AV 1 B
Software Testing and
Continuous Quality
Improvement

Third Edition

William E. Lewis
Technical Contributors
David Dobbs * Gunasekaran Veeropillai

CRC Press

A e LA LR

Software Testing and
Continuous Quality
Improvement

Third Edition

Software Testing and
Continuous Quality
Improvement

Third Edition

William E. Lewis

Technical Contributors

David Dobbs
Gunasekaran Veerapillai

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN AUERBACH BOOK

© 2009 by Taylor & Francis Group, LLC

Auerbach Publications

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2009 by Taylor & Francis Group, LLC
Auerbach is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10987654321

International Standard Book Number-13: 978-1-4200-8073-5 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher can-
not assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced
in this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Lewis, William E.

Software testing and continuous quality improvement / William E.

Lewis. -- 3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 978-1-4200-8073-5 (alk. paper)

1. Computer software--Testing. 2. Computer software--Quality control. I.
Title.

QA76.76.T48L495 2008
005.1'4--dc22 2008046201

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the Auerbach Web site at
http://www.auerbach-publications.com

© 2009 by Taylor & Francis Group, LLC

http://www.copyright.com
http://www.copyright.com
http://www.copyright.com
http://www.taylorandfrancis.com
http://www.auerbach-publications.com

Contents

Acknowledgmentscoeeeeenenrenseiseinninninninnininininiieiiininisisisisissses xxi
INtrOdUCHION uaeeeeeeeeeieieeeieeeeeierrrrereneneeeeteteeeeeeessssssssssssssssnssssssasesssssssssssssnne xxiii
ADOUL the AULROL «.uuueeeeeeeeeeeeeeeeeeeeeeieeeissrneneseseetereesessessssssssssssssssssssesssssesasses XXV

SECTION 1 SOFTWARE QUALITY IN PERSPECTIVE

1 ABrief History of Software Testingccceveeereresesussssesiseseesesusssssseseaes 3
Historical Software Testing and Development Parallels...........ccccoeeeinie. 6
Extreme Programming.........cccoocveiiiiiiiiiiiiiiiiiiiicciciccn 8
Evolution of Automated Testing Tools.......cccceeiriiiciniininiiiicinccen, 8

Static Capture/Replay Tools (without Scripting Language) 10
Static Capture/Replay Tools (with Scripting Language)..........c......... 10
Variable Capture/Replay Toolscccoveerineineniiinincnccnecn, 10

2 Quality Assurance Frameworkcocecevereeurvcresuncsnssnscsnsscesssscsssssncsenes 13
What Is QUality? ...co.eoveiriniiiiiicrcc e 13
Prevention versus Detection..........coccevuiiviiiiniiniiiiiiiinicccc e 14
Verification versus Validation............ccoeeeineiiiniinneiiincccccce, 15
Software Quality ASSUIANCE.....cuerveiririeiiirieirterecteeeee e 16
Components of Quality ASSUIANCEevveveuerieiriinieininieereeeeeeeeeeeeaeas 17

Software TeSting......oevrverecireiiricenecreereee e 17

Quality Control....coueereiieiieieireeesee e 18

Software Configuration Managementccovveueverrerenenneeeneneennnnen. 19

Elements of Software Configuration Management.................. 20

Software Quality Assurance Plan.......c.coeoiveiininiennineiieneneeeeee 23
Steps to Develop and Implement a Software Quality Assurance

PLAN ¢ttt 23

Step 1: Document the Plan.........ccccoccciiiiiiiinniiiiicne, 23

Step 2: Obtain Management Acceptance.........co.ceeeverveeeruenuenns 25

Step 3: Obtain Development Acceptanceccoevvieviinenene. 25

v

© 2009 by Taylor & Francis Group, LLC

vi m Contents

Step 4: Plan for Implementation of the SQA Plan.................... 26

Step 5: Execute the SQA Plan......ccoeeviveinincinicnecene, 26

Quality Standards......c.coveererieininiiccc e 26
Sarbanes—Oxey......ccoriviiiniiiiiniin e 26
ISO9000.......c o 29
Capability Maturity Model (CMM)c.coveivineinincinnicieeccene 29

Level 1t Tnitial .ooveeeeoiieieineciceee e 30

Level 2: Repeatable......c.covueinieiennicniniicniecineceneceneenenes 31

Level 3: Defined ...c.ooveveiriiicinieiiiniccincceneceecene s 31

Level 4: Managedcccooueiviiiininiiniincccccce 32

Level 5: Optimized......cccovevveeininieinenicinieinecneeeeeee 32

People CMM ..ottt 33
CMMIL.cii et 33
Malcolm Baldrige National Quality Award........coeevverecinecninnennne. 34
INOLES L. 37
3 Overview of Testing Techniques.......cccocvevururuiriririireresnsnssesiscseesesnsnenens 39
Black-Box Testing (Functional)..........cccoceuiiiiniiniiniiee, 39
White-Box Testing (Structural)ccooveeiniiinicciniiiincicccneces 40
Gray-Box Testing (Functional and Structural)......c..ccccvviiniccineinnenne. 41
Manual versus Automated Testing........cccvveueirrererinreerneenineeeneceeenes 41
Static versus Dynamic Testing........cccoeeviviniiiiiniciiiiniiicneccecens 41
Taxonomy of Software Testing Techniques.......coeveeeveececnncnneccnecnnnnes 42
4 Transforming Requirements to Testable Test Cases......ceoererercrcesvsuenens 51
INEEOAUCTION ..ottt 51
Software Requirements as the Basis of Testing.........ccccevvevireccneinenenne. 51
Requirement Quality Factors......coeevivveierinieininiciecineccnecneceeenes 52
Understandable..........coveeeineininiicnneinccnceeeecnesee e 52
INECESSALY . eeuveeutereterteete ettt ettt et sttt et st st sbe et eae e e saeenneeas 53
MoOdiflableeouiieiiiiieeee s 53
Nonredundant......c.coeeeeiieieinineinee e 53
TTEISE ettt ettt b ettt ettt neas 54
Testable......ocuiiiiiiiiiiicc s 54
Traceable ..o 54
WAL SCOPE..euviuietitiieiirieiei ettt 54
Numerical Method for Evaluating Requirement Quality.......ccccvveueeneeee. 54
Process for Creating Test Cases from Good Requirementsc.cccveeneee. 55
Step 1: Review the Requirements.....c.ccvveveerieuceniciennieineniecnnieenees 55

Step 2: Write @ Test Plan....c.ccveeeinieiinieiiniecenicccceeecseiceees 58

Step 3: Identify the Test SUIte . oveirreuiirieiiirieeiricerccere e 58

Step 4: Name the Test Cases.....ocecuvveueirieieninieinirieienseenenieesesieeees 59

Step 5: Write Test Case Descriptions and Objectives..........cccovueuenee 62

© 2009 by Taylor & Francis Group, LLC

Contents ® vii

Step 6: Create the Test Casescouevererieueririereninierininierenerieeneeeeneeene 62
Step 7: Review the Test Cases .c.vvveveereuirinecnnieirinccneceeeenenee 63
Transforming Use Cases to Test Cases.....c.ooveiviecinieiinnenineciineinees 64
Step 1: Draw a Use Case Diagramcccoeecvvevieinincincnencnenennnn 64
Step 2: Write the Detailed Use Case TeXt....coevveverereirenieneneniennn 64
Step 3: Identify Use Case Scenarios.........coeveereeveereueriniercrcnerenennes 66
Step 4: Generating the Test Cases...c.coeeirerecineieneerneeeeneeeees 66
Step 5: Generating Test Data.......ooooooveiiiiiiiii, 68
SUMMATY .ttt 68
What to Do When Requirements Are Nonexistent or Poor?............c......... 68
Ad HOC TESTNG vttt 68
The Art of Ad Hoc Testingccoveveereeeineinencineincene 68
Advantages and Disadvantages of Ad Hoc Testing................... 71
ExXploratory TeStngcccvveveirieuerinieriinieeninieeeereeseeieeseeeeseeneenen 72
The Art of Exploratory Testing.........ccccoceivvririvueieuecciininnnnnes 72
Exploratory Testing Process.......cccveverenuerereriererenrerenenerenennenenes 72
Advantages and Disadvantages of Exploratory Testing............ 73
Quality through Continuous Improvement Processceceeueereererernenne 75
Contribution of Edward Deming..........ccccveivinieinncinniinieinecenenne 75
Role of Statistical Methodscccerieirienieinieieineeeeeeeeee e 76
Cause-and-Effect Diagramccocceeevieivineenneinnccneieeeenee 76
FLOWCRAT ...ttt 76
Pareto Chart.....cccevieueinieieirieciccerie ettt 76
RUN CRaTT it 77
HiStogramcccoiiiiiiiiiiiiiiiiiii s 77
Scatter Diagram........cccoiiiiiiiiiiiiiiiiice 77
Control Chart .. .cciiueeiirieinirieiec ettt 77
Deming’s 14 Quality Principlescoovveeeineenineecneiinececeecennee 77
Point 1: Create Constancy of PUrPOse........ccevverveuerereeerenneereneennnne 77
Point 2: Adopt the New Philosophy.......cccoeeereinnccnnecininccnnen 78
Point 3: Cease Dependence on Mass Inspectionc..cceeveeeruenncncne 78
Point 4: End the Practice of Awarding Business on Price
TaG ALONC . 79
Point 5: Improve Constantly and Ceaselessly the System of
Production and Service.....ccvvueiriereciniiierinieeneieeee e 79
Point 6: Institute Training and Retrainingccccoccevviciinccnnnnee. 79
Point 7: Institute Leadership ... 80
Point 8: Drive Out Fear.......c.cccooooiiiiniiiiiiis 80
Point 9: Break Down Barriers between Staff Areas......c.cccocccevrueucnnee 81
Point 10: Eliminate Slogans, Exhortations, and Targets for the
WOLKEOICE vttt 81
Point 11: Eliminate Numerical Goalscccoeoivercinnecinnccnncnes 81

© 2009 by Taylor & Francis Group, LLC

viii

m Contents

Point 12: Remove Barriers to Pride of Workmanship........................ 82

Point 13: Institute a Vigorous Program of Education and

Retrainingccccociiiiiiiiiiiiiii s 82

Point 14: Take Action to Accomplish the Transformation 82
Continuous Improvement through the Plan, Do, Check, Act Process 83
Going around the PDCA Circleccooveecineioineiineiincceeeeeennee 84

