationships:

 1. One-to-one
 2. One-to-many
 3. Many-to-many

We now examine each type and see how we document them.

© 2009 by Taylor & Francis Group, LLC

578 ◾ Software Testing and Continuous Quality Improvement

One-to-One

One-to-one relationships are the simplest and, unfortunately, the least common.
A one-to-one relationship links a single occurrence of an entity to zero or one

occurrence of an entity. The related entity occurrences are usually of different types,
but there is no rule prohibiting them from being of the same type. When the related
entities are of the same type, the relationship is called a recursive relationship.

Let us consider a hypothetical example. An enlightened company, which shall
remain nameless, has determined that employees work best when they are not
forced to share desks or workstations. As a result, each desk is assigned to only one
employee and each employee is assigned to one desk.

We document this happy relationship by placing the primary key of either entity
into the description of the other entity as a foreign key.

Either Exhibit G.6 or Exhibit G.7 can be used to illustrate the relationship.
Consider Exhibit G.6 first, the EMPLOYEE table.

Employee

EMPLOYEE NUMBER DESK NUMBER

PK FK

ND

12345 004

23456 003

98751 001

exhibit g.6 employee table

Desk

DESK NUMBER EMPLOYEE NUMBER

PK FK

ND, NL

003 23456

001 98751

002 -NULL-

004 12345

exhibit g.7 desk table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 579

The PK in the column headed EMPLOYEE NUMBER indicates that this is the
primary key. The FK in the column headed DESK NUMBER indicates that this is
a foreign key (i.e., it is a primary key in some other table). The ND in this column
enforces the one-to-one relationship by indicating that there can be no duplicate
values (the same desk cannot be assigned to two different employees).

Exhibit G.7 illustrates the same relationship. The ND indicates that an employee
may not be assigned to two different desks. Note, however, that there is an NL indi-
cation in the EMPLOYEE NUMBER column in this table. This indicates that a
desk may be unassigned.

Although the relationship may be documented either way, there are some
guidelines:

Do N not document the relationship both ways. Choose one.
Choose the way that reduces or eliminates the need to record nulls. Note N
that this typically means placing the foreign key in the entity with the fewest
occurrences.

On the basis of the aforementioned guidelines, the relationship in our example
is best represented, as in Exhibit G.6, by recording the desk number as a foreign key
of the employee (although Exhibit G.7 is not wrong).

One-to-Many

One-to-many relationships are the most common, and the documentation tech-
nique is straightforward. A one-to-many relationship links one occurrence of an
entity type to zero or more occurrences of an entity type.

As an example, let us look again at the company described earlier. When it comes
to the assignment of telephones to employees, the company is not so enlightened.
Each employee must share a single telephone number and line with other employ-
ees. Exhibits G.8 and G.9 illustrate the relationship between telephone numbers
and employees.

Employee

EMPLOYEE NUMBER TELPHONE NUMBER

PK FK

12345 1111

23456 1954

98751 2654

exhibit g.8 employee table

© 2009 by Taylor & Francis Group, LLC

580 ◾ Software Testing and Continuous Quality Improvement

The documentation of this relationship appears to be the same as for a one-
to-one relationship. However, there is only one way to represent a one-to-many
relationship. We record the one in the many. In Exhibits G.8 and G.9, we record
the telephone number as a foreign key of the EMPLOYEE. To record the relation-
ship the other way would require an array of employee numbers of indeterminate
size for each telephone number. There is another important difference. We did not
place ND (no duplicates) in the foreign key column. This is because duplicates are
allowed; the same telephone number can be assigned to more than one employee.

So the rule here is easy to remember. There is only one correct way:

Record the one in the many.

Many-to-Many

Many-to-many relationships are the most difficult to handle. They also occur fre-
quently enough to make data analysis interesting. A many-to-many relationship
links many occurrences of an entity type to many occurrences of an entity type.
For an example of this type of relationship, let us again examine the nameless
company.

Management believes that the more people are assigned to a given project, the
sooner it will be completed. Also, because they become nervous at the sight of idle
employees, they give each employee several assignments to work on simultaneously.

We cannot document a many-to-many relationship directly, so we create a new
entity (see Exhibits G.10, G.11, and G.12) and link it to each of the entities involved,
by a one-to-many relationship (we already know how to do that).

The EMPLOYEE/PROJECT entity has been created to support the relation-
ship between EMPLOYEE and PROJECT. It has a primary key consisting of the
primary keys of the entity types it is relating. They are identified as foreign keys.
This is an example of a compound key. Any entity may have a compound key that

Telephone Line

TELEPHONE NUMBER

PK

1954

2222

1111

2654

exhibit g.9 telephone line table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 581

may be completely or partly made up of foreign keys from other entities. This com-
monly occurs with dependent entities. The EMPLOYEE/PROJECT entity we have
created is dependent on EMPLOYEE and PROJECT; it would not exist but for the
relationship between them.

Note that the foreign keys that make up the primary key in this entity support
one-to-many relationships between EMPLOYEE and EMPLOYEE/PROJECT
and between PROJECT and EMPLOYEE/PROJECT. We must now demonstrate
that this is equivalent to a many-to-many relationship between EMPLOYEE and
PROJECT. An example will best illustrate the approach.

Given two employees and two projects, as in Exhibits G.13 and G.14, we can
show that both employees work on both projects by creating occurrences of the
EMPLOYEE/PROJECT entity, as in Exhibit G.15.

Employee

EMPLOYEE NUMBER

PK

exhibit g.10 employee table

Project

PROJECT NUMBER

PK

exhibit g.11 Project table

Employee/Project

EMPLOYEE NUMBER PROJECT NUMBER

PK

FK FK

exhibit g.12 employee/Project table

© 2009 by Taylor & Francis Group, LLC

582 ◾ Software Testing and Continuous Quality Improvement

We can see that EMPLOYEE 11111 is related to two EMPLOYEE/ PROJECT
occurrences (11111ABCD and 11111WXYZ). Each of these EMPLOYEE/
PROJECT entities is in turn related to one PROJECT entity. The result is that each
EMPLOYEE occurrence may be related to many PROJECT occurrences through
the EMPLOYEE/PROJECT entity. By the same technique, each PROJECT occur-
rence may be related to many EMPLOYEE occurrences.

Multiple Relationships

There will sometimes be more than one type of relationship between occurrences
of the same entity types. When you encounter this situation, identify and docu-
ment each relationship independently of any others. For instance, in the last

Employee

EMPLOYEE NUMBER

11111

22222

exhibit g.13 employee table

Project

PROJECT NUMBER

ABCD

WXYZ

exhibit g.14 Project table

Employee/Project

EMPLOYEE NUMBER PROJECT NUMBER

11111 ABCD

11111 WXYZ

22222 ABCD

22222 WXYZ

exhibit g.15 employee/Project table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 583

example, there might have been a requirement to record the project leader of each
project independently of any other employees assigned to the project. This rela-
tionship might have been a one-to-many relationship with PROJECT LEADER
EMPLOYEE NUMBER a foreign key in the PROJECT table.

Entities versus Relationships

The distinction between entities and relationships is not always clear. Consider the
following example.

A customer buys an automobile from a dealer. The sale is negotiated by a sales-
person employed by the dealer. The customer may have purchased automobiles
from this dealer before, but may have dealt with a different salesperson.

Is the purchase a relationship between customer and salesperson? Is it an entity
that is related to customer, salesperson, and automobile? How to treat such a real-
world situation is often an arbitrary decision. There is no formal rule that can be
used as a guide. Fortunately, the technique we use to document entities and rela-
tionships can reduce or eliminate the problem.

If we consider a purchase agreement to be an entity, we select a primary key,
such as AGREEMENT NUMBER, and define relationships to other entities.
There is a one-to-many relationship between SALESPERSON and PURCHASE
AGREEMENT and, if we have satisfied customers, between CUSTOMER and
PURCHASE AGREEMENT. We document these relationships in Exhibit G.16
by placing CUSTOMER NUMBER and EMPLOYEE NUMBER as foreign keys
in PURCHASE AGREEMENT.

If we do not consider the purchase agreement to be an entity, we must document
the relationship between CUSTOMER and SALESPERSON (see Exhibit G.17).
Because, in the general case, there is a many-to-many relationship between custom-
ers and salespeople, we must create a new entity, CUSTOMER/SALESPERSON,
with a compound key of CUSTOMER NUMBER + EMPLOYEE NUMBER. We
will probably have to add VEHICLE MAKE and IDENTIFICATION NUMBER
to the primary key to ensure uniqueness.

To change this relationship to an entity, we need only rename it and change the
primary key. The columns already in the table will probably still be required.

Purchase Agreement

AGREEMENT NUMBER CUSTOMER NUMBER EMPLOYEE NUMBER

PK FK FK

exhibit g.16 Purchase agreement table

© 2009 by Taylor & Francis Group, LLC

584 ◾ Software Testing and Continuous Quality Improvement

Attributes: A Definition

An attribute is a characteristic quality of an entity or relationship, of interest to the
user, about which the application is to maintain and report data.

Attributes are the data elements or fields that describe entities and relationships.
An attribute is represented by a column in a table.

Primary keys are attributes or sets of attributes that uniquely identify entities. N
Foreign keys are attributes that define relationships between entities. N
Nonkey attributes provide additional information about entities (e.g., N
EMPLOYEE NAME) and relationships (e.g., QUANTITY ORDERED on
an order line).

The information in this section applies to all types of attributes. All attributes
base their values on domains.

Domain

A domain is a set of possible values of an attribute.
To determine which values are valid for a given attribute, we need to know the

rules for assigning values. The set of values that may be assigned to a given attribute
is the domain of that attribute.

All attributes of the same type must come from the same domain. For example,
the following attributes could describe different entities or relationship:

Department Number N
Sales Branch Number N
Service Branch Number N

They are all based on the domain of possible department numbers. The domain
is not a list of the assigned department numbers but a set of the possible department
numbers from which values may be selected.

Customer/Salesperson

CUSTOMER NUMBER EMPLOYEE NUMBER VEHICLE MAKE VIN

PK

FK FK

exhibit g.17 Customer/Salesperson table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 585

The definition of domains is somewhat arbitrary, and there may be a temptation
to create general domains that allow too much freedom. Consider CUSTOMER
NUMBER and DEPARTMENT NUMBER. If these attributes are both defined
on the basis of a domain of any numbers, we could end up with the following:

Customer –12345
Department 12.34

By restricting the domain to positive integers, we can avoid negative numbers
and decimal fractions. However, with a definition that is this general, we can still
combine customers and departments. For example, someone might decide that,
whenever an internal order is processed, the CUSTOMER NUMBER field on the
order will be sent to the ordering DEPARTMENT NUMBER. To satisfy process-
ing requirements, we would have to place department numbers in the CUSTOMER
table, because all valid customers appear there. Now, whenever we reorganize the
business, we must update the customer data.

The safest approach in our example is to define the domains of CUSTOMER
NUMBERS and DEPARTMENT NUMBERS separately.

Note: Be careful when defining the domain of fields such as customer number,
employee number, or part number. It is natural to think of such fields as numeric. It
may even be true that, currently, all assigned values are numeric. Alphabetic char-
acters, however, have a nasty habit of showing up in these identifiers sooner or later.

Domain Names
Each domain should have a name that is unique within the organization. The name
and the rules for defining values within the domain should be documented. A sin-
gle column primary key based on a domain will usually have the same name as the
domain (e.g., customer number). If a key (primary or foreign) is compound, each
column will usually have the same name as the domain. Where the same domain is
referenced more than once by attributes of an entity (e.g., date born, date hired for
an employee), the domain name should be part of the attribute column name.

Domains, and the attributes based on them, must be nondecomposable.
This statement does not mean that attributes should not decay or fall apart from old

age. As an example of a decomposable domain and attribute, consider the following.
Whenever an order is recorded, it is assigned an order number. The order num-

ber is created according to the following rules:

 1. The customer number makes up the first (high order) part of the order number.
 2. The order entry date, in the form YYMMDD, is the next part of the order

number.
 3. The last two positions of the order number hold a sequence number to ensure

uniqueness if a customer submits several orders in one day.

© 2009 by Taylor & Francis Group, LLC

586 ◾ Software Testing and Continuous Quality Improvement

Because we use the term order number, there is a temptation to treat this as a
single column. Resist the temptation. The primary key in this example is a com-
pound key made up of customer number, order entry date, and a sequence number.
Each attribute making up the compound key is based on a different domain. It
is now possible to document the fact that there is an attribute in the order that
is based on the domain of customer numbers. Any changes in the rules for that
domain can be checked for their impact on the order entity.

Having said that all domains must be nondecomposable, we now state two
exceptions:

 1. Date
 2. Time

Date is usually in the form month/day/year. There is usually no need to record
this as three separate attributes. Similarly, time may be left as hours/minutes.

Attributes versus Relationships

Just as there is a somewhat arbitrary choice between entities and relationships, there
is a similar choice between attributes and relationships. You could consider an attri-
bute as a foreign key from a table of valid values for the attribute. If, for example,
you were required to record eye color as an attribute of EMPLOYEE, you might
set up an entity called COLOR with a primary key of COLOR NAME. You could
then create EYE COLOR as a foreign key in EMPLOYEE. This would probably
not provide much advantage over a simple attribute. You might even get into trou-
ble. If you chose to add HAIR COLOR as a foreign key related to the same primary
key, you could end up with an employee with blue hair and red eyes.

Although this example may seem trivial, real-world choices are often more sub-
tle. You might choose a foreign key over a simple attribute if you wished to have a
table for edit checking or if you needed a long description on reports. The descrip-
tion could be an attribute in the table in which the foreign key was a primary key.

Normalization: What Is It?

Normalization is the process of refining an initial set of entities into an optimum
model. The purpose is to eliminate data redundancy and to ensure that the data
structures are as flexible, understandable, and maintainable as possible.

Normalization is achieved by ensuring that an entity contains only those attri-
butes that depend on the key of the entity. By “depend on,” we mean that each
value of the key determines only one value for each attribute of the entity. If the
concept is unclear at this point, do not be discouraged; it is explained later in this
section. Said another way, normalization means ensuring that:

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 587

Each attribute depends on

The Key, The Whole Key, and Nothing But the Key.

Problems with Unnormalized Entities

Exhibit G.18 illustrates the problems that will occur in attempting to maintain an
unnormalized entity. The example in Exhibit G.18 is unnormalized because the depart-
ment name is dependent on the department number, not on the employee number,
which is the key of the entity. Consider the effects of the design on the application.

Modification anomaly: N Suppose a corporate reorganization makes it necessary
to change the name of department 354 to Advertising and Promotion. A spe-
cial-purpose program will be required to modify this information accurately
and completely everywhere that it appears in the database.
Insertion anomaly: N A new employee is hired for department 220. The clerk
maintaining the data may not have all the relevant information. Either he
will have to scan the data looking for existing names for department 220 or,
probably, he will guess and assign our new employee to department 220, with
DEPTNAME SHALLOW THOUGHT. What is the correct name of the
department now?
Deletion anomaly: N Employee number 00215 has retired. Her replacement
starts work next week. However, by deleting the entry for employee 00215, we
have lost the information that tells us that the publishing department exists.
Redundancy: N It is possible to reduce the impact of these anomalies by design-
ing programs that take their existence into account. Typically, this results
in code that is more complex than it needs to be, and in additional code to

Employee

EMPNO NAME SALARY DEPT DEPTNAME

PK

00100 CODD, E.F. 65736 220 DEEP THOUGHT

00135 KENT, W. 58200 220 DEEP THOUGHT

00171 LEWIS, W. 49900 220 DEEP THOUGHT

00190 SMITH, S. 64000 220 DEEP THOUGHT

00215 DATE, C.J. 51500 114 PUBLISHING

00529 FLAVIN, M. 35700 354 ADVERTISING

00558 CLARK, G. 33600 354 ADVERTISING

exhibit g.18 employee table

© 2009 by Taylor & Francis Group, LLC

588 ◾ Software Testing and Continuous Quality Improvement

resolve inconsistencies. These increase the cost of development and mainte-
nance without eliminating the problems. In addition, the duplication of data
will increase file or database sizes and will result in increased operating costs
for the application.