SECTION 2 WATERFALL TESTING REVIEW

6

OVEIVIEW cuveireninennnsnensnessnesnsssesssessnsssesssessssssnsssesssessnsssssssesssesassssesssones 87
Waterfall Development Methodologyccccvvciciniiiiincininiiiiciee, 87
Continuous Improvement “Phased” Approachcccccceiiiniiinnicne 88
Psychology of Life-Cycle TeStingcoveererverininieininieininieinieieenieceneenenes 89
Software Testing as a Continuous Improvement Process........c.cccvveveerunee. 89
The Testing Bible: Software Test Plan....c.cccoeevneenneinnccnnieinnccen 92
Major Steps in Developing a Test Plan.......ccccoeeeineceneenncicnnccnnenne, 93
Step 1: Define the Test ObJectives ..c.coveuiirererinieirnieennieieeeenen 93
Step 2: Develop the Test Approachc.cccveeivencoininciniincinincns 93
Step 3: Define the Test Environment.......ccocceveencininccnienccncnenens 95
Step 4: Develop the Test Specifications.........cocveeererverenerieininieenenen. 95
Step 5: Schedule the Test .ccvueuiirieeririeiirccreeee e 95
Step 6: Review and Approve the Test Plan.........cccovviiiiiiinnne. 95
Components of a Test Plan c....c.ccvveuerinieinineinnicinicneccseccneece e 95
Technical Reviews as a Continuous Improvement Process........cccoveveeeennee 96
Motivation for Technical Reviews.......ccouevecinevivinieccneinnecneceeene, 101
TYPes Of REVIEWS w.uvvviuirieiiirieiieiicineerctreeee et 101
Structured Walkthroughscccoveeinieiiniiinciicceece, 101
TNSPECTIONS ..ttt 102
Participant Roles......ccceiriiiiniiniiiniiicceccc e 103
Steps for an Effective ReVIEWc.covvveuiviiieiniiiiiiiciecrecec e 105
Step 1: Plan for the Review Process......c.coeuevevveuineniceeninieininicenene. 105
Step 2: Schedule the ReViewc..c.cciviiuienieininiciinicciccecceee 105
Step 3: Develop the Review Agendac.coeevevveieenccnnicininccnnee 106
Step 4: Create a Review Report.....ccoveuccreieninicinnccnnicineccnene, 106
Static Testing the Requirements........coeeuereerenreineiesnesnniessesnnsessesneennens 107
Testing the Requirements with Ambiguity Reviews......coccccvvveinnccnnnnee 108
Testing the Requirements with Technical Reviewsc.cocccevncinenccnnnnee 109
Inspections and Walkthroughscccoveciniioniiiniiniccneces 109
CRECKIISTS .ttt 109
Methodology Checklistcovvveiriiieiiiieiniicinececeee, 109
Requirements Traceability Matrix «..c..ccooveveeerenieineniecninccncniecnienienns 110
Building the System/Acceptance Test Plancccccccceviviiininiiicccciinnnne. 111

© 2009 by Taylor & Francis Group, LLC

Contents n

8 Static Testing the Logical Design.......cccevceurrercsunercsuscsesssesessescsnssenens
Data Model, Process Model, and the Linkage.......ccccccccovnniiniiiinninnes
Testing the Logical Design with Technical Reviewsccccoveiniireennnnee
Refining the System/Acceptance Test Plan.....c.cooceevvveeinecnnicccnecnnnnes

9 Static Testing the Physical Design......ccoceuruerierircresnsusnncscsescscsnsnsssnens
Testing the Physical Design with Technical Reviewscccovveineircennnnee
Creating Integration Test Cases.......cceveruereeirenieineneineeineseeeeeneeneas
Methodology for Integration Testing........c.ccccvvvvuvirieieicuiciiiininiiiccee,

Step 1: Identify Unit Interfaces......coceeevevveineneeenencincnecneneene
Step 2: Reconcile Interfaces for Completenessceevvveeereereecnnnnee
Step 3: Create Integration Test Conditions.........cccoeueviiiiiiinnnne.
Step 4: Evaluate the Completeness of Integration Test

COoNAItIONS. c..eiueviiiiiiicttee et

10 Static Testing the Program Unit Design.......cccoeuvurriririccsesnsnssescscaenes
Testing the Program Unit Design with Technical Reviews.............c.........
SEQUENCE...oviiiiiiiiiiii

TS [Tt o3 s R

JEErAtION ...

Creating Unit Test Casesccccuvviviiiiiiiiiiiiiiiiiciiccceee

11 Static Testing and Dynamic Testing the Codecoceurererurrcrcruracnenns
Testing Coding with Technical Reviews.......cccocooeeiviiiiniinnciniinee,
Executing the Test Planccooovveininicinineiiinccnececeseeeenenes
Unit TeSTING ...ttt
Integration TEeSTING ..c..c.evveieirieieirieieeetetee ettt
System TeStNG......cceiiuiiiiiiiiiiiiiicc
Acceptance TeStingccoeviiiiiiiiiiiniiiiiicie e
Defect ReCoOrding.....covevivirieueririeuininieinirieieeiccnnieeneereeseereeseeneeseeneenen

SECTION 3 SPIRAL (AGILE) SOFTWARE TESTING
METHODOLOGY: PLAN, DO, CHECK, ACT

12 Development Methodology OVerview.......ovuvevususnesiscsisesesnsnsnssescscacnes
Limitations of Life-Cycle Developmentccccoeueeiniiincinncinncnne,

The Client/Server Challengecccoovvvueinieiiiniicinicineeeceseeee,
Psychology of Client/Server Spiral Testing.......c.eceevrverecerereninecreneenennes

The New School of Thought.....c.cccvvicinnconiiniccrecee
Tester/Developer Perceptions......c...ceveerereeirienieenenieeneneeeneneenes

Project Goal: Integrate QA and Development.........cccoeevreeucuennnee
Iterative/Spiral Development Methodologyc.ccceeevinieiniirccnnnnee

ROIE Of JADS ..ttt ettt et ettt et et ettt ere et eaeas

Role 0f Prototyping.......ccccceuvieiiiiicuiiiiiiiiiiisiccicicccccessece s

© 2009 by Taylor & Francis Group, LLC

x ®m Contents

13

14

Methodology for Developing Prototypescccoeueueucuiiiiiininininiiicicnnnn. 148
Step 1: Develop the Prototypec.coceveeerirveeeninieiniricieninieeneereeseaene 148
Step 2: Demonstrate Prototypes to Management..............cccceueeenene 149
Step 3: Demonstrate Prototype to USerscccevveverereeveceenenennenn 150
Step 4: Revise and Finalize Specifications.........ccceeveeincnecncnncnne 150
Step 5: Develop the Production Systemc.ccoecevevveenniecinineenennee 151
Continuous Improvement “Spiral” Testing Approach.........cccoecereuennnes 151
Information Gathering (Plan)cocvevveneneiensnesneneesenesensensensnnnnnns 155
Step 1: Prepare for the Interviewc.ccovvevieenincincnieinincncccncens 156
Task 1: Identify the Participantsccccoeveeerenieeneneineneeenene, 156
Task 2: Define the Agenda......ccoveceveeeinnccineccinecineccneeees 156
Step 2: Conduct the INterview .c.coveveeerivieinieicinnicinecneceneeeeneeeeen 156
Task 1: Understand the Project......ccoveernveineccnnccinieccnecenee 158
Task 2: Understand the Project ODbjectivescecerveveinverecererennes 159
Task 3: Understand the Project Statusc.coevveveerieveciniecrcneeenes 160
Task 4: Understand the Project Planscccooviiiiiiiniinnie, 160
Task 5: Understand the Project Development Methodology........... 161
Task 6: Identify the High-Level Business Requirements................. 161
Task 7: Perform Risk Analysis.....c.coccoeerenieinennincnencecenene, 162
Computer Risk Analysis......cccooeveirneinneinneineeneeenees 163
Method 1: Judgment and Instinct «.c.coeveereevcineencccnenccnnenenes 163
Method 2: Dollar Estimationccccceeerererenieneneniecnenenns 163
Method 3: Identifying and Weighting Risk Actributes.......... 164
Step 3: Summarize the Findingscccccocociiiiiiniiiiiiiicce, 165
Task 1: Summarize the Interview........cocoeeveveneniniiniiiieeieee 165
Task 2: Confirm the Interview Findings.........cccocoeuiiieiiiininnnnnnes 165
Test Planning (Plan)cocieeenensensensenseisncsninninsessessesessesessessesesseenes 167
Step 1: Build a Test Plan ...ccovvveiniiiciniiciniicncineeccneiceneeceneeees 168
Task 1: Prepare an Introduction..........cccccciiiiniiiiiiiciciiiiiiiin, 168
Task 2: Define the High-Level Functional Requirements (in
SCOPE) crtiettee e 170
Task 3: Identify Manual/Automated Test Typescccccevveveeenennene. 171
Task 4: Identify the Test Exit Criteria......ccccoeververereneinenercnennene. 171
Task 5: Establish Regression Test Strategycccecevveveiruereccrerennnes 172
Task 6: Define the Test Deliverables.....c.ccoccoeverieinincininncneene, 174
Task 7: Organize the Test Teamccooveeennicineccnicineccnecees 175
Task 8: Establish a Test Environmentcoccoceveeeeneveciniecccnecnnnes 177
Task 9: Define the Dependencies........oceveveinieeenererinieeccneennnes 177
Task 10: Create a Test Schedule.......ccecevuiveoiriniiinicieeee, 178
Task 11: Select the Test TOOLS ..ovevvverieieienieireieeeee e 178
Task 12: Establish Defect Recording/Tracking Procedures............. 182

© 2009 by Taylor & Francis Group, LLC

15

16

17

18

Contents ® xi

Task 13: Establish Change Request Procedurescccccccevvununnes 184
Task 14: Establish Version Control Procedures........c.ccccvereeeruennene. 185
Task 15: Define Configuration Build Procedures.........ccceceevreueannnee 186
Task 16: Define Project Issue Resolution Procedurescccoveueee. 186
Task 17: Establish Reporting Proceduresccccevevecincicinninnes 187
Task 18: Define Approval Proceduresccccvveueerirveriniecncneenne. 187
Step 2: Define the Metric ODJectivescvvveueeernieoiniecrneieinieccnecees 188
Task 1: Define the Metrics....oeevreinineinneineeinecineceneeeen 188
Task 2: Define the Metric PoInts «....coveevvereeirienieeniniecnciecnene 189
Step 3: Review/Approve the Planc.ccoevevinincininiinicncccncnce 194
Task 1: Schedule/Conduct the Review.......ccceerieirerieiriinineneene, 194
Task 2: Obtain Approvals.......cccoveoerreennicineecneeinecereeeees 194
Test Case Design (Do) c.cevueruererenenseninnsinsnesnesuessessessesessesnssnsssssnesnenns 195
Step 1: Design Function Tests.....c.coevveirieeieinenieinienieinenceseeeeieneenns 195
Task 1: Refine the Functional Test Requirements......c.cccccerveueennee 195
Task 2: Build a Function/Test MatrixX......coceceverieenenieeneneeenenen 200
Step 2: Design GUITestsoveueiuiiiiiiiiiiiiiiciciccccce 200
Ten Guidelines for Good GUI Design........cccccveuiiniinncinncnne. 200
Task 1: Identify the Application GUI Components............cccocuueee 202
Task 2: Define the GUT Tests .ceeuerveeeuerienieinienieieseeeseeeesieeenes 202
Step 3: Define the System/Acceptance Testsc.oveervereerereineeeenerenennes 203
Task 1: Identify Potential System Tests....ccccevereeereneeinenncnenene, 203
Task 2: Design System Fragment Testsccoueveiviniciiiiiinncnns 205
Task 3: Identify Potential Acceptance Testscoeveververenirrererennencnes 206
Step 4: Review/Approve Desigh .c.coveueirievirerieininieinineinineceneeneeneens 206
Task 1: Schedule/Prepare for Reviewccoveeeirieeinnrcinincinnnenne. 206
Task 2: Obtain Approvals.....c.cocoevevieenenieiineienee e 206
Test Development (Do).....coeerenenrensensensuisuisnisnessessessessessessessessessessesses 209
Step 1: Develop Test SCrPTs..cveveverrerieirienieineriereteenee e 209
Task 1: Script the Manual/Automated GUI/Function Tests 209
Task 2: Script the Manual/Automated System Fragment Tests 210
Step 2: Review/Approve Test Development.........ocevveeveennieiniecccneenennes 210
Task 1: Schedule/Prepare for Reviewc.coevevveereininicciniecccnecnnes 210
Task 2: Obtain Approvals.....c.ccoecevivieeninciinenieereeeeesee 212
Test Coverage through Traceabilityccocevuiruiruerucsuenenensensensensensennes 213
Use Cases and Traceabilitycocoveevirieininininiiincncceceee 214
SUMMATY coeeiiiiiii e 216
Test Execution/Evaluation (Do/Check)....ccccceeerrrrmmrereeeereereeceeesssesnnns 217
Step 1: Setup and Testing ..c.ccceveivvrieininiciniiiincieerceeee e 217
Task 1: Regression Test the Manual/Automated Spiral Fixes 217

© 2009 by Taylor & Francis Group, LLC

xii

19

20

m Contents

Task 2: Execute the Manual/Automated New Spiral Tests.............. 219

Task 3: Document the Spiral Test Defects......coceeevvenieincnecnennene. 219

Step 2: Evaluationc.ccevuiiiiiiiniiiniiiincenec e 219
Task 1: Analyze the Metrics.....coeovverieerineinenieenencereeeeseene 219

Step 3: Publish Interim Report ...c.coevveevievieenenicinciccneccecncne 220
Task 1: Refine the Test Schedule.......c.cccoiveineneininciiieenee 220

Task 2: Identify Requirement Changes........cccoeeeereverinuerencnerennnnes 221
Prepare for the Next Spiral (Act) .coucevuceseisnensnccseinensnecsecssenssecsneseesnees 223
Step 1: Refine the Tests....cveiiiriiiriniiinieienccccnec e 223
Task 1: Update the Function/GUI Tests.....cccoevveereneeeneneecnenene. 223

Task 2: Update the System Fragment Tests.......ccccevevecinuerecenerennee 225

Task 3: Update the Acceptance Tests....c.covveereereerereinierenenerenenes 225

Step 2: Reassess the Team, Procedures, and Test Environment................ 225
Task 1: Evaluate the Test Team.....c.cooeeeririeiinenieenenecseeeeee 225

Task 2: Review the Test Control Procedures.........cccevvevrveneeennenene. 226

Task 3: Update the Test Environmentccceveuiciiininnnnnnes 227

Step 3: Publish Interim Test Report......cocevecerinicinicnecnincinciccncncns 227
Task 1: Publish the Metric Graphics.....c..cocoevevieenenieiininiccnenee. 227

Test Case Execution Status.......ccccoevevereneveneeveeeneenienennen 227

Defect Gap Analysis......cccovveerereeninieinineinneceeeeneeenes 228

Defect Severity Status....c.ccevereeerieneeneneineecseeecsienes 228

Test Burnout Trackingccccoevveevncinnccnncineccnecenes 228

Conduct the System Test (ACt) ccceerueerrecseisensnecseisenssecseessesssecssesseessees 233
Step 1: Complete System Test Plan ..c..c.covevveerinieinicnieininicincccncnens 233
Task 1: Finalize the System Test Typescccecevevveerencineniccneee, 233

Task 2: Finalize System Test Scheduleccocoveininiininninenne. 235

Task 3: Organize the System Test Team .c..o.ccvveevecinerecineccneennes 235

Task 4: Establish the System Test Environment.......ccccoeeecreuennne. 238

Task 5: Install the System Test TOOLSc.evvrveeinirreinieieinicccreicnee 239

Step 2: Complete System Test Casescoevveerereeinrenieeneneinienieeneneenens 239
Task 1: Design/Script the Performance Tests........ccooeoiveiinninnnes 239
Monitoring Approachcccccvciviiiiincinicinccee 240
Probe Approachcccceveeieininicinicicnc e 241

TSt DIIVELS .ottt 241

Task 2: Design/Script the Security Tests....oecvrverecererecineecinerennnes 242

A Security Design Strategycccevvveverrieineeneennreeneereeneenen. 242

Task 3: Design/Script the Volume Tests.....c.evrvereerererineeccnecnnnes 243

Task 4: Design/Script the Stress Tests...c.covveirereerereriniererereeenees 243

Task 5: Design/Script the Compatibility Tests.........cccceciurinnne. 244

Task 6: Design/Script the Conversion Tests.........coeeeiveeecinininnes 245

Task 7: Design/Script the Usability Tests.......cccoceoiviveinncinnenne. 246

© 2009 by Taylor & Francis Group, LLC

Contents ™ xiii

Task 8: Design/Script the Documentation Tests..........cccccccurennnne. 246

Task 9: Design/Script the Backup Tests......cccccovuviriiicciinininininnnes 247

Task 10: Design/Script the Recovery Testscccccvvvecineecineinnnes 248

Task 11: Design/Script the Installation Testsccocevevivuerecireuinnnes 248

Task 12: Design/Script Other System Test Types.......cccvueveeereuennnee 249

Step 3: Review/Approve System Testsccccovvivueirienieienincineceeneeans 250
Task 1: Schedule/Conduct the Review.......ccecevieoeninieininncneee, 250

Task 2: Obtain Approvals.......cccoeecereecinncoineecnieeineceneceees 250

Step 4: Execute the System Tests......cevrieirieriinnierinieeenieieineceneveneeen 251
Task 1: Regression Test the System Fixescccccoceociiiiniinnnnns 251

Task 2: Execute the New System Tests.....ccccoverveeerenecineneccnennene. 251

Task 3: Document the System Defectsccovevveeereneinineccnennene. 251

21 Conduct Acceptance Testingc.cocesurserccrcrcsessssssssssesecsesssssssssssseseses 253
Step 1: Complete Acceptance Test Planningcccoeveveeenevcnniecrcnecnnnes 253
Task 1: Finalize the Acceptance Test TyPesceecerveveinverercrereennes 253

Task 2: Finalize the Acceptance Test Schedulec..ccccevieveecrieuinnnee 255

Task 3: Organize the Acceptance Test Teamccceevviciirieinnnee 255

Task 4: Establish the Acceptance Test Environment........c.ccccoueu.... 256

Task 5: Install Acceptance Test ToOlS ...coverveeirienieeneniciriiccneee, 256

Step 2: Complete Acceptance Test Casesoeerveveireereirererineeeenenennnes 256
Task 1: Identify the System-Level Test Cases......cccveveeeirveneeenuennene. 257

Task 2: Design/Script Additional Acceptance Testseveeerveuennnne 257

Step 3: Review/Approve Acceptance Test Plan......cccoeeeeneicninccnnecnnnes 257
Task 1: Schedule/Conduct the Review.......ccoceveeererieiiniinincnieee, 257

Task 2: Obtain Approvals.........ccocoiviiiininiiniiinicce, 258

Step 4: Execute the Acceptance Tests......couevererieinienenenincincniecneneenens 258
Task 1: Regression Test the Acceptance Fixesoocecvvueriireuinnnes 258

Task 2: Execute the New Acceptance Tests......coceoevereeereneecnennnne. 259

Task 3: Document the Acceptance Defects.......oecereveiniecccneninnne. 259

22 Summarize/Report Test Resultsccuuiiirenenisnnniriiinisesnsnsnssescscnenes 261
Step 1: Perform Data Reductionccccceuviiiiiiiciciinininiiiiccccccne 261
Task 1: Ensure All Tests Were Executed/Resolved............ccecenneee. 261

Task 2: Consolidate Test Defects by Test Number.........ccccceruenneee. 261

Task 3: Post Remaining Defects to a MatriX.....cccccvveveineereirenennnee 262

Step 2: Prepare Final Test Report.....cccovvveineevcinicciniecinccineccneces 263
Task 1: Prepare the Project Overview ...c.cooeevveevecennrciniecccnecennnes 263

Task 2: Summarize the Test ACHVITIES «.eovevverervereeerierieireieeeieee 263

Task 3: Analyze/Create Metric Graphicsc.coeveereveciniecccnecnnnnee 263
Defects by FURCHON ...cvviiiieiiiniciiiccricccccenes 264

Defects by Tester c..ceeuireiiinerniniieinceeeneeeseceeeeeees 264

Defect Gap Analysis.......cccoeiviniiiincinniiiiccccee 264

© 2009 by Taylor & Francis Group, LLC

xiv ® Contents

Defect Severity Status......couvuevererierenirierinirieininieenesieeseenenens 264