All of the foregoing problems are collectively known as the update anomaly.

Steps in Normalization

We explain normalization by discussing a series of examples that illustrate the three
basic steps to be followed in reducing unnormalized data to third normal form.

First Normal Form (1NF)

Each attribute depends on the key.
Each attribute can only have a single value for each value of a key. The first step

in normalization is to remove attributes that can have multiple values for a given
value of the key and form them into a new entity.

For example, consider the following entity (CUSTOMER) whose key attribute
is CUSTNO (Customer Number) shown in Exhibit G.19.

In this case, the multivalued attribute consists of the three “attributes” ADDR_
LINE_1, ADDR_LINE_2, ADDR_LINE_3. In fact, these are really three elements
of an array. The first normal form of this entity is shown in Exhibits G.20 and G.21.

We have created a new entity (CUSTOMER ADDRESS), with a compound key
of customer number and line number (to identify each line of a customer’s address).
This new entity is dependent on the CUSTOMER entity and allows an address to
have a variable number of lines (0 to 99).

Customer

CUST
NO BRAN

CR
CD

CST
TYP ADDR_LINE_1 ADDR_LINE_2 ADDR_LINE_3

PK

003531 0059 A C JOHN BLOGGS 25 MAIN ST. DALLAS, TEXAS

094425 0047 B C SAM HOSER 19 REDUNDANT HOUSTON,
TEXAS

976531 0099 I I IBM DEPT 344 3500 STORY BOCA RATON,
FLORIDA

exhibit g.19 Customer table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 589

Multivalued attributes can usually be identified because they are recorded as
arrays (ADDR(1), ADDR(2)), including arrays of structures, where each element of
the array is, in fact, a different value of the attribute. In some cases, as in the previ-
ous example, the fact that an attribute is multivalued has been disguised by the use
of unique column names. The giveaway is in the similarity of names. Additional
examples of giveaways are names such as:

CURRENT_SALESMAN, PREVIOUS_SALESMAN and N
FIRST_BRANCH_OFFICE, SECOND_BRANCH_OFFICE,… N

Customer

CUSTNO BRAN CR CD CST TYP

PK

003531 0059 A C

094425 0047 B C

976531 0099 I I

exhibit g.20 Customer table

Customer Address

CUSTNO LINE NO. ADDR_LINE

PK

003531 01 JOHN BLOGGS

003531 02 25 MAIN ST.

003531 03 DALLAS, TEXAS

094425 01 SAM HOSER

094425 02 19 REDUNDANT

094425 03 HOUSTON, TEXAS

976531 01 SALES DEPT 355

976531 02 3500 STORY

976531 03 BOCA RATON, FLORIDA

exhibit g.21 Customer address table

© 2009 by Taylor & Francis Group, LLC

590 ◾ Software Testing and Continuous Quality Improvement

Second Normal Form (2NF)

Each attribute depends on the whole key.
The second step in normalization is to remove attributes that depend on only a

part of the key and form them into a new entity.
Let us examine Exhibit G.22, in which the entity (PRODUCT MODEL) is

an entity consisting of all the products and their models. The key is PRODNO +
MODNO. Let us assume that each product has a single SOURCE OF SUPPLY
and that it is necessary to know the QTY ON HAND of each model.

PRODDESCRIPT and SOURCE_OF_SUPPLY in Exhibit G.23 are PRODNO
and are removed to form a new PRODUCT entity in Exhibit G.24.

The old PRODUCT MODEL entity is now dependent on the new PRODUCT
entity. New models can be added without maintaining product descriptions and
source of supply information. Models can be deleted while still retaining informa-
tion about the product itself.

Product Model

PRODNO MODNO
PROD

DESCRIPT MODDESCRIPT

QTY
ON

HAND
SOURCE
SUPPLY

PK

3084 032 4_PLEX
CPU

SMALL
MEMORY

3 FUJISAWA

3084 064 4_PLEX
CPU

MORE
MEMORY

2 FUJISAWA

3084 0C8 4_PLEX
CPU

OODLES OF
MEMORY

0 FUJISAWA

3180 001 TERMINAL TWINAX
CONNECTION

55 DALLAS

3180 002 TERMINAL COAX
CONNECTION

83 DALLAS

3274 A41 CONTROL
UNIT

BIG MODEL
(LOCAL)

15 SAO
PAULO

3274 C41 CONTROL
UNIT

BIG MODEL
(REMOTE)

29 SAO
PAULO

SAO
PAULO

C61 CONTROL
UNIT

DESK TOP
MODEL

11

exhibit g.22 Product Model table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 591

Dependence of attributes on part of a key is particularly evident in cases where
a compound key identifies occurrences of an entity type.

What would be the effect on the above entities if a product could have multiple
sources of supply?

Third Normal Form (3NF)

Each attribute depends on no other but the key.
The third step in normalization is to remove attributes that depend on other

nonkey attributes of the entity.

Product

PRODNO PRODDESCRIPT SOURCE

PK SUPPLY

3084 4_PLEX CPU FUJISAWA

3180 TERMINAL DALLAS

3274 CONTROL UNIT SAO PAULO

exhibit g.23 Product table

Product Model

PRODNO MODNO MODDESCRIPT QTY ON HAND

PK

FK

3084 032 SMALL MEMORY 3

3084 064 MORE MEMORY 2

3084 0c8 OODLES OF MEMORY 0

3180 001 TWINAX CONNECTION 55

3180 002 COAX CONNECTION 83

3274 A41 BIG MODEL (LOCAL) 15

3274 C41 BIG MODEL (REMOTE) 29

3274 C61 DESK TOP MODEL 11

exhibit g.24 Product Model table

© 2009 by Taylor & Francis Group, LLC

592 ◾ Software Testing and Continuous Quality Improvement

At this point it should be noted that a nonkey attribute is an attribute that is
neither the primary key nor a candidate key. A candidate key is an attribute other
than the primary key that also uniquely identifies each occurrence of an entity.
(For example, a personnel file is keyed on employee serial number and also contains
a social insurance number, either of which uniquely identifies the employee. The
employee serial number might function as the primary key and the social security
number would be a candidate key.)

Consider the entity ORDER in Exhibit G.25, each occurrence of which repre-
sents an order for a product. As a given, assume that the UNIT PRICE varies from
machine to machine and contract to contract.

Here we see a number of attributes that are not dependent on key. UNIT PRICE
is dependent on CONTRACT TYPE and PRODNO and TENDED PRICE is
dependent on both QTY and UNIT PRICE.

Reduction to third normal form requires us to create a new entity, PRODUCT/
MODEL/CONTRACT, whose key is PRODNO + MODNO + CONTRACT
TYPE, with UNIT PRICE an attribute of the entity. EXTENDED PRICE is cal-
culated from the values of the other attributes and can be dropped from the table
and computed as required. This is known as a derived attribute.

The third normal form should look similar to those displayed in Exhibits G.26
and G.27.

In this form, prices and quantities may be changed. Data from both entities is
joined together to calculate an EXTENDED PRICE. What changes to the model
might be required to protect the customer against price changes? What would
be the effect on the application if it were decided to maintain the EXTENDED
PRICE as an attribute of the ORDER entity?

Order

ORDNO PRODNO MODNO CUSTNO
CONTRACT

TYPE
UNIT
PRICE QTY

EXTENDED
PRICE

PK FK FK

XN223 4068 067 112339 EMPLOYEE $1,098 1 $1,098

XQ440 4068 067 990613 INTERNAL $875 5 $4,375

4068 4068 067 574026 DEALER $1,170 20 $23,400

XB229 5160 020 390651 RETAIL $2,960 2 $5,920

ZC875 5360 020 740332 BUSINESS $33,600 1 $33,600

YS8/13 5360 B40 468916 GOVERN’T $28,400 4 $113,600

exhibit g.25 order table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 593

Model Refinement

This section discusses additional refinements that can be (and, in a real situation,
usually must be) incorporated into a data model.

What is important about these refinements is that they introduce constraints
in the model, which must be documented in the design and incorporated into
the application.

Order

ORDNO PRODNO MODNO CUSTNO
CONTRACT

TYPE QTY

PK FK FK FK

XN223 4068 067 112339 EMPLOYEE 1

XQ440 4068 067 990613 INTERNAL 5

XL715 4068 067 574026 DEALER 20

XB229 5160 020 390651 RETAIL 2

ZC875 5360 B40 740332 BUSINESS 1

YS8/13 5360 B40 468916 GOVERN’T 4

exhibit g.26 order table

Product/Model/Contract

PRODNO MODNO
CONTRACT

TYPES UNIT PRICE

PK

4068 067 EMPLOYEE $1,098

4068 067 INTERNAL $875

4068 067 DEALER $1,170

5160 020 RETAIL $2,960

5360 B40 BUSINESS $33,600

5360 B40 GOVERN’T $28,400

exhibit g.27 Product/Model/Contract table

© 2009 by Taylor & Francis Group, LLC

594 ◾ Software Testing and Continuous Quality Improvement

Entity Subtypes

Frequently it is necessary to decompose (break down) a defined entity into
subtypes.

A Definition

Entity subtypes:

Have attributes peculiar to the subtype N
Participate in relationships peculiar to the subtype N
Are identified by a subset of the key of the entity N

An entity subtype is not the same as a dependent entity. A dependent entity is
identified by a compound key, consisting of the key of the major entity plus addi-
tional qualifying attributes.

This need not be so in the case of an entity subtype, which has the same key as
the major entity and is, in fact, merely a subclassification of that entity.

For example, all of us are employees and hence are occurrences of the EMPLOYEE
entity. Some employees, however, are also marketing reps with attributes (mar-
keting unit, team, territory, quota, etc.) that are unique to their occupation. The
MARKETING REP entity is a subtype of the EMPLOYEE entity.

Additional subtypes of the EMPLOYEE entity might be:

Employee as manager N
Employee as stockholder N
Employee as beneficiary N

The existence of entity subtypes raises issues of referential integrity, which we
discuss in the next section.

Referential Integrity

Integrity Rule:

For any foreign key value in a table, there must be a corresponding primary
key value in the same or another table.

As stated, the rule is very simple. To enforce this rule may require a great deal
of complicated application code, preceded (of course) by a significant design effort.
Fortunately, some database management systems have built-in features that make

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 595

the provision of referential integrity much simpler (e.g., the logical insert, replace
and delete rules in IMS/VS).

Exhibits G.28, G.29, and G.30 illustrate the problem by means of three entities
(customer, product, and order).

Customer

CUSTOMER NUMBER

PK

221356

840723

737174

exhibit g.28 Customer table

Product

PRODUCT CODE

PK

3084XC8

4260067

5360A23

exhibit g.29 Product table

Order

ORDER NUMBER CUSTOMER NUMBER PRODUCT CODE

PK FK FK

ZA8845 221356 4260067

YB4320 737174 3084XC8

XN7691 840723 4260067

ZL3940 221356 5360A23

exhibit g.30 order table

© 2009 by Taylor & Francis Group, LLC

596 ◾ Software Testing and Continuous Quality Improvement

In practical terms, adherence to the referential integrity rule means the following:

A customer can be inserted without integrity checks. N
A product can be inserted without integrity checks. N
An order can be inserted, but the customer number foreign key must exist in N
the CUSTOMER entity, and the product code foreign key must exist in the
PRODUCT entity.
A customer may not be deleted if its primary key exists in the order entity as N
a foreign key.
A product may not be deleted if its primary key exists in the order entity as N
a foreign key.
An order can be updated, but the customer number foreign key must exist in N
the CUSTOMER entity and the product code foreign key must exist in the
PRODUCT entity if the values of those attributes are being altered.

Sometimes, adherence to the integrity rules can be more complicated. For exam-
ple, we might want to permit the creation of a CUSTOMER at the time the order is
entered, in which case the application must be coded to enforce a modified rule:

An order can be inserted, but the customer number foreign key must exist in the
CUSTOMER entity or must be inserted along with its attributes during order
insertion. The product code foreign key must exist in the PRODUCT entity.

If these restrictions seem unduly harsh, ask yourself if you would want a sales-
man to enter orders for customers and products that do not exist.

Integrity constraints apply to entity subtypes as well. In a sense, a subtype simply
has a special (1:1) relationship with another entity in which the primary key of the
subtype is also a foreign key into the other entity type. In other words, we cannot
appoint Joe Bloggs as a marketing representative unless he is already an employee.

Referential integrity rules must be documented as part of the data model.

The rules, based on the dependency constraints, in this case would be as follows:

An order can be inserted without dependency checks (although to do so with- N
out inserting at least one order line might be meaningless).
An order line item can be inserted, but the order number foreign key must N
exist in the ORDER entity or must be inserted along with its attributes dur-
ing order line insertion.
An order line can be deleted without dependency checks. N
An order cannot be deleted unless all its dependent order lines have been N
previously deleted.
Deletion of the order must trigger the guaranteed deletion of all dependent N
order lines.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 597

The dependency constraints must be documented as part of the data
model.

Dependency Constraints

Constraint Rule
A dependent entity cannot exist unless the entity on which it depends also exists.

The dependency constraint rule is a special form of referential integrity con-
straint applicable to dependent entities. Some database management systems auto-
matically enforce most dependency constraints. Others do not.

Exhibits G.31 and G.32 are illustrations of dependency as an ORDER with
multiple LINE-ITEMS.

Order

ORDER NUMBER

PK

ZA8845

XN7691

exhibit g.31 order table

Line-Item

ORDER NUMBER LINE NUMBER QTY PRODUCT CODE

PK FK

FK

ZA8845 1 10 4260067

ZA8845 2 1 3084XC8

ZA8845 3 5 5160002

XN7691 1 2 5360A23

XN7691 2 18 3180001

XN7691 3 2 3520002

exhibit g.32 line-item table

© 2009 by Taylor & Francis Group, LLC

598 ◾ Software Testing and Continuous Quality Improvement

Recursion

A recursive relationship is a relationship between two entities of the same type.
Recursive relationships are found more frequently than one might think. Two

of the most common recursive relationships are:

 1. Bill-of-Materials Explosion/Implosion
 2. Organizational Hierarchies

Recursive relationships are a special case among the common relationships (i.e.,
1:1, l:M, M:M) and are modeled in exactly the same way. We can start out by mak-
ing an EMPLOYEE entity represent the organizational structure of a company, as
in Exhibit G.33.

The relationship between a manager and his employee (the organizational struc-
ture) is a one-to-many relationship. The manager’s employee number as a foreign
key is shown in Exhibit G.34.

Recursive relationships impose additional integrity constraints. In this case:

A manager cannot work for himself. This implies that the topmost level of the N
hierarchy must contain a null value in the MGR_EMP_NUMBER column.
A manager cannot work for one of his employees; nor can he work for anyone N
who works for one of his employees … and so on ad infinitum.

Employee

EMPLOYEE NUMBER EMPLOYEE NAME DEPT NUMBER

PK

00100 CODD 220

00135 KENT 220

00171 NIJSSEN 220

00190 DATE 220

00326 BOYCE 220

00529 KAGOOL 354

00558 MONGO 354

00721 STEIGLITZ 354

00843 STROHEIM 955

exhibit g.33 employee table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 599

A bill of materials processing model is an example of a many-to-many recursive
relationship in which each component is used in many subassemblies and finished
products and in which each product contains many components.

As an exercise:

What would such a model look like? N
What constraints should be placed on the model? Would they differ from the N
constraints placed on the previous model?

Using the Model in Database Design

All the work of modeling is of no use unless it directly contributes to the database
design. In converting the model to a physical database design, some compromises
with normalization may be necessary in order to obtain satisfactory performance.
The compromises will be:

Least in implementing a relational design N
Moderate in implementing a hierarchical design N
Greatest in implementing a flat file design N

It is not the intent of this section to give complete guidance for implementing
the model using a specific database management system (DBMS). This material is
covered in IMS database design and relational database design courses.