Test Burnout Trackingcccceeevvcinnecinncinecneees 264

Root Cause ANalysis......cceoerereeerienieinenieesenieeseseeceieeenes 266
Defects by How Found.......ccoevininiiininninincncccnce, 266
Defects by Who Foundccccoeiviniinininicicccneee 267
Functions Tested and Not Testedccceevevererieiirenecnenienns 267
System Testing Defect Types......cceevvveivvncinncinncinenne, 268
Acceptance Testing Defect Typesc.eevvveeeererenenieercnevenennen 268

Task 4: Develop Findings/Recommendations............ccccccccceveininnee 269
Step 3: Review/Approve the Final Test Report......cccoeeevevcincnicccncnncnnne 272
Task 1: Schedule/Conduct the Review.......ccocevieeninieiniinecneee, 272
Task 2: Obtain Approvals........cccccoviiiiiiiiinniiiicciies 273
Task 3: Publish the Final Test Report......cocccevevieccrencincnicccnenee, 273

SECTION 4 PROJECT MANAGEMENT METHODOLOGY

23 The Project Management FrameworK.......coceceevueunrnrncrcccsnsnsnsseseacncnes 279
The Project Frameworkcocoveiveeinniccinieiinecnccenecnnecseeeenenee 279
Product Quality and Project Qualitycoceceveneinineininciiciccncene 279
Components of the Project Framework........ccccoovevinineinnccnnccnncnn. 280
The Project Framework and Continuous Quality Improvement.............. 280
The Project Framework Phases.........cccouvviiiiuiiiiiinininiiiccccieies 281

Initiation Phase........cccovieinineiniciccecccec e 281
Planning Phasec..ccevrveirinieennieinecneeeseece e 282
Executing, Monitoring, and Controlling Phases...........cccceeuennnee. 282
Implement Phasecccovveivineenniciniecncccencce e 283
Scoping the Project to Ensure Product Quality........ccccooevviiiiciciiinnnne. 283
Product Scope and Project SCope.....c.covvveirieriiniiicoinieeinieceseeeseeeen 283
The Project CRarter. . c.ccveueirieuirerieiireereeieereeietsee et 284
The Scope STALEMENL......coiiiiiiciiiiiiiiee e 285
The Role of the Project Manager in Quality Management...........c.c.c....... 285
The Role of the Test Manager in Quality Management..........cccccvveuennee. 286
Analyze the Requirementscccocevveeerinieineniennincincnecneneeas 286
Perform a Gap Analysis ..c.c.oceevirveineneinnicineeneceneeeeneeenes 286
Avoid Duplication and Repetitioncccccveiviiiiniiniiciincne, 287
Define the Test Data.....ccooovveiriciniiinciccereeeeeeeese, 287
Validate the Test Environmentccceeeveereveiniecccneeniniececnencnnnes 287
Analyze the Test Results ...c.cocovveiviniiinniiiiicccece, 288
Deliver the Quality....ccoeveerinieiniiniiinecee e 288
Advice for the Test Manager......coccevvvveinnieinineenneinnccneieeneereenenene 288
Request Help from Others......cc.ccveiiininiininicnincicccnenne 288
Communicate Issues as They AriSecccveveeirinieeneneinenecnenenens 288
Always Update Your Business Knowledge.......cccoeerineinncinnenne. 289

© 2009 by Taylor & Francis Group, LLC

24

25

26

27

Contents ®m Xxv

Learn the New Testing Technologies and Tools............ccceueucunenee. 289
ImpProve the ProCess......ceiverueerrieiniereinieieinietcesiei e 289
Create a Knowledge Base.......cccovveinieuicinnicnnciiniccneceeecnenee 289
The Benefits of the Quality Project Management and the Project
Framework......ccociiiiiiiiiiiicc e 290
Project Quality Management......coceensensenseiseisnesnessessessessessessessaesaesns 291
Project Quality Management Processescccoveeivueueinnieincccenenennes 291
Quality Planningcccoovciviniiiiiniiiniiiiiccece e 292
Identifying the High-Level Project Activities........cccvvevecerrreinecrcreenennes 292
Estimating the Test Work Effort......occovveecnierneccneinecrnecenenene 292
Test Planning......c.coveeueinieininieieneerecteeee et 293
Effort Estimation: Model Project.......coceueueinniiiniccineiiccneeenne, 294
Quality Standards.........coeoeeireiiiniriiice e 296
The Defect Management Process.....cooueveereernernessessessesesnsessnnsnsnesnenss 301
Quality Control and Defect Management...........cccceeeinnicciniecinnennnes 301
Defect Discovery and Classification........c.coueveerruerinieecnnieniniecrenieeneees 301
DefeCt PrOTITY ..uvevieeuietirieieiestetet ettt 302
Defect Category...c.cvrreuiirieienirieiieieienteretre ettt seese s aerese e reeaen 303
Defect Tracking.....ccoeivieieininieirineinieicieeceneeeeeee s 303
Defect Reporting.......cccueuiiriiuiiiiicininiiininiciiceerecesececseenes 304
Defect SUMmMATry.......ccooiiiiiiiiiiiiiiiiic e 304
Defect MEETINES. ..veuvvevinirreteirieitteieienteteitnterci ettt sttt saebese s seeeen 305
Defect MELIICS cuvuveveniieviieteieiseeite ettt ettt 305
Quality Standards......coevveieireriiiniic e 306
Integrated Testing and Developmentcoeeeiveereesncsncsnenensensensenennes 309
Quality Control and Integrated Testing.........ccvvvveiruerecireienineeccnieeenes 309
Integrated Testing......ccoeevirueiniiieiiicicc s 309
Step 1: Organize the Test Teamccccoovviviiiiiiiiiiiiiiiccccce 310
Step 2: Identify the Tasks to Integrate......ccoeveerviecinieecnncnneceneceees 310
Step 3: Customize Test Steps and Tasks......eecevvrecinieecnnenneccnecnenes 311
Step 4: Select Integration POINCs.......ceevvveuireereirnieinieeineeineeeneeeees 311
Step 5: Modify the Development Methodologycccovveiniiiinninnes 312
Step 6: Test Methodology Trainingcccocceuiiiiiininniiccccccne, 312
Step 7: Incorporate Defect Recording...........ccccuiiiiiiiiniiiinciiiine 313
The Integrated Teamccoueueririeuininieiininieirieeeneeerevce e 313
Test Management ConStraints......eeueeeseeesssesssnesssnnsnesssnesssesssessasessaes 315
Organizational Architectureccoovveiririeciniiccnicnccrccccrecees 315
Traits of a Well-Established Quality Organizationc..cccevveeereereennnnee 315
Division of Responsibilities.ccueerverieirienieereneinienieenec e 316
Organizational Relationships...........ccoecoiniiiinniiniiiics 317

© 2009 by Taylor & Francis Group, LLC

xvi m Contents

Using the Project Framework Where No Quality Infrastructure Exists... 317

Ad Hoc Testing and the Project Frameworkcccocooiiiiiiiiini, 318
Using a Traceability/ Validation MatriX......cccoeveeinieecneinnecnneinennenene 319
Reporting the Progress.......cooveirreinniecinicnncineecneieeneeeeneeeeen 319

SECTION 5 EMERGING SPECIALIZED AREAS IN TESTING

28 Test Process and Automation ASSESSMENLcceveerseerssessesssssasnssesnssssnss 323
Test Process ASSESSIMENT.....cverririiriririeieeererenrenresre sttt eeennenesrenes 323
Process Evaluation Methodologyccccevvvuiininicciniiinicinccineces 324

Step 1: Identify the Key Elements......cccoceeveinienieenincincnccnenenne 324
Step 2: Gather and Analyze the Informationcoccccccuiiinnnne. 325
Step 3: Analyze Test Maturitycocoeeevenieinienieenencincecnenene 326
The Requirements Definition Maturitycccccoeviviiiniucnnnee. 326
Test Strategy Maturity.......ccooeeveerereeinienieineeeeeeeee e 327
Test Effort Estimation Maturityccccocveveeeneneinenecnieene, 328
Test Design and Execution Maturityc.coceevvvvecrenreeinennenenes 328
Regression Testing Maturity.........ccoeivveveeininiciininieieeenns 329
Test Automation Maturity.....ccecveeverevereneneneereneennennennennes 329
Step 4: Document and Present Findings........cccccveivncinncinnee 330
Test AULOMATION ASSESSINENT . euverreereerereerteerieeteetesitesreebeeeesseesseeaeeane 330
Identify the Applications to Automate..........cceucucuriirinirinicicuennee. 332
Identify the Best Test Automation Tool......c.ccceceeereennieininccnnnee 332
Test Scripting APpProachcoecevveerncennicineeeeneeeneeeereeeees 333
Test Execution Approach........cccovveevercinnicineccineeineccneeeeen 333
Test Script Maintenancecocovveeeeenenecincnieneneeeeeeeeeeene 334
Test Automation Framework........c.cocevveirenieinincineniencncseecee 334
Basic Features of an Automation Framework.......c.ccccccvevicnenncn. 335
Define the Folder Structureccoevveivenecnincininccnencns 335
Modularize Scripts/Test Data to Increase Robustness............ 336
Reuse Generic Functions and Application-Specific
Function Librariesc.cceceeerieieienieneneneneneeeeeeteesieiene 336
Develop Scripting Guidelines and Review Checklists............ 336
Define Error Handling and Recovery Functions 337
Define the Maintenance Process.........coceveeerenieinienecnenenens 337
Standard Automation Frameworksccoccoevivieeninciininicnencne 337
Data-Driven Framework........cccoceveviininiininicincncncncns 338
Modular Framework........ccoeoiveirinininincnincnenccnenens 338
Keyword-Driven Frameworkc.coccovvveneeinincnnincnnnccnenens 339
Hybrid Frameworkccccoviiiiiiiiiiiiiiiiccccceccee 341

29 Nonfunctional TeStingcceceeeerusrsrerieerisesussssssesiseesissssssssssssescacsens 343

Performance Testingcoueueueueuiuiiniiiniiiicieicceeee e 343

© 2009 by Taylor & Francis Group, LLC

30

Contents ™ xvii

Load TeSting......ccovuviiiiiiiiiiiiiiiiiiriccecce e 344
Stress TeStiNg ..veuveuirieeeiirieieeeeer et 344
Volume TeStNE ..veuerveveeirieieirietierietctrtecteie ettt 344
Performance MONtoring......c.cvveueverueverinierenerieininieeneneesseeeeeeseenenens 344
Performance Testing Approachcccovveevereennicinneiennccneeneeenes 344
Knowledge Acquisition ProCess.......cevvrueiriereeirinieciniereinieieineereeneneeeen 345
Test Developmentc..ceveieiriirieirenicceesce e 346
Performance Deliverables.........ccoovviiniiiiininiiniiicccces 350
Security TeStngcooiiuiiiiiiiiiiiiiiiie 351
Step 1: Identifying the Scope of Security Testing.........cccoevvueueennee. 352

Step 2: Test Case Generation and Execution........cccceveevvevveenennennn. 353
Types of Security TeStRZ . ..covvvevirirreriririeirteieereieereeree et 353
Network SCanning.....coceeevveeririeennieinneinneenec et 353
PULPOSE vttt 354

TOOLS vttt 354
APProach.....cccenecuceinieiiicic e 354
Vulnerability Scanning........c.cccceveinieiniccniencccneces 354
PULPOSE .ttt 355

TOOLS o 355

APProach ...c.cueiiicieiiniiiirce e 355

Password Crackingcccccviiiiciiniiiiiiice 355
TOOLS vttt 356

LOg REVIEWS ..ottt 356
APProach .c.coucuceiniciiinieiincinec e 356

File Integrity Checkers....c.covveinnieciniieinieiciniecenccneceeeenenee 356
PULPOSE et 356

TOOLS vt 357

Virus Detectors.ouovviuiiiiiiiiiiiiiiiiiciicicccee e 357
TOOLS o 357

APProach ...cucueiiieieiirieiiecc e 357
Penetration Testing........cccoovveiviiciniiiiniiicce s 357
PUIPOSE .ottt 358

APProach ..c.ucuccinicueeinieiiicirc e 358

Usability TeStNg ..oveveerrereririeiiirieirieieeeeie ettt 358
Goals of Usability TeSting......coceevvevererrreiniereininieineeeneieeneereeneeneeeen 359
Approach and EXecution.......c.oeeevvueuirinneinnieinnecnceneerecnenee 360
Guidelines for Usability Testingcccccveveeirverieereennreireeeenene, 361
Accessibility Testing and Section 508........ccececvveiineicinieinenenene. 361
Compliance Testing.......coouevieirieiiiniiiiiiciireecee s 364
SOA TeSting...ucerurrsersrensressunssensuessnnsnessessssssesssesssessssssesssessnsssssssessassnnes 367
Key Steps of SOA TeStingcociviruiininieininiiiniicinccisceeeeees 368

© 2009 by Taylor & Francis Group, LLC

Xviii

31

32

33

m Contents

Agile TESting..ucivirrerreesrisrisrississisessissessensessessessssssessesssssseseesessessessesseens 371
Agile User Stories Contrasted to Formal Requirementscccoveveuennnee. 371
What Is @ USer SEOry? .c.coveverinieeininieininieinieiecneieeseerce st 372
Agile PIANNING ...oiieiiirieiiiecnee et 372
Types of Agile TEStNG....coveveririeirirreiririctrtetcere ettt 374
Compliance TeStNg....c.covvveueririeuirieieirietetreeeereret ettt 375
Testing Center of Excellencecoueveienuerenenicsenennesnnenncsenesncsnnaenne 377
Industry Best ProCesses....c..eiruerieuirienieiinienieenienietseeeesi et 381
Testing MEtriCscuvvviiiiiiiiiiiiiiiiiiiicc s 381
Operating Modelo.civieininieiicieecreeeeseeeeee e 381
Test Automation Framework........coccevieveoiniiiiniicninieinccc e, 382
Continuous Competency Development.......c.ccevvvveeireereineiecinecccneennnnen 382
On-Site/Offshore Model........ccouiuicriciisensensensenseisensecsncssessesessessessesnes 383
Step 1 ANalysis..c.cueeirieeiieieiririeieeeree ettt 384
Step 2: Determine the Economic Trade-Offs......cccvueviennininiecncnccnnnes 384
Step 3: Determine the Selection Criteria......ccceveveeinrerecineerinieceeneenennes 385
Project Management and Monitoring..........ccccovveeinieiinninncennninnees 385
Outsourcing Methodology........ccoeueirriecinieiiiniiieineeinecneceneeenen 385
On-Site ACHVITIES. ...eveuveiiiiiiciicieeceieeee e 386
OfFShore ACHVITIES c.veveuvveviirieieniireireetecreteereetee et 387
Implementing the On-Site/Offshore Model...........ccccccocuiiiiinininiiiiicnee. 388
Knowledge Transfer......oevvereenneineeinecinecenccneeceeeenenee 388
Detailed Desigi.......ccouvuiuiiniiiniiiciiiiiicice e 388
Milestone-Based Transfercooeverereirnreenniecininrcenneeneeeenenene 388
Steady Statecceeuiriiiiiriiieccc e 389
Application Management........oeeeeereeereereenereinereeneereeneereennenenes 389
PrereqUiSites......ccovuiiviiiiiiiiiiiiiiiii it 389
Relationship Modelcevirieinneiniiincinccnccne e, 389
Standards.....c..eceeiniiiiini e 391
Benefits of On-Site/Offshore Methodology........ceevvveveirnecinieccnecnnes 392
On-Site/Offshore Model Challenges..........cccccocieivinininiiciciinne. 393

OUL Of SIZNT.cviiiiciiiccc e 393

Establish Transparency.......c.cccoeveivnciinicncccncinene, 394

Security Considerations........ccoeeerverieeriereeieneneineneeseneneas 394

Project MONitoringccccoveiiiniiiiiiniiiiiiiiiiiicciecicas 394
Management Overheadc.coccvveinnecnniinecnecnene 394

Cultural Differencescccccoevivivinicicciiiinnccccccenes 394

Software LICensingcceevvveireereennieineeeennieineereerieneennen 394

Future of the Onshore/Offshore Modelccocoviiiiiiiiiiiinniine 394

© 2009 by Taylor & Francis Group, LLC

Contents ® xix

SECTION 6 MODERN SOFTWARE TESTING TOOLS

34

35

36

Software Testing Trends......coceeeeeenrensensensensensnisnessessesesessessessesseenns 399
Automated Capture/Replay Testing Tools ..covvveuerrieinneenniccineccnnee. 399
Test Case Builder Toolseoueeierieiriinieiieieeeec e 400
Necessary and Sufficient Conditions.........eeverveeerinieeninicennieinieccnnee 400
Test Data Generation Strategies..........ccccviviiiiiiiiiiiniiiiiiiiieecnene 401
Sampling from Productionccceveeeininccincinniincieeee, 401
Starting from Scratch......coovveinieciniiiccc e 402
Seeding the Datac.couvveuiireininicicceccce e 402
Generating Data Based on the Database.....c.ococeereinniccininccnnee 403
A Cutting-Edge Test Case Generator Based on Requirements....... 404
Taxonomy of Software Testing Toolscocevververrenreereeruernessesesenenanns 409
Testing Tool Selection Checklist.....c.evvvueirireininieineeiineeneccreeees 409
Commercial Vendor Tool Descriptions........ccovvvueceruereerereninueerenenenennes 410
Open-Source Freeware Vendor Tools......cccoveveirnieoinieicnncnincccnecees 410
When You Should Consider Test AUtomationccceeeevereeerieneeeneenenne. 410
When You Should NOT Consider Test Automationc.ceeeeeruevenense. 428
Methodology to Evaluate Automated Testing Tools.......ccccereereereenenne 431
Step 1: Define Your Test Requirements.ecevveveeinievecnieieniniecrcnenenenes 431
Step 2: Set Tool ODJECtives ...veveuiruerieiirieieiniiictreeeeeeeeeeeeeeeeae 432
Step 3a: Conduct Selection Activities for Informal Procurement............. 432
Task 1: Develop the Acquisition Planc.cccoevveveneneincnccnennene. 432
Task 2: Define Selection Criteria ...c.c.ceeereeueineereiriereineereeneeenes 432
Task 3: Identify Candidate Tools.......ccverueerenieenineinciccnee, 433
Task 4: Conduct the Candidate Review......c.cccevveerinieininecnenee. 433
Task 5: Score the Candidates........cccevueeruereirienieiiieeeeeee 433
Task 6: Select the Tool.....ccceceeirieiiiieeeee e, 434
Step 3b: Conduct Selection Activities for Formal Procurement............... 434
Task 1: Develop the Acquisition Plancccoeeveenineencnincnennn 434
Task 2: Create the Technical Requirements Document................. 434
Task 3: Review Requirements........cceevveuerinveeninieinnneeninieeneenenenes 434
Task 4: Generate the Request for Proposal........ccccovveinncccnnncnne. 434
Task 5: Solicit Proposalscccerveirineennieinieenecereeeeneeees 435
Task 6: Perform the Technical Evaluationcccceveeveeiiinieccnnnnene, 435
Task 7: Select a Tool Source.......cociviriiininiciniiiiiciccceces 435
Step 4: Procure the Testing ToOL......ccoveiriiiiniciinccnceceees 436
Step 5: Create the Evaluation Plan........ccccoeeoiniciniicnniiccneces 436
Step 6: Create the Tool Manager’s Planccccvvveeineicnncnnccenecnnnes 436
Step 7: Create the Training Plancccoveeeveioinncnneccnecncccnecees 437
Step 8: Receive the Tool.....civirieeiniiieiiriieiieiccrictec e 437

© 2009 by Taylor & Francis Group, LLC

xx ® Contents

Step 9: Perform the Acceptance Test.......ecevvrueeeririeriniereinieieinieeereeeees 437
Step 10: Conduct Orientation..........cccvuvueiviriiininiciiniiiinicieeeseenes 437
Step 11: Implement Modificationsceuvveucieiciiiinininniciciccccceae 438
Step 12: Train Tool USEIS ...c.coeoeririerieinieieiniiieiriceecncceseceeeeieeeeas 438
Step 13: Use the Tool in the Operating Environment.........ccoccccevnecnne. 438
Step 14: Write the Evaluation Report.......cocecevevieinienecnincinciccncncns 439
Step 15: Determine Whether Goals Have Been Met.....coeovcvvciccninnnen. 439

SECTION 7 APPENDICES

Appendix A: Spiral (Agile) Testing Methodologyccceuevververuenenenunnnns 443
Appendix B: Software Quality Assurance Plancovuceeieennnccncceisnecncene 453
Appendix C: Requirements SPeCifiCation.....essesesssmmnnnessssssssssssssssssssnnssssse 455
Appendix D: Change Request FOorm......oucucnrenenensensensensensenseinecsncsnesnesnenes 457
Appendix E: Test Templatescoveereireireisuesnesnesenensensensensensensesseessessesseseans 459
Appendix F: ChecKIists c.coiiinrinrenreirensensnisnenncssesenensensensensensesseesaesscsscscenes 493
Appendix G: Software Testing Techniquesccceuvvereerurenernnesecsnsesnennnnes 557
Bibliography......ccoceveineisuinriinininsinsensinsinneieieininisnisisisssiisiisisisssssees 629
GlOSSATY.uuiiireiiinteiciteieeiee et e s s s s e b snene 633

© 2009 by Taylor & Francis Group, LLC

Acknowledgments

I would like to express my sincere gratitude to Carol, my wife, who has demon-
strated loving patience in the preparation of this third edition, and my mother and
father, Joyce and Bill Lewis, whom I will never forget for their support.