Employee

EMPLOYEE
NUMBER

EMPLOYEE
NAME

DEPT
NUMBER

MGR_EMP
NUMBER

PK FK

00100 CODD 220 00326

00135 KENT 220 00326

00171 NIJSSEN 220 00326

00190 DATE 220 00326

00326 BOYCE 220 00843

00529 KAGOOL 354 00721

00558 MONGO 354 00721

00721 STEIGLITZ 354 00843

00843 STROHEIM 955 NULL -

exhibit g.34 employee table

© 2009 by Taylor & Francis Group, LLC

600 ◾ Software Testing and Continuous Quality Improvement

Relational Design

The first cut at implementing the model using a relational DBMS is to implement
the model as it stands:

Each entity and relationship becomes a table. N
Group logically related entities into databases. N
Each attribute becomes a column in the table. N
A unique index is defined for each primary key (to ensure row uniqueness). N
Additional indices are created to support known access paths. N
For each table, an index is chosen by which the data will be clustered, to sup- N
port the most frequently used access sequence.
Space calculations are performed. N

Subsequent modifications may be required to achieve acceptable performance.

g11: decision tables
Decision tables are a technique for representing combinations of actions for the
respective set of decisions and are an alternative to flowchart analysis. Each column,
therefore, comprises a test case, or path through a flowchart.

Consider the following small program, which reads records from a file and tal-
lies the numerical ranges of a field on each record to illustrate the technique.

PROGRAM: FIELD-COUNT
Dowhile not EOF
 read record
 if FIELD_COUNTER > 7 then
 increment COUNTER_7 by 1
 else
 if FIELD_COUNTER > 3 then
 increment COUNTER_3 by 1
 else
 increment COUNTER_1 by 1
 endif
 endif
End_While
End

The corresponding decision table is displayed in Exhibit G.35, and there are
four test cases to test the program using decision tables.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 601

g12: desk Checking
Desk checking is a human error-detection process in the form of a one-person
walkthrough. The typical application is where an individual reads a program, veri-
fies it with a checklist, and manually walks test data through it. It can also be
applied to requirements and design as a check on the work. This technique provides
an evaluation of the quality of the program after it has been written or after the
design has been completed.

g13: equivalence Partitioning
Equivalence partitioning is a black-box testing technique that partitions the input
domain into a set of input classes that can cause multiple behaviors.

From the requirements, each input is divided into partitions. Using this tech-
nique, one representative value from each partition is selected and tested. It is
assumed that the results predict the results for other values in the partition, which
demonstrates the power and economy of this technique.

It is more complicated than a simple range test because a range is divided into
a series or one or more ranges because of the different behaviors that can occur.
Consider the following application. The income needs to be broken up into three
equivalence classes, as the behavior (or tax) varies according to the income value.

deCiSionS

EOF Y N N N

FIELD_

COUNTER > 7 - Y N N

FIELD_

COUNTER > 3 - - Y N

aCtionS

End Program X

Increment FIELD_COUNTER_7 by 1 X

Increment FIELD_COUNTER_3 by 1 X

Increment FIELD_COUNTER_1 by 1 X

exhibit g.35 decision table

© 2009 by Taylor & Francis Group, LLC

602 ◾ Software Testing and Continuous Quality Improvement

An IRS program computes the amount of state income tax on the basis of the
income, as is displayed in Exhibits G.36 and G.37. The following are some guide-
lines for defining equivalence classes.

Sets of Values

Example: “Input colors can be red, blue, white or black”; for example, the tests
would be red, blue, white, black.

Numeric Input Data

Field Ranges

Example: “Input can range from integers 0 to 100”; for example, a test case could
be 45 (any arbitrary number between 1 and 100).

Example: “Input can range from real numbers 0.0 to 100.0”; for example, a test
case could be 75.0 (any arbitrary number between 0.0 and 100.0).

Numeric Output Data

Output Range of Values

Example: “Numerical range outputs of actuarial tables can be from $0.0 to
$100,000.00”; for example, a test case could be $15,000.00 (any arbitrary number
between $0.0 and $100,000.00).

Income Range Tax % Due

$1 to $30,500 25

$30,501 to $62,500 27

$62,501 or more 38

exhibit g.36 income versus tax Percentage

Test Case
Number Test Value Expected Value

Equivalence
Partition

1 $25,000 $6,250 $1 to $30,500

2 $40,500 $10,935 $30,501 to $62,500

3 $85,200 $32,376 $62,501 or more

exhibit g.37 income/tax test Cases

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 603

Nonnumeric Input Data

Tables or Arrays

Example: A test case could be to input from any table row with alphabetic content.

Number of Items

Example: “Number of products associated with a model is up to 10”; for example, a
test case could be 5 products (any arbitrary number of products between 0 and 10).

Nonnumeric Output Data

Tables or Arrays

Example: Update, write, delete any table row.

Number of Outputs

Example: “Up to 10 customers can be displayed”; for example, a test case could be
7 customers displayed (any arbitrary number of customers between 0 and 10).

Steps to Create the Test Cases Using
Equivalence Class Partitioning
 1. Define the equivalence classes.
 2. Write the first test case to cover as many of the valid equivalence classes from

the rule set as possible (although they may be mutually exclusive).
 3. Continue writing test cases until all of the valid equivalence classes from the

rules have been covered.
 4. Write one test case for each invalid class.

The following example illustrates this process:

Suppose the requirement states that the cost of a car shall be between $25,000
and $38,000 with 4 doors. The car types shall be a Ford, Chevy, Jeep, or
Honda. The monthly payments shall be less than $500.

Step 1. Define the Equivalence Classes

Equivalence Classes

$24,999 $25,000 to $38,000 $38,001

Invalid Valid Invalid

© 2009 by Taylor & Francis Group, LLC

604 ◾ Software Testing and Continuous Quality Improvement

Equivalence Classes

All Else 4 Doors

Invalid Valid Invalid

All Else Ford, Chevy, Jeep, Honda

Invalid Valid Invalid

$501 $450

Invalid Valid Invalid

Step 2–4. Create Valid and Invalid Test Cases

Valid Test Cases

Test Case Price No. Doors Car Type Monthly Payment

1 $30,000 4 Ford $450

2 $30,000 4 Chevy $450

3 $30,000 4 Jeep $450

4 $30,000 4 Honda $450

Invalid Test Cases

Test Case Price No. Doors Car Type Monthly Payment

5

6 $24,999 4 Ford $450

7 $30,000 2 Ford $450

8 $30,000 4 Lexus $450

9 $30,000 4 Ford $38,001

g14: exception testing
With exception testing, all the error messages and exception-handling processes
are identified, including the conditions that trigger them. A test case is written for
each error condition. A test case/error exception test matrix (Exhibit G.38) can be
helpful for documenting the error conditions and exceptions.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 605

g15: free-form testing
Free-form testing, often called error guessing, ad hoc testing, or brainstorming, is
a “blue-sky” intuition of where and how errors are likely to occur and is an add-on
technique to other testing techniques.

Some testers are naturally adept at this form of testing, which does not use any
particular testing technique. It involves intuition and experience to “smell out”
defects. There is no particular methodology for applying this technique, but the
basic approach is to enumerate a list of potential errors or error-prone situations and
write test cases on the basis of the list.

g16: gray-Box testing
Black-box testing focuses on the program’s functionality against the specification.
White-box testing focuses on the paths of logic. Gray-box testing is a combina-
tion of black- and white-box testing. The tester studies the requirements specifica-
tions and communicates with the developer to understand the internal structure
of the system. The motivation is to clear up ambiguous specifications and “read
between the lines” to design implied tests. One example of the use of gray-box test-
ing is when it appears to the tester that a certain functionality seems to be reused
throughout an application. If the tester communicates with the developers and
understands the internal design and architecture, a lot of tests will be eliminated,
because it might be possible to test the functionality only once. Another example is

Test Case
Name

Error
Message/Exception Passes/Failed Date Tester

1

2

3

4

5

6

7

8

9

exhibit g.38 test Case/error exception test Matrix

© 2009 by Taylor & Francis Group, LLC

606 ◾ Software Testing and Continuous Quality Improvement

when the syntax of a command consists of 7 possible parameters that can be entered
in any order as follows:

Command parm1, parm2, parm3, parm4, parm5, parm6, parm7 (enter)

In theory, a tester would have to create 7! or 5040 tests. The problem is com-
pounded even more if some of the parameters are optional. If the tester uses gray-box
testing, by talking with the developer and understanding the parser algorithm, if
each parameter is independent, only 7 tests may be required to test each parameter.

g17: histograms
A histogram is a graphical description of measured values organized according to
the frequency or relative frequency of occurrence. In Exhibit G.39, the table con-
sists of a sample of 100 client/server terminal response times (enter key until a server
response) for an application. This was measured with a performance testing tool.

2 4 1 6 5 12 4 3 4 10

5 2 7 2 4 1 12 4 2 1

1 2 4 3 5 1 3 5 7 12

5 7 1 2 4 3 1 4 1 2

1 3 5 2 1 2 4 5 1 2

3 1 3 2 6 1 5 4 1 2

7 1 8 4 3 1 1 2 6 1

1 2 1 4 2 6 2 2 4 9

2 3 2 1 8 2 4 7 2 2

4 1 2 5 3 4 5 2 1 2

exhibit g.39 response time of 100 Samples (seconds)

Average = 3.47 seconds

0 23 25 10 16 10 4 5 2 5

0 to
.9

1 to
1.9

2 to
2.9

3 to
3.9

4 to
4.9

5 to
5.9

6 to
6.9

7 to
7.9

8 to
8.9

9 to
∞

exhibit g.40 response time histogram

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 607

The histogram in Exhibit G.40 illustrates how the raw performance data from
the aforementioned table is displayed in a histogram. It should be noted that the
design specification is for response times to be less than 3 seconds. It is obvious
from the data that the performance requirement is not being satisfied and there is
a performance problem.

g18: inspections
Inspections are the most formal, commonly used form of peer review. The key
feature of an inspection is the use of checklists to facilitate error detection. These
checklists are updated as statistics indicate that certain types of errors are occurring
more or less frequently than in the past. The most common types of inspections
are conducted on the product design and code, although inspections may be used
during any life-cycle phase.

Inspections should be short because they are often intensive; therefore, the prod-
uct component to be reviewed must be small. Specifications or designs that result
in 50 to 100 lines of code are usually manageable. This translates into an inspection
of 15 minutes to 1 hour, although complex components may require as much as 2
hours. In any event, inspections of more than 2 hours are generally less effective
and should be avoided.

Two or three days before the inspection, the producer assembles the input to the
inspection and gives it to the coordinator for distribution. Participants are expected
to study and make comments on the materials before the review.

The review is led by a participant other than the producer. Generally, the indi-
vidual who has the greatest involvement in the next phase of the life cycle is des-
ignated as reader. For example, a requirements inspection would likely be led by a
designer, a design review by an implementer, and so forth. The exception to this is
the code inspection, which is led by the designer. The inspection is organized and
coordinated by an individual designated as the group leader or coordinator.

The reader goes through the product component, using the checklist as a means
to identify common types of errors as well as standards violations. A primary goal
of an inspection is to identify items that can be modified to make the component
more understandable, maintainable, or usable. Participants discuss any issues that
they identified in the preinspection study.

At the end of the inspection, an accept or reject decision is made by the group,
and the coordinator summarizes all the errors and problems detected and gives this
list to all participants. The individual whose work was under review (e.g., designer,
implementer, tester) uses the list to make revisions to the component. When revi-
sions are implemented, the coordinator and producer go through a minireview,
using the problem list as a checklist. The coordinator then completes management
and summary reports. The summary report is used to update checklists for subse-
quent inspections.

© 2009 by Taylor & Francis Group, LLC

608 ◾ Software Testing and Continuous Quality Improvement

g19: jads
A JAD is a technique that brings users and development together to design systems
in facilitated group sessions. Studies show that JADs increase productivity over
traditional design techniques. JADs go beyond one-on-one interviews to collect
information. They promote communication, cooperation, and teamwork among
the participants by placing the user in the driver’s seat.

JADs are logically divided into phases: customization, session, and wrap-up.
Regardless of what activity one is pursuing in development, these components will
always exist. Each phase has its own objectives.

 1. Customization — This phase is key to a JAD and largely consists of prepa-
ration for the next phase. Participants include the session leader and JAD
analysts. The tasks include organizing the team, defining the JAD tasks and
deliverables, and preparing the materials for the next JAD session.

 2. Session — This phase consists of facilitated sessions in which the analysts
and users jointly define the requirements and the system design. The session
leader facilitates the session, and the analyst documents the results.

 3. Wrap-Up — In this final phase, formal JAD outputs are produced. The facili-
tated session leader summarizes the visual and other documentation into a
JAD document. The design results are fed back to the executive sponsor.

A given development effort may consist of a series of the three phases until the
final requirements and design have been completed. When a project has multiple
design activity (e.g., different portions of the overall design), a final wrap-up occurs
at the completion of the design, at which point the design is reviewed as a whole.

g20: orthogonal array testing
Orthogonal array testing, a statistical technique pioneered by Dr. Genichi Taguchi
in manufacturing, helps in the selection of test cases to get a handle on the poten-
tially enormous number of combination factors. It calculates the ideal number of
tests required and identifies variations of input values and conditions; for example,
it helps in the test selection process to provide maximum coverage with a minimum
number of test cases.

Taguchi methods refer to techniques of quality engineering that embody both
statistical process control (SPC) and new quality-related management techniques.
Most of the attention and discussion of Taguchi methods have been focused on the
statistical aspects of the procedure; it is the conceptual framework of a methodol-
ogy for quality improvement and process robustness that needs to be emphasized.

An example is when the syntax of a command consists of three possible param-
eters in which there can be three possible values as follows.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 609

 Command PARM1, PARM2, PARM3 (enter)
 PARMx = 1,2,3

In theory, a tester would have to create 33 or 27 test combinations, as shown in
Exhibit G.41.

Applying orthogonal array testing (OATS), the technique selects test cases so
as to test the interactions between independent measures called factors. Each fac-
tor also has a finite set of possible values called levels. In Exhibit G.41, there are
three factors (PARM1, PARM2, and PARM3). Each has three levels (1, 2, and
3). The technique calls for the tester to locate the best fit of the number of factors
and levels to the possible orthogonal arrays (found in most statistical texts). In
Exhibit G.42, the orthogonal array with three factors and three levels is chosen.
Each column in the array corresponds to a factor and each row corresponds to a
test case. The rows represent all possible pairwise combinations of possible levels
for the factors. Thus, only nine test cases are required, which demonstrates the
power of the technique.

Test
Case PARM1 PARM2 PARM3

Test
Case PARM1 PARM2 PARM3

1 1 1 1 14 2 2 2

2 1 1 2 15 2 2 3

3 1 1 3 16 3 2 1

4 2 1 1 17 3 2 2

5 2 1 2 18 3 2 3

6 2 1 3 19 1 3 1

7 3 1 1 20 1 3 2

8 3 1 2 21 1 3 3

9 3 1 3 22 2 3 1

10 1 2 1 23 2 3 2

11 1 2 2 24 2 3 3

12 1 2 3 25 3 3 1

13 2 2 1 26 3 3 2

- - - 27 3 3 3

exhibit g.41 Parameter Combinations (with total enumeration)

© 2009 by Taylor & Francis Group, LLC

610 ◾ Software Testing and Continuous Quality Improvement

g21: Pareto analysis
Pareto diagrams are a special form of a graph that points to where efforts should
be concentrated. By depicting events or facts in order of decreasing frequency (or
cost or failure rate, etc.), it allows for a quick separation of the “vital few” from the
trivial many. The Pareto chart is more commonly known to information systems
personnel as the 80-20 rule: that is, 20 percent of the causes make up 80 percent of
the frequencies. A Pareto chart is a histogram showing values in descending order,
which helps identify the high-frequency causes of problems so that appropriate
corrective action can be taken. It is an organized ranking of causes of a problem
by type of cause. The objective is to select the most frequent cause or causes of a
problem to direct action to eliminate those causes.