I thank John Wyzalek, senior acquisitions editor at Auerbach Publications, for
recognizing the importance of developing a third edition of this book. Gunasekaran
Veerapillai was a technical contributor for “Emerging Specialized Areas in Testing”
and David (Rusty) Dobbs was the technical contributor for “Project Management
Methodology.” Both demonstrated an in-depth knowledge of software testing and
project management, respectively.

Finally, I would like to thank the numerous software testing vendors who pro-
vided descriptions of their tools in Section 6, “Modern Software Testing Tools.”

© 2009 by Taylor & Francis Group, LLC

Introduction

Numerous textbooks address software testing in a structured development envi-
ronment. By “structured” is meant a well-defined development cycle in which dis-
cretely defined steps provide measurable outputs at each step. It is assumed that
software testing activities are based on clearly defined requirements and software
development standards, and that those standards are used to develop and imple-
ment a plan for testing. Unfortunately, this is often not the case. Typically, testing
is performed against changing, or even wrong, requirements.

This text aims to provide a quality framework for the software testing process in
traditional structured as well as unstructured environments. The goal is to provide a
continuous quality improvement approach to promote effective testing methods and
provide tips, techniques, and alternatives from which the user can choose.

The basis of the continuous quality framework stems from Edward Deming’s
quality principles. Deming was the pioneer in quality improvement, which helped
turn Japanese manufacturing around. Deming’s principles are applied to software
testing in the traditional “waterfall” and rapid application “spiral (or agile)” devel-
opment (RAD) environments. The waterfall approach is one in which predefined
sequential steps are followed with clearly defined requirements. In the spiral approach,
these rigid sequential steps may, to varying degrees, be lacking or different.

Section 1, “Software Quality in Perspective,” reviews modern quality assur-
ance principles and best practices. It provides the reader with a historical sketch
of software testing, followed by a description of how to transform requirements to
test cases when there are well-defined or not so well-defined requirements. Basic
software testing techniques are discussed, followed by an introduction to Deming’s
concept of quality through a continuous improvement process. The Plan, Do,
Check, Act (PDCA) quality wheel is applied to the software testing process.

The Plan step of the continuous improvement process starts with a definition of
the test objectives, or what is to be accomplished as a result of testing. The elements
of a test strategy and test plan are described. A test strategy is a concise statement
of how to meet the goals of testing and precedes test plan development. The outline
of a good test plan is provided, including an introduction, the overall plan, testing
requirements, test procedures, and test plan details.

XXiii

© 2009 by Taylor & Francis Group, LLC

xxiv B [ntroduction

The Do step addresses how to design or execute the tests included in the test
plan. A cookbook approach describes how to perform component, integration, and
system acceptance testing in a spiral environment.

The Check step emphasizes the importance of metrics and test reporting. A
test team must formally record the results of tests and relate them to the test plan
and system objectives. A sample test report format is provided, along with several
graphic techniques.

The Act step of the continuous improvement process provides guidelines for
updating test cases and test scripts. In preparation for the next spiral, suggestions
for improving the people, process, and technology dimensions are provided.

Section 2, “Waterfall Testing Review,” reviews the waterfall development meth-
odology and describes how continuous quality improvement can be applied to the
phased approach through technical reviews and software testing. The require-
ments, logical design, physical design, program unit design, and coding phases are
reviewed. The roles of technical reviews and software testing are applied to each.
Finally, the psychology of software testing is discussed.

Section 3, “Spiral Software Testing Methodology,” contrasts the waterfall devel-
opment methodology with the rapid application spiral environment from a techni-
cal and psychological point of view. A spiral testing approach is suggested when the
requirements are rapidly changing. A spiral methodology is provided, and broken
down into parts, steps, and tasks, applying Deming’s continuous quality improve-
ment process in the context of the PDCA quality wheel.

Section 4, “Project Management Methodology,” describes the practices and
methods of software testing by describing basic test management processes and
organizational approaches that achieve project quality. A Project Framework is out-
lined to unite quality processes with project phases, and synchronize project quality
management with the system, or software—the development approach.

Section 5, “Emerging Specialized Areas in Testing,” describes how modern
software testing must view the whole target business holistically, assuring that the
pieces of that business process interact according to customers’ expectations. The
focus of this section is to discuss other forms of nonfunctional testing such as per-
formance, usability, interoperability, etc. Also discussed are how to evaluate soft-
ware testing processes, how to set up an automation framework, steps to implement
Service Orientated Architecture (SOA) testing, the building blocks of a Testing
Center of Excellence (COE), how to test in an Agile development environment, and
how to evaluate on-site versus offshore alternatives.

Section 6, “Modern Software Testing Tools,” describes futuristic software test-
ing tools and trends. Next, a list of up-to-date commercial and open-source free
software tools is provided, followed by guidelines on when to consider and when
not to consider a testing tool. Also provided is a checklist for selecting testing tools,
consisting of a series of questions and responses. A detailed methodology for evalu-
ating testing tools is provided, ranging from the initial test goals through training
and implementation.

© 2009 by Taylor & Francis Group, LLC

About the Author

William E. Lewis holds a B.A. in mathematics and an M.S. in oper-
ations research and has 38 years of experience in the computer indus-
try. Currently, he is the founder, president, and CEO of Smartware
Technologies, Inc., a quality assurance consulting firm that special-
izes in software testing. He is the inventor of SmartTest'™, a patent-
pending software testing tool that creates optimized test cases/data
based upon the requirements (see www.smartwaretechnologies.com
for more information about the author).

He is a certified quality analyst (CQA) and certified software test
engineer (CSTE) sponsored by the Quality Assurance Institute (QAI) of Orlando,
Florida. Over the years, he has presented several papers to conferences. In 2004 he
presented a paper to QADs Annual International Information Technology Quality
Conference, entitled “Cracking the Requirements/Test Barrier.” He also speaks at
meetings of the American Society for Quality and the Association of Information
Technology Practitioners.

Mr. Lewis was a quality assurance manager for CitiGroup where he managed
the testing group; documented all the software testing, quality assurance processes
and procedures; actively participated in the CitiGroup CMM effort; and designed
numerous WinRunner automation scripts.

Mr. Lewis was a senior technology engineer for Technology Builders, Inc., of
Atlanta, where he trained and consulted in the requirements-based testing area,
focusing on leading-edge testing methods and tools.

He was an assistant director with Ernst & Young, LLP, located in Las Colinas,
Texas. He joined E & Y in 1994, authoring the company’s software configuration
management, software testing, and application evolutionary handbooks, and help-
ing to develop the navigator/fusion methodology application improvement route
maps. He was the quality assurance manager for several application development
projects and has extensive experience in test planning, test design, execution, evalu-
ation, reporting, and automated testing. He was also the director of the ISO initia-
tive, which resulted in ISO9000 international certification for Ernst & Young,

XXV

© 2009 by Taylor & Francis Group, LLC

http://www.smartwaretechnologies.com

xxvi B Apout the Author

Lewis also worked for the Saudi Arabian Oil Company (Aramco) in Jeddah,
Saudi Arabia, on an overseas contract assignment as a quality assurance consultant.
His duties included full integration and system testing, and he served on the auto-
mated tool selection committee and made recommendations to management. He
also created software testing standards and procedures.

In 1998 Lewis retired from IBM after 28 years. His jobs included 12 years as a
curriculum/course developer and instructor, and numerous years as a system pro-
grammet/analyst and performance analyst. An overseas assignment included service
in Seoul, Korea, where he was the software engineering curriculum manager for the
Korean Advanced Institute of Science and Technology (KAIST), which is consid-
ered the MIT of higher education in Korea. Another assignment was in Toronto at
IBM Canada’s headquarters, where he was responsible for upgrading the corporate
education program. In addition, he has traveled throughout the United States and
to Rome, Amsterdam, Southampton, Hong Kong, and Sydney, teaching software
development and quality assurance classes with a specialty in software testing,.

After serving in the air force, he worked for Radiation, Inc., a space company in
Melbourne, Florida, on a Nimbus B&D satellite contract as a real-time programmer.

Lewis’s first job was as a real-time programmer for General Electric and the
Kennedy Space Center in Florida. He wrote down-link real-time programs to mon-
itor and feedback Apollo Space Craft telemetry to the up-link computers. His first
professional program was to sample the Apollo hydrogen tanks’ PSIs to trigger the
hydrogen tanks to be emptied during a launch abort.

He has also taught at the university level for 5 years as an adjunct professor,
publishing during that time a five-book series on computer problem solving.

For further information about the training and consulting services provided by
Smartware Technologies, Inc., contact: Blewis@smartwaretechnologies.com.

Technical Contributors

Gunasekaran (Guna) Veerapillai is a Certified Software Quality Analyst (CSQA)
and Project Management Professional (PMP) from PMI USA. After 15 years of
retail banking experience in Canara Bank, India, he moved to IT in 1995, and
has managed the EDP Section at Bangalore. He has been working in various roles
in the testing arena and has turned out several testing projects in the banking
domain for various clients around the globe. He specializes in niche areas such
as test process assessment and automation assessment. He has worked for compa-
nies such as Thinksoft, HCL Technologies, and Covansys. He also completed the
Certified Ethical Hacker certification from EC. He headed the testing division at
the Bangalore unit of Covansys before moving to his current assignment.