The four steps in using a Pareto chart include the following:

 1. Identify a problem area. One problem example is an excessive number of
defects discovered during software testing.

 2. Identify and name the causes of the problem. This is the most time-consuming
step because it requires the collection of information from various causes.
Causes of defects include the following: architectural, database integrity,
documentation, functionality, GUI, installation, performance, and usability.
For most problems, there is little need to identify more than 12 causes. When
more than 12 causes can be identified, one approach is to select 11 causes and
the 12th cause can be classified as “Other.” If the “Other” category becomes
significant, then it may need to be broken down into specific causes.

L9(3)3 (Orthogonal Array, 3 Factors, 3 Levels)

Test Case PARM1 PARM2 PARM3

1 1 1 3

2 1 2 2

3 1 3 1

4 2 1 2

5 2 2 1

6 2 3 3

7 3 1 1

8 3 2 3

9 3 3 2

exhibit g.42 Parameter Combinations (oatS)

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 611

 3. Document the occurrence of the causes of the problem. The occurrences of the
causes need to be documented. Samples from the defect-tracking database
can be used to obtain these frequencies.

 4. Rank the causes by frequency, using the Pareto chart. This involves two tasks:
to count the problem occurrences by type, and to build a bar chart (or Pareto
chart), with the major causes listed on the left-hand side and the other causes
listed in descending order of occurrence.

In Exhibit G.43 there are eight defect causes. Approximately 1050 defects have
been recorded. Of those, 750 are caused by functionality and database integrity.
Thus, 20 percent of the causes account for 71 (or approximately 80 percent) of the fre-
quency. In our example, functionality is the major cause, and database integrity is the
second cause. Emphasis should be placed on eliminating the number of functional
and database problems. One approach might be increased unit testing and reviews.

g22: Positive and negative testing
Positive and negative testing is an input-based testing technique that requires that
a proper balance of positive and negative tests be performed. A positive test is one

Functionality
Database Integrity
GUI
Documentation
Usability
Performance
Architecture
Installation

Fr
eq

ue
nc

y (
%)

exhibit g.43 Pareto Chart

© 2009 by Taylor & Francis Group, LLC

612 ◾ Software Testing and Continuous Quality Improvement

with a valid input, and a negative test is one with an invalid input. Because there
typically are many more negative than positive tests, a suggested balance is 80 per-
cent negative and 20 percent positive tests.

For example, suppose an application accepts stock market or mutual fund five-
character symbols and then displays the respective stock or mutual fund name. An
example of a positive test is “PHSTX,” which is the mutual fund symbol associated
with a health science fund. If this symbol displayed some other fund, it would
entail a positive test that failed.

Values that are not valid stock or mutual fund symbols are negative tests.
Typically, a negative test produces an invalid error message. For example, if
“ABCDE” is entered and an invalid error message is displayed, this is a negative
test that passed.

Some considerations of negative testing are how much negative testing is
enough and how do we anticipate unexpected conditions. Testing the editing of a
single alphabetic character field can be complex. One negative test would be “(“and
should be detected by the system. Should”)” be tested? How many other nonalpha-
betic characters should be tested? Unanticipated conditions are also sometimes dif-
ficult to detect. For example, “&” and “‘“ have special meaning with SQL. Should
both of these be tested in every field?

g23: Prior defect history testing
With prior defect history testing, a test case is created or rerun for every defect
found in prior tests of the system. The motivation for this is that defects tend to
cluster and regress back to the original problem. Some causes include poor software
configuration management procedures, poor coding and unit testing during defect
repair, the tendency for bugs to cluster, and so on.

A defect matrix is an excellent tool that relates test cases to functions (or pro-
gram units). A check entry in the defect matrix indicates that the test case is to be
retested because a defect was previously discovered while running this test case. The
absence of an entry indicates that the test does not need to be retested.

If this approach is not economical because a large number of defects have been
discovered, a test case should be retested on or above a certain defined severity level.

g24: Prototyping
Prototyping is an iterative approach often used to build systems that users are ini-
tially unable to describe precisely. The concept is made possible largely through
the power of fourth-generation languages and application generators. Prototyping
is, however, as prone to defects as any other development effort, maybe more so if

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 613

not performed in a systematic manner. Prototypes need to be tested as thoroughly
as any other system. Testing can be difficult unless a systematic process has been
established for developing prototypes.

The following sections describe several prototyping methodologies. They are
presented to show the diversity of concepts used in defining software life cycles and
to illustrate the effects of prototyping on the life cycle in general.

Cyclic Models

This concept of software development with prototyping consists of two separate but
interrelated cyclic models: one consisting of a classical software development cycle
and the other of a prototyping cycle that interacts with the classical model during
the phases of analysis and design. The major operations are the following:

Classical cycle: N
User request −
Feasibility −
Investigation −
Consideration of prototyping −
Analysis −
Design −
Final proposed design −
Programming −
Testing −
Implementation −
Operation −
Evaluation −
Maintenance −
(The cycle is repeated.) −

Prototyping cycle: N
Prototype is designed. −
Prototype is used. −
Investigation is conducted using the prototype. −
Analysis is performed on the investigation. −
Refinements are made, or a new prototype is built. −
(This cycle is also repeated.) −

The interaction of the two cycles occurs when investigation in the classical cycle
uncovers the need to prototype, at which time the prototyping cycle is entered.
Prototyping is terminated when analysis, design, or the final proposed design of the
classical cycle can be completed on the basis of information discovered or verified
in the prototyping cycle.

© 2009 by Taylor & Francis Group, LLC

614 ◾ Software Testing and Continuous Quality Improvement

Fourth-Generation Languages and Prototyping
This method proposes the following life-cycle steps:

 1. A prototyping team of one analyst/programmer and one end user is formed.
 2. User needs are identified by interviewing several end users to define the prob-

lem and elicit sample user expectations.
 3. A prototype is developed quickly to address most of the issues of the problem

and user expectations.
 4. The prototype is demonstrated to the end user. The user experiments with

it and performs work within a specified time period. If the prototype is not
acceptable, it is scrapped.

 5. The prototype is refined by including changes identified through use. This step and
the previous one are iterated until the system fully achieves the requirements.

 6. An end-user test group is formed to provide more feedback on the prototype
within a specified period of time.

 7. A determination is made as to whether the prototype will be implemented or
the system will be rewritten in a conventional language. This decision is based
on maintenance considerations, hardware and software efficiency, flexibility,
and other system requirements.

Iterative Development Accounting
This model is based on the view that a system is a sequence of specification levels
with an increasing amount of detail at each level. These levels are:

Informal requirements N
Formal requirements N
Design N
Implementation N
Configuration N
Operation N

Each level contains more detail than the one preceding it. In addition, each
level must be balanced with upper-level specifications. Iterative development
imposes development accounting on each level (i.e., a change in one specification
level can be made only if the next higher level has been modified to accommodate
the change).

A complete history of development is maintained by this accounting technique
to ensure that consistency remains throughout all levels. A prototype is developed at
each level to show that the specifications are consistent. Each prototype concentrates
on the functions to be evaluated at that level. The final prototype becomes the
implemented system once testing, installation, and training have been completed.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 615

Evolutionary and Throwaway
Two models are presented here. In the first, the prototype is built and gradually enhanced
to form the implemented system. The other is known as the throwaway model.

End users are integral parts of the prototype development in both models and
should be trained in the use of a prototyping tool (e.g., a simulation language or
4GL). The two models are described briefly as follows:

Method 1: N
The user experiments with and uses a prototype built to respond to the −
end user’s earliest and most tentative needs to perform work.
The analyst watches the user to see where prototype refining needs to take −
place. A series of prototypes, or modifications to the initial prototype,
evolve into the final product.

Method 2: N
A prototype is implemented. The initial design is developed from this and −
the end user’s feedback. Another prototype is produced to implement the
initial design. The final system is implemented in a conventional language.

Application Prototyping
This method involves the following steps:

 1. Identification of basic needs — Concentrate on identifying fundamental goals,
objectives, and major business problems to be solved and defining data ele-
ments, data relations, and functions.

 2. Development of a working model — Build a working prototype quickly to
address the key needs.

 3. Demonstration of prototype — Present the prototype to all interested users and
obtain additional requirements through user feedback.

 4. Completion of prototype — Iterate between demonstration and enhancement
of the prototype until users are satisfied that the organization could provide
the service needed from the prototype. Once users agree that the prototype
fits the concept of the service needed, it can be enhanced into the final system
or rewritten in a more efficient language.

Prototype Systems Development
The stages for this approach are as follows:

 1. Management states the organization’s objectives. These are described in terms of
information requirements and the scope of the system boundaries and capa-
bilities. Prototype screens and reports are developed.

© 2009 by Taylor & Francis Group, LLC

616 ◾ Software Testing and Continuous Quality Improvement

 2. End users and management review and approve the prototype. Full system design,
equipment selection, programming, and documentation are completed.

 3. Management reviews and commits to implementing the system. System tests of
the prototype are run in parallel with the old system. Work begins on the
next release, which causes an iteration of all three stages.

Data-Driven Prototyping

Prototyping is a great communication tool for fleshing out design ideas, testing
assumptions, and gathering real-time feedback from users.

This methodology consists of the following steps:

 1. Operational review — Define the project scope and evaluate the environment,
current organization, and information structures.

 2. Conceptual design — Define proposed metadata (i.e., the structure of data and
relationships between individual structures), the scenarios needed to describe
service functions that change data states, and types of retrievals.

 3. Data design — Normalize the metadata.
 4. Heuristic analysis — Check consistency of requirements against metadata through

the use of real data values; this step is iterated with the data design step.
 5. Environment test — Build programs to support data entry and retrieval

(prototype).

Replacement of the Traditional Life Cycle

In this model, the steps include the following:

 1. Rapid analysis — Results in an incomplete paper model that shows the system
context, critical functions, an entity–relationship model of the database, and
conceptual tables, screens, attributes, reports, and menus.

 2. Database development — Uses a relational architecture to create a working
database for the use of the prototype.

 3. Menu development — Expands on the initial concepts defined in rapid analy-
sis and fixes the hierarchical structure of the application.

 4. Function development — Groups functions by type into modules.
 5. Prototype demonstration — Iterates by redoing parts as necessary and tuning

if possible.
 6. Design, coding, and testing — Completes the detailed design specifications.
 7. Implementation — Is based on the evolution of the prototype and completion

of all programs, tests, and documentation.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 617

Early-Stage Prototyping
This model can assist in specifying user requirements, verifying the feasibility of
system design, and translating the prototype into the final system. The procedure
includes the following:

 1. A preliminary analysis and requirements specification establish a baseline for
future reference.

 2. A prototype is defined and implemented, emphasizing the user interface. The
prototype is developed by a small development team using prototype devel-
opment language and tools to assist in rapid development.

 3. The prototype is tested in the user’s workplace.
 4. The prototype is refined by incorporating user comments as quickly as

possible.
 5. Baseline requirements are refined by incorporating lessons learned from

the prototype.
 6. The production system is developed through the use of a traditional life cycle

with requirements derived from the prototype.

User Software Engineering

This is based on a model of software development that is part formal and part infor-
mal and includes the following steps:

 1. Requirements analysis — Activity and data modeling and identification of
user characteristics.

 2. External design — Develop transactions and user–program interfaces.
 3. Facade development — Used as a prototype of the user–program interface and

revised as needed.
 4. Narrative text — Used to informally specify the system operations.
 5. Preliminary relational database — Designed as the basis for a functional pro-

totype of the system.
 6. Functional prototype — Developed to provide at least some, and perhaps all,

of the functions of the proposed system.
 7. Formal specification of the system operations — May be optionally developed at

this point.
 8. System architecture and modules — Conceptual design and defines the overall

structure and associated software models.
 9. System implementation — In a procedural language.
 10. Testing and verification — Performed on the system before the system is

released into the production environment.

© 2009 by Taylor & Francis Group, LLC

618 ◾ Software Testing and Continuous Quality Improvement

g25: random testing
Random testing is a technique in which a program or system is tested by select-
ing at random some subset of all possible input values. It is not an optimal testing
technique, because it has a low probability of detecting many defects. It does, how-
ever, sometimes uncover defects that standardized testing techniques might not. It
should, therefore, be considered an add-on testing technique.

g26: range testing
Range testing is a technique that assumes that the behavior of any input variable
within a predefined range will be the same. The range over which the system behav-
ior should be the same is first selected. Then an arbitrary representative from the
range is selected and tested. If it passes, it is assumed that the rest of the values do
not have to be tested.

For example, consider the following piece of code, which calculates the results
Z from two input values X and Y:

 Z X Y= −2 2

If X and Y are positive integers ranging from 0 to 5 and X is greater than or
equal to Y, there are 21 possible test cases, as depicted in Exhibit G.44.

Applying this technique has the potential of saving a lot of test generation time.
However, it does have the limitation of the assumption that selecting an arbitrary
input sample will produce the same system behavior for the rest of the inputs.
Additional tests such as the conditions X and Y positive integers and Y greater than
X need to be tested as well as the verification of square roots results; for example, we
need to determine if the Z variable will accept fractional values as the result of the
calculation or truncation (also see G4, “Boundary Value Testing”).

g27: regression testing
Regression testing checks the application in light of changes made during a devel-
opment spiral, debugging, maintenance, or the development of a new release. This
test must be performed after functional improvements or repairs have been made
to a system to confirm that the changes have introduced no unintended side effects.
Corrections of errors relating to logic and control flow, computational errors, and
interface errors are examples of conditions that necessitate regression testing.
Cosmetic errors generally do not affect other capabilities and do not require that
regression testing be performed.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 619

Test Case X Value Y Value
Z

(Expected Result)

1 0 0 0

2 1 0 1

3 1 1 0

4 2 0 2

5 2 1 3

6 2 2 0

7 3 0 3

8 3 1 8

9 3 2 5

10 3 3 0

11 4 0 4

12 4 1 15

13 4 2 12

14 4 3 7

15 4 4 0

16 5 0 5

17 5 1 24

18 5 2 21

19 5 3 4

20 5 4 3

21 5 5 0

exhibit g.44 range testing test Cases

© 2009 by Taylor & Francis Group, LLC

620 ◾ Software Testing and Continuous Quality Improvement

It would be ideal if all the tests in the test suite were rerun for each new spiral,
but due to time constraints, this is probably not realistic. A good regression strategy
during spiral development is for some regression testing to be performed during
each spiral to ensure that previously demonstrated capabilities are not adversely
affected by later development spirals or error corrections. During system testing
after the system is stable and the functionality has been verified, regression testing
should consist of a subset of the system tests. Policies need to be created to decide
which tests to include.

In theory, the reliability of a system that has been modified cannot be guaran-
teed without a full regression test of all tests. However, there are many practical
considerations:

When defects are uncovered, additional regression tests should be created. N
A regression test library should be available and maintained as it evolves. N
There should be a methodology of isolating regression tests that focus on N
certain areas (see retest and defect matrices).
If the overall architecture of a system is changed, full regression testing should N
be performed.
Automated testing with capture/playback features should be strongly consid- N
ered (see Section 6, “Modern Software Testing Tools”).

g28: risk-Based testing
The purpose of risk management testing is to measure the degree of business risk in
an application system to improve testing. This is accomplished in two ways: high-
risk applications can be identified and subjected to more extensive testing, and risk
analysis can help identify the error-prone components of an individual application
so that testing can be directed at those components.

Risk analysis is a formal method for identifying vulnerabilities (i.e., areas of
potential loss). Any area that could be misused, intentionally or accidentally, and
result in a loss to the organization is a vulnerability. Identification of risks allows
the testing process to measure the potential effect of those vulnerabilities (e.g., the
maximum loss that could occur if the risk or vulnerability were exploited).

Risk-based testing is a technique in which test cases are created for every major
risk factor that has been previously identified. Each condition is tested to verify that
the risk has been averted.

g29: run Charts
A run chart is a graphical representation of how a quality characteristic varies with
time. It is usually a line graph that shows the variability in a measurement or in a

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 621

count of items. For example, in Exhibit G.45, a run chart can show the variability
in the number of defects detected over time. It can show results from a sample of a
population or from 100 percent.

A control chart, a special form of run chart, places lines on the chart to rep-
resent the limits of permissible variability. These limits could be determined by a
design specification or an agreed-upon standard. The control limits are frequently
set to show the statistical limit of variabilities that could be due to a chance occur-
rence. This is calculated by using the averages and range of measurement from each
sample of data. Control charts are not only used as an alarm when going outside the
limits, but also to examine trends occurring within the limits. For example, if the
sequence of ten measurements in Exhibit G.45 is shown to fall above the expected
average, it can be assumed that this is not due to mere chance and, therefore, an
investigation is in order.

g30: Sandwich testing
Sandwich testing uses top-down and bottom-up techniques simultaneously and is a
compromise between the two. The approach integrates from the top and bottom at
the same time, meeting somewhere in the middle of the hierarchical control struc-
ture. The meeting point in the middle is defined by the program structure.

It is typically used on large programs but is difficult to justify on small
programs. The top level of the hierarchy usually includes the user interfaces
to the system, which requires stubs to mimic business functions. The bottom
level includes primitive-level modules that require drivers to simulate lower-level
modules.

x (week) y

1 10

2 50

3 30

4 60

5 25

6 50

7 75

8 45

exhibit g.45 Sample run Chart

© 2009 by Taylor & Francis Group, LLC

622 ◾ Software Testing and Continuous Quality Improvement

g31: Statement Coverage testing
Statement coverage is a white-box technique that ensures that every statement or
line of code (LOC) is executed at least once. It does guarantee that every statement
is executed, but it is a very weak code coverage approach and not as comprehensive
as other techniques, such as branch coverage, where each branch from a decision
statement is executed.

Consider the following small program, which reads records from a file and tal-
lies the numerical ranges of a field on each record to illustrate the technique.

PROGRAM: FIELD-COUNT
Dowhile not EOF
 read record
 if FIELD_COUNTER > 7 then
 increment COUNTER_7 by 1
 else
 if FIELD_COUNTER > 3 then
 increment COUNTER_3 by 1
 else
 increment COUNTER_1 by 1
 endif
 endif
End_While
End

The test cases to satisfy statement coverage are as follows.

Test Case Values (FIELD_COUNTER)

1 >7, ex. 8

2 >3, ex. 4

3 <= 3, ex. 3

g32: State transition testing
State transition testing is a testing technique in which the states of a system are
first identified. Then a test case is written to test the triggers or stimuli that cause
a transition from one condition to another state. The tests can be designed using a
finite-state diagram or an equivalent table.

Consider the following small program, which reads records from a file and tal-
lies the numerical ranges of a field on each record to illustrate the technique.

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 623

PROGRAM: FIELD-COUNT
Dowhile not EOF
 read record
 if FIELD_COUNTER > 7 then
 increment COUNTER_7 by 1
 else
 if FIELD_COUNTER > 3 then
 increment COUNTER_3 by 1
 else
 increment COUNTER_1 by 1
 endif
endif
End_While
End

Exhibit G.46 illustrates the use of the testing technique to derive test cases.
The states are defined as the current value of COUNTER_7, COUNTER_3, and
COUNTER_1. Then the possible transitions are considered. They consist of the
end-of-file condition or the value FIELD_COUNTER for each successive record
input. For each of these transitions, a definition of how each respective state is
transformed is performed. Each transition becomes a test case and the final state is
the expected result.

g33: Statistical Profile testing
With statistical profile testing, statistical techniques are used to develop a usage
profile of the system. Based on the expected frequency of use, the tester deter-
mines the transaction paths, conditions, functional areas, and data tables that
merit focus in testing. The tests are, therefore, geared to the most frequently used
part of the system.

g34: Structured walkthroughs
Structured walkthroughs are more formal than the code-reading reviews. Distinct
roles and responsibilities are assigned before the review. Preview preparation is
greater, and a more formal approach to problem documentation is stressed. Another
key feature of this review is that it is presented by the producer. The most common
walkthroughs are those held during design and coding; however, recently they have
been applied to specifications documentation and test results.

The producer schedules the review and assembles and distributes input. In most
cases, the producer selects the walkthrough participants (although this is some-
times done by management) and notifies them of their roles and responsibilities.

© 2009 by Taylor & Francis Group, LLC

624 ◾ Software Testing and Continuous Quality Improvement

The walkthrough is usually conducted with less than seven participants and lasts
no more than 2 hours. If more time is needed, there should be a break or the
product should be reduced in size. Roles usually included in a walkthrough are
producer, coordinator, recorder, and representatives of user, maintenance, and stan-
dards organizations.

Although the review is opened by the coordinator, the producer is responsible
for leading the group through the product. In the case of design and code walk-
throughs, the producer simulates the operation of the component, allowing each
participant to comment, depending on that individual’s area of specialization. A
list of problems is kept, and at the end of the review, each participant signs the

Initial State Test Case (Transition) Final State

COUNTER_7 = X1 1. EOF COUNTER_7 = X1

COUNTER_3 = X2 COUNTER_3 = X2

COUNTER_1 = X3 COUNTER_1 = X3

Exit Program

COUNTER_7 = X1 2. Next Record with FIELD_
COUNTER > 7

COUNTER_7 = (X1+1)

COUNTER_3 = X2 COUNTER_3 = X2

COUNTER_1 = X3 COUNTER_1 = X3

Successful

COUNTER_7 = X1 3. Next Record with FIELD_
COUNTER < = 7 and FIELD_
COUNTER >3

COUNTER_7 = X1

COUNTER_3 = X2 COUNTER_3 = (X2+1)

COUNTER_1 = X3 COUNTER_1 = X3

Successful

COUNTER_7 = X1 4. Next Record with FIELD_
COUNTER < = 3

COUNTER_7 = X1

COUNTER_3 = X2 COUNTER_3 = X2

COUNTER_1 = X3 COUNTER_1 = (X3+1)

Successful

exhibit g.46 State transition table

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 625

list, or other walkthrough form, indicating whether the product is accepted as is,
accepted with recommended changes, or rejected. Suggested changes are made at
the discretion of the producer. There are no formal means of follow-up on the
review comments. If the walkthrough review is used for products throughout the
life cycle, however, comments from past reviews can be discussed at the start of the
next review.

g35: Syntax testing
Syntax testing is a technique in which a syntax command generator generates test
cases based on the syntax rules of the system. Both valid and invalid values are
created. It is a data-driven black-box testing technique for testing input data to lan-
guage processors, such as string processors and compilers. Test cases are developed
based on rigid data definitions. The valid inputs are described in Backus–Naur
Form (BNF) notation.

The main advantage of syntax testing is that it ensures that no misunderstand-
ings about valid and invalid data and specification problems will become apparent
when employing this technique.

g36: table testing
Table testing is a technique that tests the table, which is usually associated with
a relational database (the same approaches can be applied to arrays, queues, and
heaps). Tables usually come in two forms: sequential and indexed. The following
are general tests that need to be performed against tables:

 1. Indexed Tables:
 a. Delete the first record in the table.
 b. Delete a middle record in the table.
 c. Delete the last record in the table.
 d. Add a new first record in the table.
 e. Add a new middle record in the table.
 f. Add a new last record in the table.
 g. Attempt to add a duplicate record.
 h. Add a record with an invalid key, for example, garbage in the key field.
 i. Change the key fields on a existing record; for example, change an

order number.
 j. Delete a nonexisting record; for example, enter a delete key that does not

match table entries.
 k. Update and rewrite an existing record.

© 2009 by Taylor & Francis Group, LLC

626 ◾ Software Testing and Continuous Quality Improvement

 2. Sequential Tables:
 a. Attempt to delete a record from an empty table.
 b. Read a record from an empty table.
 c. Add a record to a full table.
 d. Delete one record from a one-record table.
 e. Read the last record.
 f. Read the next record after the last record.
 g. Scroll sequentially through the table.
 h. Insert an out-of-sequence record.
 i. Attempt to insert a duplicate record.

g37: thread testing
Thread testing is a software testing technique that demonstrates key functional
capabilities by testing a string of program units that accomplishes a specific busi-
ness function in the application.

A thread is basically a business transaction consisting of a set of functions. It
is a single discrete process that threads through the whole system. Each function
is tested separately, then added one at a time to the thread. The business transac-
tion thread is then tested. Threads are in turn integrated and incrementally tested
as subsystems, and then the whole system is tested. This approach facilitates early
systems and acceptance testing.

g38: top-down testing
The top-down testing technique is an incremental approach in which the high-
level modules or system components are integrated and tested first. Testing then
proceeds hierarchically to the bottom level. This technique requires the creation of
stubs. When a module or system component is tested, the modules or components
it invokes are represented by stubs, which return control back to the calling module
or system component with a simulated result. As testing progresses down the pro-
gram structure, each stub is replaced by the actual code it represents. There is no
rule that specifies which module to test next; the only rule is that at least one of the
modules or system component-calling modules must have been tested previously.

Top-down testing allows early discovery of major design flaws occurring at the
top of the program, because high-level functions and decisions are tested early, and
they are generally located at the top of the control structure. This verifies the pro-
gram design early. An early prototype or initial design facilitates early demonstra-
tions. Because the menus are often at the top of the control structure, the external
interfaces can be displayed early to the user. Stubs need to be created, but are gener-
ally easier to create than drivers. On the other hand, critical low-level modules or

© 2009 by Taylor & Francis Group, LLC

Software Testing Techniques ◾ 627

system components are not tested until late in the process. In rare cases, problems
with these critical modules or system components may force a redesign.

g39: white-Box testing
White-box testing, or structural testing, is one in which test conditions are designed
by examining paths of logic. The tester examines the internal structure of the pro-
gram or system. Test data are driven by examining the logic of the program or
system, without concern for the program or system requirements. The tester has
knowledge of the internal program structure and logic, just as a mechanic knows
the inner workings of an automobile. Specific examples in this category include
basis path analysis, statement coverage, branch coverage, condition coverage, and
branch/condition coverage.

An advantage of white-box testing is that it is thorough and focuses on the produced
code. Because there is knowledge of the internal structure or logic, errors or deliberate
mischief on the part of a programmer has a higher probability of being detected.

One disadvantage of white-box testing is that it does not verify that the specifi-
cations are correct; that is, it focuses only on the internal logic and does not verify
the logic to the specification. Another disadvantage is that there is no way to detect
missing paths and data-sensitive errors. For example, if the statement in a program
should be coded “if |a–b| < 10” but is coded “if (a–b) < 1,” this would not be
detectable without specification details. A final disadvantage is that white-box test-
ing cannot execute all possible logic paths through a program, because this would
entail an astronomically large number of tests.

© 2009 by Taylor & Francis Group, LLC

629

Bibliography

 1. Andrews, M. and Whittaker, J. A. 2006. How to Break Web Software: Functional and
Security Testing of Web Applications and Web Services. Upper Saddle River, NJ: Pearson
Education.

 2. Arthur, L. J. 1993. Improving Software Quality: An Insider’s Guide to TQM. New
York: Wiley.

 3. Beck, K. 2002. Test Driven Development: By Example. New York: Addison-Wesley
 4. Beizeir, B. 1991. Software Testing Techniques (Second Edition). New York: Van

Nostrand Reinhold.
 5. Beizeir, B. 1995. Black-Box Testing: Techniques for Functional Testing for Testing of

Software and Systems. New York: Wiley.
 6. Brooks, F. P., Jr. 1995. The Mythical Man-Month, Anniversary Edition. Reading,

MA: Addison-Wesley.
 7. Card, D. N. with Robert, L. G. 1990. Measuring Software Design Quality. Englewood

Cliffs, NJ: Prentice Hall.
 8. Charette, R. N. 1990. Applications Strategies for Risk Analysis. New York: McGraw-Hill.
 9. Cho, C. K. 1987. Quality Programming: Developing and Testing Software with Statistical

Quality Control. New York: Wiley.
 10. Copeland, L. 2003. A Practitioner’s Guide to Software Test Design. Norwood, MA:

Artech House.
 11. Creech, B. 1994. The Five Pillars of TQM. New York: Truman Valley /Dutton.
 12. Davis, A. M. 1990. Software Requirements: Analysis and Specification. Englewood Cliffs,

NJ: Prentice Hall.
 13. Davis, B. 1994. The Economics of Automatic Testing (Second Edition), New York:

McGraw-Hill.
 14. DeCarlo, N. J. and Kent, S. W. 1990. History of the Malcolm Baldridge National

Quality Award. Quality Progress (March): 21–27.
 15. Deming, W. E. 1986. Out of the Crisis. Cambridge, MA: Massachusetts Institute of

Technology, Center for Advanced Engineering Study.
 16. Deming, W. E. The Deming Management Method. New York: Perigee.
 17. Fagan, M. E. 1986. Advances in software inspections. IEEE Transactions on Software

Engineering (July): 744–751.
 18. Fournier, G. 2008. Essential Software Testing: A Use-Case Approach. New York: Taylor

& Francis.
 19. Freedman, D. P. and Weinberg, G. M. 1990. Handbook of Walkthroughs, Inspections,

and Technical Reviews, Third Edition. New York: Dorset House.

© 2009 by Taylor & Francis Group, LLC

630 ◾ Bibliography

 20. Giles, A. C. 1992. Software Quality: Theory and Management. New York: Chapman
& Hall.

 21. Glass, R. L. 1991. Software Conflict-Essays on Art and Science of Software Engineering.
Englewood Cliffs, NJ: Yourdon (Prentice Hall).

 22. Grady, R. B. 1989. Dissecting software failures. HP Journal (April): 57–63.
 23. Grady, R. B. 1992. Practical Software Metrics for Project Management and Process

Improvement. Englewood Cliffs, NJ: Prentice Hall.
 24. Gub, T. et al. 1993. Software Inspection. Reading, MA: Addison-Wesley.
 25. Hahn, G. J. 1995. Deming’s impact on industrial statistics: some reflections. The

American Statistician, 49, 4 (November): 336–341.
 26. Hatton, L. 1997. Re-examining the defect density versus component size distribution.

IEEE Software (March/April).
 27. Hetzel, B. 1988. The Complete Guide to Software Testing (Second Edition). Wellesley,

MA: QED.
 28. Hetzel, B. 1993. Making Software Measurement Work: Building an Effective Measurement

Program. Wellesley, MA: QED.
 29. Hollocker, C. P. 1990. Software Reviews and Audits Hand Book. New York: Wiley.
 30. Humphrey, W. S. 1989. Managing the Software Process. Reading, MA: Addison-Wesley.
 31. Humphrey, W. S. 1995. A Discipline for Software Engineering. Reading, MA: Addison-

Wesley.
 32. IEEE Standard for Software Verification and Validation Plans. 1986. Washington, DC:

IEEE, Std. 1012–1986 (R1992).
 33. IEEE Standard for Measures to Produce Reliable Software. 1988. Washington, DC:

IEEE, Std. 982.
 34. IEEE Standard Glossary of Software Engineering Terminology. 1990. Washington, DC:

IEEE Std. 610.12–1990.
 35. Jarvis, A. S. 1988. How to establish a successful test plan. EDP Quality Assurance

Conference, Washington, DC, November 14–17.
 36. Jarvis, A. S. 1994. Applying Software Quality. The Seventh International Software

Quality Week, San Francisco, May 17–20.
 37. Jarvis, A. S. 1995a. Applying Metrics. First World Congress for Software Quality

Conference, San Francisco, June 20–22.
 38. Jarvis, A. S. 1995b. Exploring the Needs of a Developer and Tester, Quality Conference

95, Santa Clara, CA, April 4–7.
 39. Jones, C. 1991. Applied Software Management: Assuring Productivity and Quality. New

York: McGraw-Hill.
 40. Jones, C. 1993. Assessment and Control of Software Risks. Englewood Cliffs, NJ: Yourdon

Press Computing Services.
 41. Jones, C. 1993. Critical Problems in Software Measurement. Carlsbad, CA:

Infosystems Management.
 42. Kaner, C., Falk, J., and Nguyen, H. Q. 1999, Testing Computer Software. Hoboken, NJ:

John Wiley & Sons.
 43. Lewis, R. O. 1992. Independent Verification and Validation: A Life Cycle Engineering

Process for Quality Software. New York: Wiley.
 44. Lewis, W. E. 1998. Spiral Testing. Quality Assurance Institute Annual International

Information Technology Quality Conference, April 13–17, Orlando, FL.
 45. Lewis, W. E. 2003. PDCA/Test. Auerbach: Boca Raton, FL.