Guna heads the Test Automation Practice at Wipro Technologies (www.wipro.
com). This practice carries out niche automation activities including the creation
of required automation frameworks, automation assessment, and tools evaluation,

© 2009 by Taylor & Francis Group, LLC

http://www.wipro.com
http://www.wipro.com
mailto:Blewis@smartwaretechnologies.com

About the Author ® xxvii

apart from executing end-to-end test automation projects. He has contributed
papers and presentations to international software testing conferences conducted
by QAL Swiss Testing Conference, ISQT, QSIT, Stickyminds.com. etc.

He dedicates his contribution in this book to his life partner, Manimala, who
always supported and motivated him to reach the position where he is now. Guna
can be reached at Gunasekaran.veerapillai@wipro.com.

David D. Dobbs, a project management professional (PMP) and a ISTQB Certified
Tester—Foundation Level (CTFL), draws on over 25 years of project management
experience and quality management in the construction, software development,
telecommunication, and information technology industries.

David managed construction projects as partnet/president of Exterior Designs
Landscape for fourteen years. During that time, his completed projects appeared
in the Dallas Morning News and were featured by Dallas—Ft. Worth Home and
Gardens.

David began his career in technology in 1993 as a software test engineer
for Aldus software products before moving to the telecommunication industry.
During his telecommunication career, he progressed from a senior test engineer
for SONET access and transmission craft tools to the senior manager of network
validation infrastructure for Fujitsu Network Communications.

In 2002, David began teaching applied project management in academic and
corporate settings. In the same year, he started developing the Agile Project Office
approach to project management that integrates quality management methodolo-
gies with Project Office architecture.

Since 2004, David has implemented project management methodologies for
two national retail companies. He currently manages the I.S. Project Office for a
major retailer in Irving, Texas.

© 2009 by Taylor & Francis Group, LLC

mailto:Gunasekaran.veerapillai@wipro.com

SOFTWARE
QUALITY IN
PERSPECTIVE

The general view of software testing is that it is an activity to “find bugs.” The
author believes the objectives of software testing are to qualify a software program’s
quality by measuring its attributes and capabilities against expectations and appli-
cable standards. Software testing also provides valuable information to the software
development effort.

Software quality is something everyone wants. Managers know that they want
high quality, software developers know they want to produce a quality product,
and users insist that software work consistently and be reliable.

Many software quality groups develop software quality assurance plans, which
are similar to test plans. However, a software quality assurance plan may include
a variety of activities beyond those included in a test plan. Although the quality
assurance plan encompasses the entire quality gamut, the test plan is one of the
quality control tools of the quality assurance plan.

The objectives of this section are to:

Define quality and its cost.

Differentiate quality prevention from quality detection.

Differentiate verification from validation.

Outline the components of quality assurance.

Outline common testing techniques.

Describe how the continuous improvement process can be instrumental in

achieving quality.
Describe a brief history of software testing.

© 2009 by Taylor & Francis Group, LLC

Chapter 1

A Brief History of
Software Testing

Modern testing tools are becoming more and more advanced and user-friendly. The
following describes how software testing activity has evolved, and is evolving, over
time. This sets the perspective on where automated testing tools are going,.

Software testing is the activity of running a series of dynamic executions of
software programs after the software source code has been developed. It is per-
formed to uncover and correct as many potential errors as possible before delivery
to the customer. As pointed out earlier, software testing is still an “art.” It can
be considered a risk management technique; the quality assurance technique, for
example, represents the last defense to correct deviations from errors in the specifi-
cation, design, or code.

Throughout the history of software development, there have been many defi-
nitions and advances in software testing. Figure 1.1 graphically illustrates these
evolutions. In the 1950s, software testing was defined as “what programmers did to
find bugs in their programs.” In the early 1960s the definition of testing underwent
a revision. Consideration was given to exhaustive testing of the software in terms
of the possible paths through the code, or total enumeration of the possible input
darta variations. It was noted that it was impossible to completely test an applica-
tion because (1) the domain of program inputs is too large, (2) there are too many
possible input paths, and (3) design and specification issues are difficult to test.
Because of the foregoing points, exhaustive testing was discounted and found to be
theoretically impossible.

As software development matured through the 1960s and 1970s, the activity of
software development was referred to as “computer science.” Software testing was

w

© 2009 by Taylor & Francis Group, LLC

4 m Software Testing and Continuous Quality Improvement

Test Advanced Automated
Automation Test Business
Tools Automation Optimization

b

1950 1960 1970 1980 1990 2000
Fix Bugs Exhaustive Prove Provelt Defect Early Internet
Testing It Works Does Not Prevention Test (Agile)
Work & Test Design
Process

Figure 1.1 History of software testing.

defined as “what is done to demonstrate correctness of a program” or as “the process
of establishing confidence that a program or system does what it is supposed to do”
in the early 1970s. A short-lived computer science technique that was proposed dur-
ing the specification, design, and implementation of a software system was software
verification through “correctness proof.” Although this concept was theoretically
promising, in practice it was too time consuming and insufficient. For simple tests,
it was easy to show that the software “works” and prove that it will theoretically
work. However, because most of the software was not tested using this approach, a
large number of defects remained to be discovered during actual implementation.
It was soon concluded that “proof of correctness” was an inefficient method of soft-
ware testing. However, even today there is still a need for correctness demonstra-
tions, such as acceptance testing, as described in various sections of this book.

In the late 1970s it was stated that testing is a process of executing a program
with the intent of finding an error, not proving that it works. The new definition
emphasized that a good test case is one that has a high probability of finding an as-
yet-undiscovered error. A successful test is one that uncovers an as-yet-undiscovered
error. This approach was the exact opposite of that followed up to this point.

The foregoing two definitions of testing (prove that it works versus prove that it
does not work) present a “testing paradox” with two underlying and contradictory
objectives:

1. To give confidence that the product is working well
2. To uncover errors in the software product before its delivery to the customer
(or the next state of development)

If the first objective is to prove that a program works, it was determined that “we
shall subconsciously be steered toward this goal; that is, we shall tend to select test
data that have a low probability of causing the program to fail.”

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ® 5

If the second objective is to uncover errors in the software product, how can
there be confidence that the product is working well, inasmuch as it was just proved
that it is, in fact, not working! Today it has been widely accepted by good testers
that the second objective is more productive than the first objective, for if one
accepts the first one, the tester will subconsciously ignore defects trying to prove
that a program works.

The following good testing principles were proposed:

A necessary part of a test case is a definition of the expected output or result.
Programmers should avoid attempting to test their own programs.

A programming organization should not test its own programs.

Thoroughly inspect the results of each test.

Test cases must be written for invalid and unexpected, as well as valid and
expected, input conditions.

Examining a program to see if it does not do what it is supposed to do is only
half the battle. The other half is seeing whether the program does what it is
not supposed to do.

B Avoid throwaway test cases unless the program is truly a throwaway program.

B Do not plan a testing effort under the tacit assumption that no errors will
be found.

B The probability of the existence of more errors in a section of a program is
proportional to the number of errors already found in that section.

The 1980s saw the definition of testing extended to include defect prevention.
Designing tests is one of the most effective bug prevention techniques known. It
was suggested that a testing methodology was required, specifically, that testing
must include reviews throughout the entire software development life cycle and that
it should be a managed process. Promoted was the importance of testing not just a
program but the requirements, design, code, tests themselves, and the program.
“Testing” traditionally (up until the early 1980s) referred to what was done to
a system once working code was delivered (now often referred to as system testing);
however, testing today is “greater testing,” in which a tester should be involved in
almost every aspect of the software development life cycle. Once code is delivered
to testing, it can be tested and checked, but if anything is wrong, the previous
development phases have to be investigated. If the error was caused by a design
ambiguity, or a programmer oversight, it is simpler to try to find the problems as
soon as they occur, not wait until an actual working product is produced. Studies
have shown that about 50 percent of bugs are created at the requirements (what do
we want the software to do?) or design stages, and these can have a compounding
effect and create more bugs during coding. The earlier a bug or issue is found in the
life cycle, the cheaper it is to fix (by exponential amounts). Rather than test a pro-
gram and look for bugs in it, requirements or designs can be rigorously reviewed.

© 2009 by Taylor & Francis Group, LLC

6 m Software Testing and Continuous Quality Improvement

Unfortunately, even today, many software development organizations believe that
software testing is a back-end activity.

In the mid-1980s, automated testing tools emerged to automate the manual
testing effort to improve the efficiency and quality of the target application. It
was anticipated that the computer could perform more tests of a program than a
human could perform manually, and more reliably. These tools were initially fairly
primitive and did not have advanced scripting language facilities (see the section,
“Evolution of Automated Testing Tools,” later in this chapter for more details).

In the early 1990s the power of early test design was recognized. Testing was
redefined to be “planning, design, building, maintaining, and executing tests and
test environments.” This was a quality assurance perspective of testing that assumed
that good testing is a managed process, a total life-cycle concern with testability.

Also, in the early 1990s, more advanced capture/replay testing tools offered rich
scripting languages and reporting facilities. Test management tools helped manage
all the artifacts from requirements and test design, to test scripts and test defects.
Also, commercially available performance tools arrived to test system performance.
These tools tested stress and load-tested the target system to determine their break-
ing points. This was facilitated by capacity planning,.

Although the concept of a test as a process throughout the entire software
development life cycle has persisted, in the mid-1990s, with the popularity of the
Internet, software was often developed without a specific testing standard model,
making it much more difficult to test. Just as documents could be reviewed without
specifically defining each expected result of each step of the review, so could tests be
performed without explicitly defining everything that had to be tested in advance.
Testing approaches to this problem are known as “agile testing.” The testing tech-
niques include exploratory testing, rapid testing, and risk-based testing.

In the early 2000s Mercury Interactive (now owned by Hewlett-Packard [HP])
introduced an even broader definition of testing when they introduced the con-
cept of business technology optimization (BTO). BTO aligns the IT strategy and
execution with business goals. It helps govern the priorities, people, and processes
of IT. The basic approach is to measure and maximize value across the IT service
delivery life cycle to ensure applications meet quality, performance, and availability
goals. Interactive digital cockpit revealed vital business availability information in
real-time to help IT and business executives prioritize IT operations and maximize
business results. It provided end-to-end visibility into business availability by pre-
senting key business process indicators in real-time, as well as their mapping to the
underlying IT infrastructure.

Historical Software Testing and Development Parallels

In some ways, software testing and automated testing tools are following similar
paths as traditional development. The following is a brief evolution of software

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ®m 7

development and shows how deviations from prior best practices are also being
observed in the software testing process.