© 2009 by Taylor & Francis Group, LLC

Bibliography ◾ 631

 46. Lewis, W. E. 2004. Software Testing and Continuous Quality Improvement (Second
Edition). Auerbach: Boca Raton, FL.

 47. Marciniak, J. 1994. Encyclopedia of Software Engineering. New York: Wiley.
 48. Marks, D. M. 1992. Testing Very Big Systems. New York: McGraw-Hill.
 49. Martin, J. 1989. Information Engineering Book I Introduction. Englewood Cliffs, NJ:

Prentice Hall.
 50. Martin, J. 1990a. Information Engineering Book II Planning and Analysis. Englewood

Cliffs, NJ: Prentice Hall.
 51. Martin, J. 1990b. Information Engineering Book III Design and Construction. Englewood

Cliffs, NJ: Prentice Hall.
 52. Martin, J., Kathleen, K. C., and Joe, L. 1991. Systems Application Architecture: Common

User Access. Englewood Cliffs, NJ: Prentice Hall.
 53. McCabe, J. J. and Butler, C. W. 1989. Design complexity measurement and testing.

Communications of the ACM, 32, 12 (December): 1415–1424.
 54. McCabe, T. J. 1982. Structured Testing: A Software Testing Methodology Using Cyclomatic

Complexity Metric. National Bureau of Standards Special Publication, December:
500–599.

 55. McConnell, S. 1993. Code Complete: A Practical Handbook of Software Construction.
Redmond, WA: Microsoft.

 56. Murine, G. E. 1988. Integrating software quality metrics with software QA. Quality
Progress (November): 38–43.

 57. Musa, J. D., Iannino, A., and Okumoto, K. 1987. Software Reliability: Measurement,
Prediction, Application. New York: McGraw-Hill.

 58. Myers, G. G., Sandler, C., Badgett, T., and Thomas, T. 2004. The Art of Software Testing
(Second Edition). New York: Wiley.

 59. Orr, K. 1981. Structured Requirements Definition. Topeka, KS: Orr.
 60. Page-Jones, M. 1985. Practical Project Management: Restoring Quality to DP Projects

and Systems. New York: Dorset House.
 61. Patton, R. 2005. Software Testing (Second Edition). Indianapolis, IN: Sam’s.
 62. Perry, W. E. 1986. How to Test Software Packages: A Step-by-Step Guide to Assuring They

Do What You Want. New York: Wiley.
 63. Perry, W. E. 1991. Quality Assurance for Information Systems: Methods, Tools, and

Techniques. Wellesley, MA: QED.
 64. Perry, W. 2006. Effective Methods for Software Testing. Hoboken, NJ: John Wiley &

Sons.
 65. Pettichord, B., Kaner, 2001. C., Bach, J., Lessons Learned in Software Testing: A Context-

Driven Approach. Hoboken, NJ: John Wiley & Sons.
 66. Pressman, R. S. 1992. Software Engineering: A Practitioner’s Approach, Third Edition.

New York: McGraw-Hill.
 67. Roper, M. 1993. Software Testing. New York: McGraw-Hill.
 68. Royer, T. C. 1992. Software Testing Management: Life on the Critical Path. Englewood

Cliffs, NJ: Prentice Hall.
 69. Rubin, H. 1993. Practical Guide to the Design and Implementation of IS Measurement

Programs. Englewood Cliffs, NJ: Prentice Hall.
 70. Sanders, J. 1994. Software Quality: A Framework for Success in Software Development.

Reading, MA: Addison-Wesley.
 71. Schulmeyer, G. G. 1990. Zero Defect Software. New York: McGraw-Hill.

© 2009 by Taylor & Francis Group, LLC

632 ◾ Bibliography

 72. Schulmeyer, W. G. and McManus, J. 1992. Total Quality Management for Software.
New York: Van Nostrand Reinhold.

 73. Sharp, A. 1993. Software Quality and Productivity. New York: Van Nostrand Reinhold.
 74. Spillner, A., Schaefer, Hans, Linz, Tilo. 2006. Software Testing Foundations. Sebastopol,

CA: Rocky Nook.
 75. Vinay, P. 2008. Managing Software Testing. New York: CRC Press.
 76. Tripathy, P. and Naik, S. 2008. Software Testing and Quality Assurance: Theory and

Practice. Hoboken, NJ: John Wiley & Sons.
 77. Ward, P. T. and Stephen, J. M. 1985a. Structured Development for Real Time Systems.

Vol. 1: Introduction and Tools. Englewood Cliffs, NJ: Yourdon.
 78. Walton, M. 1986. The Deming Management Method. New York: A Perigee Book.
 79. Weinberg, G. M. 1992. Quality Software Management: Systems Thinking, Vol. 1. New

York: Dorset House.
 80. Weinberg, G. M. 1992. Software Quality Management: Vol. 1: Systems Thinking. New

York: Dorset House.
 81. Weinberg, G. M. 1993. Quality Software Management: First-Order Measurement, Vol.

2. New York: Dorset House.
 82. Weinberg, G. M. 1993. Software Quality Management: Vol. 2: First-Order Measurement.

New York: Dorset House.
 83. Whittaker, J. 2002. How to Break Software: A Practical Guide to Testing. Upper Saddle

River, NJ: Pearson.
 84. Whittaker, J. and Thompson, H. 2003. How to Break Software Security: Effective

Techniques for Security Testing. Upper Saddle River, NJ: Pearson.
 85. Yourdon, E. 1985. Structured Walkthroughs, Third Edition. Englewood Cliffs, NJ:

Yourdon.

© 2009 by Taylor & Francis Group, LLC

633

glossary

Acceptance Testing: Form of testing to assure user that a system is performing
as expected.

Ad Hoc: Testing without formalized test cases, i.e., trial and error.
Adaptive Maintenance: Modifications made to a system to accommodate changes

in the processing environment.
Agile Methodology: A collection of values, principles, and practices that incorpo-

rates iterative development, test, and feedback.
Algorithm: A set of rules that are supposed to give the correct answer for solving

a particular problem.
ANSI: Acronym for the American National Standard Institute, an institute that

creates standards for a wide variety of industries, including computer pro-
gramming languages.

Architecture: Similar to the architecture of a building, the architecture of
a computer refers to the design structure of the computer and all its
details.

Archive: To store information, to back it up, with the idea of preserving it for a
long time.

ASCII: Stands for the American Standard Code for Information Interchange,
which is a standardized coding system used by almost all computers and
printers.

Assumption: Proposition that must be allowed to reduce the relevant variables of
a problem to be manageable.

Attribute: The descriptive characteristic of something.
Backup: The process of making copies of files to enable recovery.
Baseline: (1) A defined set of executables or documents of a specific product, put

into a state in which all development and change activity are closely man-
aged to support a defined activity at a set time. Examples: integration test,
pilots, system test, reviews. (2) A product, document, or deliverable that
has been formally reviewed, approved, and agreed upon; thereafter serv-
ing as a basis for further development, and to which a change can only be

© 2009 by Taylor & Francis Group, LLC

634 ◾ Glossary

implemented through formal change control procedures. Examples: initial
deployment of a product, evolution of existing products.

Baseline Measurement: A measurement taken for the specific purpose of deter-
mining the initial value of a state.

Benchmark: A test used to measure the relative performance of hardware or soft-
ware products.

Button: On a computer screen, it is the visual equivalent of a button on a
machine.

Capture/Replay: Automated regression testing tools that record and replay soft-
ware functionality to verify that software changes do not adversely affect
any portion of the application already tested.

Capture/Replay Testing: Testing using a capture/replay tool to record interaction
scenarios.

Cascade: A command in applications that automatically organizes all the win-
dows on the screen in a tidy stack.

Cause–Effect Diagram: A tool used to identify possible causes of a problem by
representing the relationship between some effect and its potential cause.

Client/Server: A system architecture in which a client computer cooperates with
a server over a network.

COE: Center of excellence whereby IT organizations improve their testing prac-
tices by centralizing some or all test-related activities.

Compliance Testing: Determines that a product implementation of a particular
implementation specification fulfills all mandatory elements as specified
and that these elements are operable.

Control Chart: A statistical method for differentiating between common and spe-
cial cause variations as demonstrated by a process.

Corrective Action: The practice and procedure for reporting, tracking, and resolv-
ing identified problems both in the software product and the development
process. The resolution provides a final solution to the identified problem.

Corrective Maintenance: The identification and removal of code defects.
CPU: The central processing unit, the brain of the computer.
CRUD: Create, read, update, and delete
Customer: An individual or organization that receives a product.
Database: A collection of information stored in computerized form.
Data-Driven Testing: Framework in which test input and output values are read

from data files.
Defect: A deviation from either business or technical requirements.
Download: To receive information, typically a file, from another computer.
Drag-and-Drop: Perform tasks by using the mouse to drag an icon onto some

other icon.
Dynamic Testing: Testing a program or system through executing one or more

tests.
Emergency Repair: Software repair required immediately.

© 2009 by Taylor & Francis Group, LLC

Glossary ◾ 635

Entrance Criteria: Quantitative and qualitative measures used to evaluate a prod-
uct’s readiness to enter the next phase or stage of development.

Error: A discrepancy between actual values or conditions and those expected.
Exit Criteria: Quantitative and qualitative measures used to evaluate a product’s

acceptance for that specific stage or phase of development.
Exploratory Testing: The tactical pursuit of software faults and defects driven by

challenging assumptions.
Flowchart: A diagram that shows the sequence of steps of a process.
Formal Review: A type of review typically scheduled at the end of each activity

or stage of development to review a component of a deliverable, or in some
cases a complete deliverable, or the software product and its supporting
documentation.

GIGO: Stands for “garbage in, garbage out.” Computers, unlike humans, will
unquestioningly process the most nonsensical input data and produce
nonsensical output.

GUI: Graphical user interface — a user interface in which graphics and characters
are used on screens to communicate with the user.

Histogram: A graphical description of measured values organized according to
the frequency of occurrence.

Hybrid Framework: It is defined by the core data engine, the generic component
functions, and the function libraries.

Icon: A miniature picture used to represent a function.
Impact Analysis: The process of determining which system components are

affected by a change to software or hardware.
Incident Report: A report to document an issue or error arising from the execu-

tion of a test.
Inputs: Products, services, or information needed to make a process work.
Integration Testing: (1) The testing of combinations of individual, unit-tested

pieces of code as they are combined into a complete unit. (2) A testing
event driven by temporal cycles determined before the start of the testing
phase. This test phase is conducted to identify functional problems with
the software product. This is a verification activity.

Intermediate Repair: Software repair before the next formal release, but not
immediately (e.g., in a week or so).

ISO9000: A quality series that comprises a set of five documents developed in
1987 by the International Standards Organization (ISO).

Keyword-Driven Framework: Different screens; the functions and business com-
ponents are specified as keywords in a data table.

Legacy System: Previous application system in production.
Load testing: The practice of modeling the expected usage of the application soft-

ware by simulating the multiple users concurrently.
Maintenance: Tasks associated with the modification or enhancement of produc-

tion software.

© 2009 by Taylor & Francis Group, LLC

636 ◾ Glossary

Management: A team or individual who manages resources.
Management Review and Approval: A management review is the final review of

a deliverable. It is conducted by the project manager with the project spon-
sor to verify the quality of the business aspects of a work product.

Mean: A value derived by adding several items and dividing the sum by the num-
ber of items.

Modifiable Requirements: Requirements and associated information must be
changeable.

Modular Framework: An approach requiring the creation of small, independent
automation scripts and functions that represent modules, sections, and
functions of the application under test.

Necessary Requirements: Requirements that are really necessary as opposed to
being needed.

Network: A system that connects computers together and shares resources.
Nonredundant Requirements: There should not be duplicate requirements as

this causes problems.
PDCA: Plan, Do, Check, and Act.
Perfective Maintenance: Enhancement to software performance, maintainabil-

ity, or understandability.
Performance Testing: Measurements from different perspectives to improve scal-

ability and performance of the application.
PMBOK: Project Management Institute’s Project Management Body of

Knowledge.
Policy: Managerial intents and goals regarding a process or products.
Problem: Any deviation from predefined standards.
Problem Reporting: The method of identifying, tracking, and assigning attri-

butes to problems detected within the software product, deliverables, or
within the development processes.

Procedure: Step-by-step method that is followed to ensure some standard.
Process: Specific activities that must be performed to accomplish a function.
Process Improvement: To change a process to make it develop a product faster,

more economically, or with better quality.
Productivity: Ratio of output to the input of a process using the same unit of

measure.
Project Charter: A living business document that officially recognizes the fund-

ing of a project.
Project Framework: Useful way to unite quality processes with project phases,

and synchronize project quality management with the system, or software,
development approach.

Project Management: The application of knowledge, skills, tools, and techniques
to meet the requirements of a project.

Quality: The totality of features and characteristics of a product or service that
bears on its ability to meet stated or implied needs.

© 2009 by Taylor & Francis Group, LLC

Glossary ◾ 637

Quality Assurance: Defining the level of compliance with requirements and incor-
porating continuous quality improvement into the test processes.

Quality Assurance Evaluation: A type of review performed by the QA orga-
nization to ensure that a project is following good quality management
practices.

Quality Assurance Organization: A permanently established organization or
unit whose primary goal is to review the project and products at various
points to ensure that good quality management practices are being fol-
lowed. Also to provide the testing efforts and all associated deliverables for
testing on supported projects. The QA organization must be independent
of the project team.

Quality Control: Process by which product quality is compared with standards.
Quality Improvement: Changing a process so that the rate of defects is reduced.
Quality Management: The execution of processes and procedures that ensures

quality as an output from the development process.
Quality Planning: Planning the quality approach.
Quality Standards: Planning the quality management approach for every project

includes establishing quality standards.
Regression Testing: Tests used to verify a previously tested system whenever it is

modified.
Release Management: A formal release process for nonemergency corrective, per-

fective, and adaptive projects.
Requirement: A performance standard for an attribute or a function, or the pro-

cess used to verify that a standard has been met.
Reviews: A process or meeting during which a work product, or a set of work

products, is presented to project personnel, project and program manag-
ers, users, customers, sponsors, or other interested parties for comment or
approval.

ROI: Return on investment.
Root Cause Analysis: A methodical process based on quantitative data to identify

the primary cause in which a defect has been introduced into the product.
This typically goes beyond repairing the product affected and establishes
how the process or method allowed the defect to be introduced into the
product to begin with.

Run Chart: A graph of data points in chronological order used to detect trends of
a characteristic being measured.

Scatter Plot: A graph that shows whether there is a relationship between two
factors.

Scope Statement: Contains early estimates of the project resources and costs.
Security Testing: The cornerstone of security rests on confidentiality, integrity,

and availability.
SMC: Simple, medium, and complex test cases

© 2009 by Taylor & Francis Group, LLC

638 ◾ Glossary

SOA Testing: To view the whole business process, and ensure that the pieces of
that process interact properly.

Software Maintenance: All changes, corrections, and enhancements that occur
after an application has been placed into production.

Standard: A measure used to evaluate products or processes and identify
nonconformance.

Static Testing: Testing an artifact through a review process.
Statistical Process Control: The use of statistics and tools to measure a process.
Stress Testing: Load placed on the system is increased beyond the normal expected

usage to test the application’s response.
System Testing: The functional testing of a system to verify that it performs

within the limits of the system requirements and is fit for use.
Terse Requirement: A good requirement must be free of unnecessary verbiage or

information.
Test Coverage: A measure of the portion of a system under test that is actually

tested.
Test Cycle: A set of ordered test conditions that will test a logical and complete

portion of a system.
Test Data generator: A testing tool that creates data that is then read by an auto-

mated test tool and entered into the application.
Test Event: A generic term used to describe one of many levels of a test. Examples:

unit test, integration test, system test.
Test Maturity: The gaps in the current processes relative to the standard set of

processes.
Test Readiness Review: A formal review conducted primarily to evaluate that

all preliminary and entrance criteria have been satisfied and are verifiable
before proceeding into a formal test event.

Test Suite: A collection of test cases that are intended to be used as input to a soft-
ware program to show that it has some specified set of behaviors.

Testable Requirement: A testable requirement must be able to be verified or vali-
dated; that is, it should be possible to prove the intent of the requirement.

Testing Estimation: Takes into consideration the types and costs of the resources
that are required to complete the planned test.

Testing Tool: A manual or automated procedure or software used to test a
system.

Traceability Requirement: A requirement must also be traceable to test cases.
Traceability is key to verifying that requirements have been met.

Understandability Requirement: Understandable requirements are organized in
a manner that facilitates reviews.

Unit Testing: Testing performed on individual programs to verify that they per-
form according to their requirements.

© 2009 by Taylor & Francis Group, LLC

Glossary ◾ 639

Usability Testing: The extent to which product can be used by any specific users
to achieve specified goals with effectiveness, efficiency, and satisfaction in
a specific context of use.

Use Case: A scenario that describes the use of a system by an actor to accomplish
work.

User: The customer who uses a product or process.
User Story: An informal statement of the requirement in simple sentence formats

typically written on 3 × 5 cards.
Validation: A type of evaluation conducted at the end of the development

process to assess the software product’s ability to meet the specified
requirements.

Values: The ideals and customs for which individuals have a positive regard.
Verification: A type of evaluation to determine if the software products at a given

development phase satisfy the stipulated conditions, which were deter-
mined at the start of that phase.

Vision: A statement that describes the desired future state of something.
Volume Testing: A form of performance testing in which the data volume is increased

to an abnormal quantity to observe the behavior of the system.
Walkthrough: A testing technique to analyze a technical work product.
Window: A rectangle on a screen that represents information.

© 2009 by Taylor & Francis Group, LLC

	Cover Page
	Title Page
	Software Testing and Continuous Quality Improvement, Third Edition
	Contents
	Acknowledgments
	Introduction
	About the Author
	Technical Contributors

	SECTION 1: SOFTWARE QUALITY IN PERSPECTIVE
	SECTION 1: SOFTWARE QUALITY IN PERSPECTIVE
	Chapter 1: A Brief History of Software Testing
	Historical Software Testing and Development Parallels
	Extreme Programming
	Evolution of Automated Testing Tools
	Static Capture/Replay Tools (without Scripting Language)
	Static Capture/Replay Tools (with Scripting Language)
	Variable Capture/Replay Tools

	Chapter 2: Quality Assurance Framework
	Chapter 2: Quality Assurance Framework
	What Is Quality?
	Prevention versus Detection
	Verification versus Validation
	Software Quality Assurance
	Components of Quality Assurance
	Software Testing

	Quality Control
	Software Configuration Management
	Elements of Software Configuration Management
	Component Identification
	Version Control
	Configuration Building
	Change Control

	Software Quality Assurance Plan
	Steps to Develop and Implement a Software Quality Assurance Plan
	Step 1: Document the Plan
	Step 2: Obtain Management Acceptance
	Step 3: Obtain Development Acceptance
	Step 4: Plan for Implementation of the SQA Plan
	Step 5: Execute the SQA Plan

	Quality Standards
	Sarbanes–Oxley
	ISO9000
	Capability Maturity Model (CMM)
	Level 1: Initial
	Level 2: Repeatable
	Level 3: Defined
	Level 4: Managed
	Level 5: Optimized

	People CMM
	CMMI
	Malcolm Baldrige National Quality Award

	Notes

	Chapter 3: Overview of Testing Techniques
	Chapter 3: Overview of Testing Techniques
	Black-Box Testing (Functional)
	White-Box Testing (Structural)
	Gray-Box Testing (Functional and Structural)
	Manual versus Automated Testing
	Static versus Dynamic Testing
	Taxonomy of Software Testing Techniques

	Chapter 4: Transforming Requirements to Testable Test Cases
	Chapter 4: Transforming Requirements to Testable Test Cases
	Introduction
	Software Requirements as the Basis of Testing
	Requirement Quality Factors
	Understandable
	Necessary
	Modifiable
	Nonredundant
	Terse
	Testable
	Traceable
	Within Scope

	Numerical Method for Evaluating Requirement Quality
	Process for Creating Test Cases from Good Requirements
	Step 1: Review the Requirements
	Step 2: Write a Test Plan
	Step 3: Identify the Test Suite
	Step 4: Name the Test Cases
	Step 5: Write Test Case Descriptions and Objectives
	Step 6: Create the Test Cases
	Step 7: Review the Test Cases

	Transforming Use Cases to Test Cases
	Step 1: Draw a Use Case Diagram
	Step 2: Write the Detailed Use Case Text
	Step 3: Identify Use Case Scenarios
	Step 4: Generating the Test Cases
	Step 5: Generating Test Data
	Summary

	What to Do When Requirements Are Nonexistent or Poor?
	Ad Hoc Testing
	The Art of Ad Hoc Testing
	Advantages and Disadvantages of Ad Hoc Testing

	Exploratory Testing
	The Art of Exploratory Testing
	Exploratory Testing Process
	Advantages and Disadvantages of Exploratory Testing

	Chapter 5: Quality through Continuous Improvement Process
	Chapter 5: Quality through Continuous Improvement Process
	Contribution of Edward Deming
	Role of Statistical Methods
	Cause-and-Effect Diagram
	Flowchart
	Pareto Chart
	Run Chart
	Histogram
	Scatter Diagram
	Control Chart

	Deming’s 14 Quality Principles
	Point 1: Create Constancy of Purpose
	Point 2: Adopt the New Philosophy
	Point 3: Cease Dependence on Mass Inspection
	Point 4: End the Practice of Awarding Business on Price Tag Alone
	Point 5: Improve Constantly and Ceaselessly the System of Production and Service
	Point 6: Institute Training and Retraining
	Point 7: Institute Leadership
	Point 8: Drive Out Fear
	Point 9: Break Down Barriers between Staff Areas
	Point 10: Eliminate Slogans, Exhortations, and Targets for the Workforce
	Point 11: Eliminate Numerical Goals
	Point 12: Remove Barriers to Pride of Workmanship
	Point 13: Institute a Vigorous Program of Education and Retraining
	Point 14: Take Action to Accomplish the Transformation

	Continuous Improvement through the Plan, Do, Check, Act Process
	Going around the PDCA Circle

	SECTION 2: WATERFALL TESTING REVIEW
	SECTION 2: WATERFALL TESTING REVIEW
	Chapter 6: Overview
	Waterfall Development Methodology
	Continuous Improvement “Phased” Approach
	Psychology of life-Cycle Testing
	Software Testing as a Continuous Iimprovement Process
	The Testing Bible: Software Test Plan
	Major Steps in Developing a Test Plan
	Step 1: Define the Test Objectives
	Step 2: Develop the Test Approach
	Step 3: Define the Test Environment
	Step 4: Develop the Test Specifications
	Step 5: Schedule the Test
	Step 6: Review and Approve the Test Plan

	Components of a Test Plan
	Technical Reviews as a Continuous Improvement Process
	Motivation for Technical Reviews
	Types of Reviews
	Structured Walkthroughs
	Inspections

	Participant Roles
	Steps for an Effective Review
	Step 1: Plan for the Review Process
	Step 2: Schedule the Review
	Step 3: Develop the Review Agenda
	Step 4: Create a Review Report

	Chapter 7: Static Testing the Requirements
	Chapter 7: Static Testing the Requirements
	Testing the Requirements with Ambiguity Reviews
	Testing the Requirements with Technical Reviews
	Inspections and Walkthroughs
	Checklists
	Methodology Checklist

	Requirements Traceability Matrix
	Building the System/Acceptance Test Plan

	Chapter 8: Static Testing the Logical Design
	Chapter 8: Static Testing the Logical Design
	Data Model, Process Model, and the Linkage
	Testing the Logical Design with Technical Reviews
	Refining the System/Acceptance Test Plan

	Chapter 9: Static Testing the Physical Design
	Chapter 9: Static Testing the Physical Design
	Testing the Physical Design with Technical Reviews
	Creating Integration Test Cases
	Methodology for Integration Testing
	Step 1: Identify Unit Interfaces
	Step 2: Reconcile Interfaces for Completeness
	Step 3: Create Integration Test Conditions
	Step 4: Evaluate the Completeness of Integration Test Conditions

	Chapter 10: Static Testing the Program Unit Design
	Chapter 10: Static Testing the Program Unit Design
	Testing the Program Unit Design with Technical Reviews
	Sequence
	Selection
	Iteration

	Creating Unit Test Cases

	Chapter 11: Static Testing and Dynamic Testing the Code
	Chapter 11: Static Testing and Dynamic Testing the Code
	Testing Coding with Technical Reviews
	Executing the Test Plan
	Unit Testing
	Integration Testing
	System Testing
	Acceptance Testing
	Defect Recording

	SECTION 3: SPIRAL (AGILE) SOFTWARE TESTING METHODOLOGY: PLAN, DO, CHECK, ACT
	SECTION 3: SPIRAL (AGILE) SOFTWARE TESTING METHODOLOGY: PLAN, DO, CHECK, ACT
	Chapter 12: Development Methodology Overview
	Limitations of Life-Cycle Development
	The Client/Server Challenge
	Psychology of Client/Server Spiral Testing
	The New School of Thought
	Tester/Developer Perceptions
	Project Goal: Integrate QA and Development
	Iterative/Spiral Development Methodology

	Role of JADs
	Role of Prototyping
	Methodology for Developing Prototypes
	Step 1: Develop the Prototype
	Step 2: Demonstrate Prototypes to Management
	Step 3: Demonstrate Prototype to Users
	Step 4: Revise and Finalize Specifications
	Step 5: Develop the Production System

	Continuous Improvement “Spiral” Testing Approach

	Chapter 13: Information Gathering (Plan)
	Chapter 13: Information Gathering (Plan)
	Step 1: Prepare for the Interview
	Task 1: Identify the Participants
	Task 2: Define the Agenda

	Step 2: Conduct the Interview
	Task 1: Understand the Project
	Task 2: Understand the Project Objectives
	Task 3: Understand the Project Status
	Task 4: Understand the Project Plans
	Task 5: Understand the Project Development Methodology
	Task 6: Identify the High-Level Business Requirements
	Task 7: Perform Risk Analysis
	Computer Risk Analysis
	Method 1: Judgment and Instinct
	Method 2: Dollar Estimation
	Method 3: Identifying and Weighting Risk Attributes

	Step 3: Summarize the Findings
	Task 1: Summarize the Interview
	Task 2: Confirm the Interview Findings

	Chapter 14: Test Planning (Plan)
	Chapter 14: Test Planning (Plan)
	Step 1: Build a Test Plan
	Task 1: Prepare an Introduction
	Task 2: Define the High-Level Functional Requirements (in Scope)
	Task 3: Identify Manual/Automated Test Types
	Task 4: Identify the Test Exit Criteria
	Task 5: Establish Regression Test Strategy
	Task 6: Define the Test Deliverables
	Task 7: Organize the Test Team
	Task 8: Establish a Test Environment
	Task 9: Define the Dependencies
	Task 10: Create a Test Schedule
	Task 11: Select the Test Tools
	Task 12: Establish Defect Recording/Tracking Procedures
	Task 13: Establish Change Request Procedures
	Task 14: Establish Version Control Procedures
	Task 15: Define Configuration Build Procedures
	Task 16: Define Project Issue Resolution Procedures
	Task 17: Establish Reporting Procedures
	Task 18: Define Approval Procedures

	Step 2: Define the Metric Objectives
	Task 1: Define the Metrics
	Task 2: Define the Metric Points

	Step 3: Review/Approve the Plan
	Task 1: Schedule/Conduct the Review
	Task 2: Obtain Approvals

	Chapter 15: Test Case Design (Do)
	Chapter 15: Test Case Design (Do)
	Step 1: Design Function Tests
	Task 1: Refine the Functional Test Requirements
	Task 2: Build a Function/Test Matrix

	Step 2: Design GUI Tests
	Ten Guidelines for Good GUI Design
	Task 1: Identify the Application GUI Components
	Task 2: Define the GUI Tests

	Step 3: Define the System/Acceptance Tests
	Task 1: Identify Potential System Tests
	Task 2: Design System Fragment Tests
	Task 3: Identify Potential Acceptance Tests

	Step 4: Review/Approve Design
	Task 1: Schedule/Prepare for Review
	Task 2: Obtain Approvals

	Chapter 16: Test Development (Do)
	Chapter 16: Test Development (Do)
	Step 1: Develop Test Scripts
	Task 1: Script the Manual/Automated GUI/Function Tests
	Task 2: Script the Manual/Automated System Fragment Tests

	Step 2: Review/Approve Test Development
	Task 1: Schedule/Prepare for Review
	Task 2: Obtain Approvals

	Chapter 17: Test Coverage through Traceability
	Chapter 17: Test Coverage through Traceability
	Use Cases and Traceability
	Summary

	Chapter 18: Test Execution/Evaluation (Do/Check)
	Chapter 18: Test Execution/Evaluation (Do/Check)
	Step 1: Setup and Testing
	Task 1: Regression Test the Manual/Automated Spiral Fixes
	Task 2: Execute the Manual/Automated New Spiral Tests
	Task 3: Document the Spiral Test Defects

	Step 2: Evaluation
	Task 1: Analyze the Metrics

	Step 3: Publish Interim Report
	Task 1: Refine the Test Schedule
	Task 2: Identify Requirement Changes

	Chapter 19: Prepare for the Next Spiral (Act)
	Chapter 19: Prepare for the Next Spiral (Act)
	Step 1: Refine the Tests
	Task 1: Update the Function/GUI Tests
	Task 2: Update the System Fragment Tests
	Task 3: Update the Acceptance Tests

	Step 2: Reassess the Team, Procedures, and Test Environment
	Task 1: Evaluate the Test Team
	Task 2: Review the Test Control Procedures
	Task 3: Update the Test Environment

	Step 3: Publish Interim Test Report
	Task 1: Publish the Metric Graphics
	Test Case Execution Status
	Defect Gap Analysis
	Defect Severity Status
	Test Burnout Tracking

	Chapter 20: Conduct the System Test (Act)
	Chapter 20: Conduct the System Test (Act)
	Step 1: Complete System Test Plan
	Task 1: Finalize the System Test Types
	Task 2: Finalize System Test Schedule
	Task 3: Organize the System Test Team
	Task 4: Establish the System Test Environment
	Task 5: Install the System Test Tools

	Step 2: Complete System Test Cases
	Task 1: Design/Script the Performance Tests
	Monitoring Approach
	Probe Approach
	Test Drivers

	Task 2: Design/Script the Security Tests
	A Security Design Strategy

	Task 3: Design/Script the Volume Tests
	Task 4: Design/Script the Stress Tests
	Task 5: Design/Script the Compatibility Tests
	Task 6: Design/Script the Conversion Tests
	Task 7: Design/Script the Usability Tests
	Task 8: Design/Script the Documentation Tests
	Task 9: Design/Script the Backup Tests
	Task 10: Design/Script the Recovery Tests
	Task 11: Design/Script the Installation Tests
	Task 12: Design/Script Other System Test Types

	Step 3: Review/Approve System Tests
	Task 1: Schedule/Conduct the Review
	Task 2: Obtain Approvals

	Step 4: Execute the System Tests
	Task 1: Regression Test the System Fixes
	Task 2: Execute the New System Tests
	Task 3: Document the System Defects

	Chapter 21: Conduct Acceptance Testing
	Chapter 21: Conduct Acceptance Testing
	Step 1: Complete Acceptance Test Planning
	Task 1: Finalize the Acceptance Test Types
	Task 2: Finalize the Acceptance Test Schedule
	Task 3: Organize the Acceptance Test Team
	Task 4: Establish the Acceptance Test Environment
	Task 5: Install Acceptance Test Tools

	Step 2: Complete Acceptance Test Cases
	Task 1: Identify the System-Level Test Cases
	Task 2: Design/Script Additional Acceptance Tests

	Step 3: Review/Approve Acceptance Test Plan
	Task 1: Schedule/Conduct the Review
	Task 2: Obtain Approvals

	Step 4: Execute the Acceptance Tests
	Task 1: Regression Test the Acceptance Fixes
	Task 2: Execute the New Acceptance Tests
	Task 3: Document the Acceptance Defects

	Chapter 22: Summarize/Report Test Results
	Chapter 22: Summarize/Report Test Results
	Step 1: Perform Data Reduction
	Task 1: Ensure All Tests Were Executed/Resolved
	Task 2: Consolidate Test Defects by Test Number
	Task 3: Post Remaining Defects to a Matrix

	Step 2: Prepare Final Test Report
	Task 1: Prepare the Project Overview
	Task 2: Summarize the Test Activities
	Task 3: Analyze/Create Metric Graphics
	Defects by Function
	Defects by Tester
	Defect Gap Analysis
	Defect Severity Status
	Test Burnout Tracking
	Root Cause Analysis
	Defects by How Found
	Defects by Who Found
	Functions Tested and Not Tested
	System Testing Defect Types
	Acceptance Testing Defect Types

	Task 4: Develop Findings/Recommendations

	Step 3: Review/Approve the Final Test Report
	Task 1: Schedule/Conduct the Review
	Task 2: Obtain Approvals
	Task 3: Publish the Final Test Report

	SECTION 4: PROJECT MANAGEMENT METHODOLOGY
	SECTION 4: PROJECT MANAGEMENT METHODOLOGY
	Chapter 23: The Project Management Framework
	The Project Framework
	Product Quality and Project Quality
	Components of the Project Framework
	The Project Framework and Continuous Quality Improvement
	The Project Framework Phases
	Initiation Phase
	Planning Phase
	Executing, Monitoring, and Controlling Phases
	Implement Phase

	Scoping the Project to Ensure Product Quality
	Product Scope and Project Scope
	The Project Charter
	The Scope Statement
	The Role of the Project Manager in Quality Management
	The Role of the Test Manager in Quality Management
	Analyze the Requirements
	Perform a Gap Analysis
	Avoid Duplication and Repetition
	Define the Test Data
	Validate the Test Environment
	Analyze the Test Results
	Deliver the Quality

	Advice for the Test Manager
	Request Help from Others
	Communicate Issues as They Arise
	Always Update Your Business Knowledge
	Learn the New Testing Technologies and Tools
	Improve the Process
	Create a Knowledge Base

	The Benefits of the Quality Project Management and the Project Framework

	Chapter 24: Project Quality Management
	Chapter 24: Project Quality Management
	Project Quality Management Processes
	Quality Planning
	Identifying the High-Level Project Activities
	Estimating the Test Work Effort
	Test Planning
	Effort Estimation: Model Project
	Quality Standards

	Chapter 25: The Defect Management Process
	Chapter 25: The Defect Management Process
	Quality Control and Defect Management
	Defect Discovery and Classification
	Defect Priority
	Defect Category
	Defect Tracking
	Defect Reporting

	Defect Summary
	Defect Meetings
	Defect Metrics
	Quality Standards

	Chapter 26: Integrated Testing and Development
	Chapter 26: Integrated Testing and Development
	Quality Control and Integrated Testing
	Integrated Testing
	Step 1: Organize the Test Team
	Step 2: Identify the Tasks to Integrate
	Step 3: Customize Test Steps and Tasks
	Step 4: Select Integration Points
	Step 5: Modify the Development Methodology
	Step 6: Test Methodology Training
	Step 7: Incorporate Defect Recording
	The Integrated Team

	Chapter 27: Test Management Constraints
	Chapter 27: Test Management Constraints
	Organizational Architecture
	Traits of a Well-Established Quality Organization
	Division of Responsibilities
	Organizational Relationships
	Using the Project Framework Where No Quality Infrastructure Exists
	Ad Hoc Testing and the Project Framework
	Using a Traceability/Validation Matrix
	Reporting the Progress

	SECTION 5: EMERGING SPECIALIZED AREAS IN TESTING
	SECTION 5: EMERGING SPECIALIZED AREAS IN TESTING
	Chapter 28: Test Process and Automation Assessment
	Test Process Assessment
	Process Evaluation Methodology
	Step 1: Identify the Key Elements
	Step 2: Gather and Analyze the Information
	Step 3: Analyze Test Maturity
	The Requirements Definition Maturity
	Test Strategy Maturity
	Test Effort Estimation Maturity
	Test Design and Execution Maturity
	Regression Testing Maturity
	Test Automation Maturity

	Step 4: Document and Present Findings

	Test Automation Assessment
	Identify the Applications to Automate
	Identify the Best Test Automation Tool
	Test Scripting Approach
	Test Execution Approach
	Test Script Maintenance

	Test Automation Framework
	Basic Features of an Automation Framework
	Define the Folder Structure
	Modularize Scripts/Test Data to Increase Robustness
	Reuse Generic Functions and Application-Specific Function Libraries
	Develop Scripting Guidelines and Review Checklists
	Define Error Handling and Recovery Functions
	Define the Maintenance Process

	Standard Automation Frameworks
	Data-Driven Framework
	Modular Framework

	Keyword-Driven Framework
	Hybrid Framework

	Chapter 29: Nonfunctional Testing
	Chapter 29: Nonfunctional Testing
	Performance Testing
	Load Testing
	Stress Testing
	Volume Testing
	Performance Monitoring
	Performance Testing Approach
	Knowledge Acquisition Process
	Test Development
	Performance Deliverables
	Security Testing
	Step 1: Identifying the Scope of Security Testing
	Step 2: Test Case Generation and Execution

	Types of Security Testing
	Network Scanning
	Purpose
	Tools
	Approach

	Vulnerability Scanning
	Purpose
	Tools
	Approach

	Password Cracking
	Tools

	Log Reviews
	Approach

	File Integrity Checkers
	Purpose
	Tools

	Virus Detectors
	Tools
	Approach

	Penetration Testing
	Purpose
	Approach

	Usability Testing
	Goals of Usability Testing
	Approach and Execution
	Guidelines for Usability Testing
	Accessibility Testing and Section 508

	Compliance Testing

	Chapter 30: SOA Testing
	Chapter 30: SOA Testing
	key Steps of SOA Testing

	Chapter 31: Agile Testing
	Chapter 31: Agile Testing
	Agile User Stories Contrasted to Formal Requirements
	What Is a User Story?
	Agile Planning
	Types of Agile Testing
	Compliance Testing

	Chapter 32: Testing Center of Excellence
	Chapter 32: Testing Center of Excellence
	Industry Best Processes
	Testing Metrics
	Operating Model
	Test Automation Framework
	Continuous Competency Development

	Chapter 33: On-Site/Offshore Model
	Chapter 33: On-Site/Offshore Model
	Step 1: Analysis
	Step 2: Determine the Economic Trade-Offs
	Step 3: Determine the Selection Criteria
	Project Management and Monitoring
	Outsourcing Methodology
	On-Site Activities
	Offshore Activities

	Implementing the On-Site/Offshore Model
	Knowledge Transfer
	Detailed Design
	Milestone-Based Transfer
	Steady State
	Application Management

	Prerequisites
	Relationship Model
	Standards

	Benefits of On-Site/Offshore Methodology
	On-Site/Offshore Model Challenges
	Out of Sight
	Establish Transparency
	Security Considerations
	Project Monitoring
	Management Overhead
	Cultural Differences
	Software Licensing

	Future of the Onshore/Offshore Model

	SECTION 6: MODERN SOFTWARE TESTING TOOLS
	SECTION 6: MODERN SOFTWARE TESTING TOOLS
	Chapter 34: Software Testing Trends
	Automated Capture/Replay Testing Tools
	Test Case Builder Tools
	Necessary and Sufficient Conditions
	Test Data Generation Strategies
	Sampling from Production
	Starting from Scratch
	Seeding the Data
	Generating Data Based on the Database
	A Cutting-Edge Test Case Generator Based on Requirements

	Chapter 35: Taxonomy of Software Testing Tools
	Chapter 35: Taxonomy of Software Testing Tools
	Testing Tool Selection Checklist
	Commercial Vendor Tool Descriptions
	Open-Source Freeware Vendor Tools
	When You Should Consider Test Automation
	When You Should NOT Consider Test Automation

	Chapter 36: Methodology to Evaluate Automated Testing Tools
	Chapter 36: Methodology to Evaluate Automated Testing Tools
	Step 1: Define Your Test Requirements
	Step 2: Set Tool Objectives
	Step 3a: Conduct Selection Activities for Informal Procurement
	Task 1: Develop the Acquisition Plan
	Task 2: Define Selection Criteria
	Task 3: Identify Candidate Tools
	Task 4: Conduct the Candidate Review
	Task 5: Score the Candidates
	Task 6: Select the Tool

	Step 3b: Conduct Selection Activities for Formal Procurement
	Task 1: Develop the Acquisition Plan
	Task 2: Create the Technical Requirements Document
	Task 3: Review Requirements
	Task 4: Generate the Request for Proposal
	Task 5: Solicit Proposals
	Task 6: Perform the Technical Evaluation
	Task 7: Select a Tool Source

	Step 4: Procure the Testing Tool
	Step 5: Create the Evaluation Plan
	Step 6: Create the Tool Manager’s Plan
	Step 7: Create the Training Plan
	Step 8: Receive the Tool
	Step 9: Perform the Acceptance Test
	Step 10: Conduct Orientation
	Step 11: Implement Modifications
	Step 12: Train Tool Users
	Step 13: Use the Tool in the Operating Environment
	Step 14: Write the Evaluation Report
	Step 15: Determine Whether Goals Have Been Met

	Appendix A: Spiral (Agile) Testing Methodology
	APPENDICESS: 7
	Appendix A: Spiral (Agile) Testing Methodology

	Appendix B: Software Quality Assurance Plan
	Appendix B: Software Quality Assurance Plan

	Appendix C: Requirements Specification
	Appendix C: Requirements Specification

	Appendix D: Change Request Form
	Appendix D: Change Request Form

	Appendix E: Test Templates
	Appendix E: Test Templates
	E1: Unit Test Plan
	E2: System/Acceptance Test Plan
	E3: Requirements Traceability Matrix
	E4: Test Plan (Client/Server and Internet Spiral Testing)
	E5: Function/Test Matrix
	E6: GUI Component Test Matrix (Client/Server and Internet Spiral Testing)
	E7: GUI-Based Functional Test Matrix (Client/Server and Internet Spiral Testing)
	E8: Test Case
	E9: Test Case Log
	E10: Test Log Summary Report
	E11: System Summary Report
	E12: Defect Report
	E13: Test Schedule
	E14: Retest Matrix
	E15: Spiral Testing Summary Report (Client/Server and Internet Spiral Testing)
	E16: Minutes of the Meeting
	E17: Test Approvals
	E18: Test Execution Plan
	E19: Test Project Milestones
	E20: PDCA Test Schedule
	E21: Test Strategy
	E22: Clarification Request
	E23: Screen Data Mapping
	E24: Test Condition Versus Test Case
	E25: Project Status Report
	E26: Test Defect Details Report
	E27: Defect Report
	E28: Test Execution Tracking Manager
	E29: Final Test Summary Report
	E30: Test Automation Strategy

	Appendix F: Checklists
	Appendix F: Checklists
	F1: Requirements Phase Defect Checklist
	F2: Logical Design Phase Defect Checklist
	F3: Physical Design Phase Defect Checklist
	F4: Program Unit Design Phase Defect Checklist
	F5: Coding Phase Defect Checklist
	F6: Field Testing Checklist
	F7: Record Testing Checklist
	F8: File Test Checklist
	F9: Error Testing Checklist
	F10: Use Test Checklist
	F11: Search Test Checklist
	F12: Match/Merge Checklist
	F13: Stress Test Checklist
	F14: Attributes Testing Checklist
	F15: States Testing Checklist
	F16: Procedures Testing Checklist
	F17: Control Testing Checklist
	F18: Control Flow Testing Checklist
	F19: Testing Tool Selection Checklist
	F20: Project Information Gathering Checklist
	F21: Impact Analysis Checklist
	F22: Environment Readiness Checklist
	F23: Project Completion Checklist
	F24: Unit Testing Checklist
	F25: Ambiguity Review Checklist
	F26: Architecture Review Checklist
	F27: Data Design Review Checklist
	F28: Functional Specification Review Checklist
	F29: Prototype Review Checklist
	F30: Requirements Review Checklist
	F31: Technical Design Review Checklist
	F32: Test Case Preparation Review Checklist

	Appendix G: Software Testing Techniques
	Appendix G: Software Testing Techniques
	G1: Basis Path Testing
	PROGRAM: FIELD-COUNT

	G2: Black-Box Testing
	Extra Program Logic

	G3: Bottom-Up Testing
	G4: Boundary Value Testing
	Numeric Input Data
	Field Ranges

	Numeric Output Data
	Output Range of Values

	Nonnumeric Input Data
	Tables or Arrays
	Number of Items

	Nonnumeric Output Data
	Tables or Arrays
	Number of Outputs

	GUI

	G5: Branch Coverage Testing
	PROGRAM: FIELD-COUNT

	G6: Branch/Condition Coverage Testing
	PROGRAM: FIELD-COUNT

	G7: Cause-Effect Graphing
	Cause-Effect Methodology
	Specification
	Causes
	Effects

	G8: Condition Coverage
	PROGRAM: FIELD-COUNT

	G9: Crud Testing
	G10: Database Testing
	Database Integrity Testing
	Entity Integrity
	Primary Key Integrity
	Column Key Integrity
	Domain Integrity
	User-Defined Integrity
	Referential Integrity

	Data Modeling Essentials
	What Is a Model?
	Why Do We Create Models?

	Tables: A Definition
	Table Names
	Columns
	Rows
	Order

	Entities: A Definition
	Identification: Primary Key
	Compound Primary Keys
	Null Values
	Identifying Entities
	Entity Classes

	Relationships: A Definition
	Relationship Types
	One-to-One
	One-to-Many
	Many-to-Many
	Multiple Relationships
	Entities versus Relationships

	Attributes: A Definition
	Domain
	Domain Names
	Attributes versus Relationships
	Normalization: What Is It?
	Problems with Unnormalized Entities

	Steps in Normalization
	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Model Refinement
	Entity Subtypes
	A Definition
	Referential Integrity

	Dependency Constraints
	Constraint Rule
	Recursion
	Using the Model in Database Design
	Relational Design

	G11: Decision Tables
	PROGRAM: FIELD-COUNT

	G12: Desk Checking
	G13: Equivalence Partitioning
	Sets of Values
	Numeric Input Data
	Field Ranges

	Numeric Output Data
	Output Range of Values

	Nonnumeric Input Data
	Tables or Arrays
	Number of Items

	Nonnumeric Output Data
	Tables or Arrays
	Number of Outputs

	Steps to Create the Test Cases Using Equivalence Class Partitioning

	G14: Exception Testing
	G15: Free-Form Testing
	G16: Gray-Box Testing
	G17: Histograms
	G18: Inspections
	G19: JADs
	G20: Orthogonal Array Testing
	G21: Pareto Analysis
	G22: Positive and Negative Testing
	G23: Prior Defect History Testing
	G24: Prototyping
	Cyclic Models
	Fourth-Generation Languages and Prototyping
	Iterative Development Accounting
	Evolutionary and Throwaway
	Application Prototyping
	Prototype Systems Development
	Data-Driven Prototyping
	Replacement of the Traditional Life Cycle
	Early-Stage Prototyping
	User Software Engineering

	G25: Random Testing
	G26: Range Testing
	G27: Regression Testing
	G28: Risk-Based Testing
	G29: Run Charts
	G30: Sandwich Testing
	G31: Statement Coverage Testing
	PROGRAM: FIELD-COUNT

	G32: State Transition Testing
	PROGRAM: FIELD-COUNT

	G33: Statistical Profile Testing
	G34: Structured Walkthroughs
	G35: Syntax Testing
	G36: Table Testing
	G37: Thread Testing
	G38: Top-Down Testing
	G39: White-Box Testing

	Bibliography
	Bibliography

	Glossary
	Glossary