The first computers were developed in the 1950s, and FORTRAN was the first
1GL programming language. In the late 1960s, the concept of “structured pro-
gramming” stated that any program can be written using three simple constructs:
simple sequence, if-then-else, and do while statements. There were other prerequi-
sites such as the program being a “proper program” whereby there must exist only
one entry and one exit point. The focus was on the process of creating programs.

In the 1970s the development community focused on design techniques. They
realized that structured programming was not enough to ensure quality—a program
must be designed before it can be coded. Techniques such as Yourdon’s, Myers’, and
Constantine’s structured design and composite design techniques flourished and
were accepted as best practice. The focus still had a process orientation.

The philosophy of structured design was partitioning and organizing the pieces
of a system. By partitioning is meant the division of the problem into smaller sub-
problems, so that each subproblem will eventually correspond to a piece of the
system. Highly interrelated parts of the problem should be in the same piece of the
system; that is, things that belong together should go together. Unrelated parts of
the problem should reside in unrelated pieces of the system; for example, things
that have nothing to do with one another do not belong together.

In the 1980s, it was determined that structured programming and software
design techniques were still not enough: the requirements for the programs must
first be established for the right system to be delivered to the customer. The focus
was on quality that occurs when the customer receives exactly what he or she
wanted in the first place.

Many requirement techniques emerged, such as data flow diagrams (DFDs). An
important part of a DFD is a store, a representation of where the application data will
be stored. The concept of a store motivated practitioners to develop a logical-view rep-
resentation of the data. Previously the focus was on the physical view of data in terms
of the database. The concept of a data model was then created: a simplified descrip-
tion of a real-world system in terms of data, for example, a logical view of data. The
components of this approach included entities, relationships, cardinality, referential
integrity, and normalization. These also created a controversy as to which came first:
the process or data, a chicken-and-egg argument. Prior to the logical representation
of data, the focus was on the processes that interfaced to databases. Proponents of
the logical view of data initially insisted that the data was the first analysis focus
point and then the process. With time, it was agreed that both the process and data
must be considered jointly in defining the requirements of a system.

In the mid-1980s, the concept of information engineering was introduced. It was a
new discipline that led the world into the information age. With this approach, there
is more interest in understanding how information can be stored and represented,
how information can be transmitted through networks in multimedia forms, and
how information can be processed for various services and applications. Analytical

© 2009 by Taylor & Francis Group, LLC

8 m Software Testing and Continuous Quality Improvement

problem-solving techniques, with the help of mathematics and other related theories,
were applied to the engineering design problems. Information engineering stressed
the importance of taking an enterprise view of application development rather than
a specific application. By modeling the entire enterprise in terms of processes, data,
risks, critical success factors, and other dimensions, it was proposed that manage-
ment would be able to manage the enterprise in a more efficient manner.

During this same time frame, fourth-generation computers embraced micro-
processor chip technology and advanced secondary storage at fantastic rates, with
storage devices holding tremendous amounts of data. Software development tech-
niques had vastly improved, and 4GLs made the development process much easier
and faster. Unfortunately, the emphasis on quick turnaround of applications led to
a backward trend of fundamental development techniques to “get the code out” as
quickly as possible. This led to reducing the emphasis on requirement and design
and still persists today in many software development organizations.

Extreme Programming

Extreme programming (XP) is an example of such a trend. XP is an unorthodox
approach to software development, and it has been argued that it has no design
aspects. The extreme programming methodology proposes a radical departure
from commonly accepted software development processes. There are really two XP
rules: (1) Do a Little Design and (2) No Requirements, Just User Stories. Extreme
programming disciples insist that “there really are no rules, just suggestions. XP
methodology calls for small units of design, from ten minutes to half an hour,
done periodically from one day between sessions to a full week between sessions.
Effectively, nothing gets designed until it is time to program it.”

Although most people in the software development business understandably
consider requirements documentation to be vital, XP recommends the creation of
as little documentation as possible. No up-front requirement documentation is cre-
ated in XP, and very little is created in the software development process.

With XP, the developer comes up with test scenarios before she does anything else.
The basic premise behind test-first design is that the test class is written before the real
class; thus, the end purpose of the real class is not simply to fulfill a requirement, but
simply to pass all the tests that are in the test class. The problem with this approach is
that independent testing is needed to find out things about the product the developer
did not think about or was not able to discover during her own testing,.

Evolution of Automated Testing Tools

Test automation started in the mid-1980s with the emergence of automated capture/
replay tools. A capture/replay tool enables testers to record interaction scenarios.

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ® 9

Features

Time

Figure 1.2 Motivation for test automation. (From “Why Automate,” Linda Hayes,
Worksoft, Inc. white paper, 2002, www.worksoft.com. With permission.)

Such tools record every keystroke, mouse movement, and response that was sent
to the screen during the scenario. Later, the tester may replay the recorded scenar-
ios. The capture/replay tool automatically notes any discrepancies in the expected
results. Such tools improved testing efficiency and productivity by reducing manual
testing efforts.

The cost justification for test automation is simple and can be expressed in a
single figure (Figure 1.2). As this figure suggests, over time the number of func-
tional features for a particular application increases owing to changes and improve-
ments to the business operations that use the software. Unfortunately, the number
of people and the amount of time invested in testing each new release cither remain
flat or may even decline. As a result, the test functional coverage steadily decreases,
which increases the risk of failure, translating to potential business losses.

For example, if the development organization adds application enhancements
equal to 10 percent of the existing code, this means that the test effort is now 110
percent as great as it was before. Because no organization budgets more time and
resources for testing than they do for development, it is literally impossible for
testers to keep up.

This is why applications that have been in production for years often experience
failures. When test resources and time cannot keep pace, decisions must be made to
omit the testing of some functional features. Typically, the newest features are tar-
geted because the oldest ones are assumed to still work. However, because changes
in one area often have an unintended impact on other areas, this assumption may
not be true. Ironically, the greatest risk is in the existing features, not the new ones,
for the simple reason that they are already being used.

Test automation is the only way to resolve this dilemma. By continually adding
new tests for new features to a library of automated tests for existing features, the
test library can track the application functionality.

The cost of failure is also on the rise. Whereas in past decades software was
primarily found in back-office applications, today software is a competitive
weapon that differentiates many companies from their competitors and forms the

© 2009 by Taylor & Francis Group, LLC

http://www.worksoft.com

10 m Software Testing and Continuous Quality Improvement

backbone of critical operations. Examples abound of errors in the tens or hun-
dreds of millions—even billions—of dollars in losses due to undetected software
errors. Exacerbating the increasing risk is the decreasing cycle times. Product cycles
have compressed from years into months, weeks, or even days. In these tight time
frames, it is virtually impossible to achieve acceptable functional test coverage with
manual testing.

Capture/replay automated tools have undergone a series of staged improve-
ments. The evolutionary improvements are described in the following sections.

Static Capture/Replay Tools (without Scripting Language)

With these early tools, tests were performed manually and the inputs and outputs
were captured in the background. During subsequent automated playback, the
script repeated the same sequence of actions to apply the inputs and compare the
actual responses to the captured results. Differences were reported as errors. The
GUI menus, radio buttons, list boxes, and text were stored in the script. With chis
approach the flexibility of changes to the GUI was limited. The scripts resulting
from this method contained hard-coded values that had to change if anything at all
changed in the application. The costs associated with maintaining such scripts were
astronomical, and unacceptable. These scripts were not reliable even if the applica-
tion had not changed, and often failed on replay (pop-up windows, messages, and
other “surprises” that did not happen when the test was recorded could occur). If
the tester made an error entering data, the test had to be rerecorded. If the applica-
tion changed, the test had to be rerecorded.

Static Capture/Replay Tools (with Scripting Language)

The next generation of automated testing tools introduced scripting languages.
Now the test script was a program. Scripting languages were needed to handle
conditions, exceptions, and the increased complexity of software. Automated script
development, to be effective, had to be subject to the same rules and standards that
were applied to software development. Making effective use of any automated test
tool required at least one trained, technical person—in other words, a programmer.

Variable Capture/Replay Tools

The next generation of automated testing tools introduced added variable test data
to be used in conjunction with the capture/replay features. The difference between
static capture/replay and variable is that in the former case the inputs and outputs
are fixed, whereas in the latter the inputs and outputs are variable. This is accom-
plished by performing the testing manually, and then replacing the captured inputs
and expected outputs with variables whose corresponding values are stored in data
files external to the script. Variable capture/replay is available from most testing

© 2009 by Taylor & Francis Group, LLC

A Brief History of Software Testing ®m 11

tools that use a script language with variable data capability. Variable capture/replay
and extended methodologies reduce the risk of not performing regression testing on
existing features, improving the productivity of the testing process.

However, the problem with variable capture/replay tools is that they still require
a scripting language that needs to be programmed. However, just as development
programming techniques improved, new scripting techniques emerged.

The following are four popular techniques:

B Data-driven: The data-driven approach uses input and output values that are
read from data files (such CVS files, Excel files, text files, etc.) to drive the tests.
This approach to testing with variable data re-emphasizes the criticality of
addressing both process and data as discussed in the “Historical Software Testing
and Development Parallels” section. It is necessary to focus on the test scripts
AND test automation data, i.e., development data modeling. Unfortunately,
the creation of test automated data is often a challenge. The creation of test data
from the requirements (if they exist) is a manual and “intuitive” process. In the
future, futuristic tools such as Smartwave Technologies’ “Smart Test,” a test data
generator tool, solves the problem by scientifically generating intelligent test data
that can be imported into automated testing tools as variable data (see Chapter
34, “Software Testing Trends,” for more details).

B Modular: The modular approach requires the creation of small, independent
automation scripts and functions that represent modules, sections, and func-
tions of the application under test.

B Keyword: The keyword-driven approach is one in which the different screens,
functions, and business components are specified as keywords in a data table.
The test data and the actions to be performed are scripted with the test auto-
mation tool.

B Hybrid: The hybrid is a combination of all of the foregoing techniques, inte-
grating from their strengths and trying to mitigate their weaknesses. It is
defined by the core data engine, the generic component functions, and the
function libraries. Whereas the function libraries provide generic routines
useful even outside the context of a keyword-driven framework, the core
engine and component functions are highly dependent on the existence of
all three elements.

(See the section, “Test Automation Framework,” in Chapter 28 for more details of
each technique.)

© 2009 by Taylor & Francis Group, LLC

Chapter 2

Quality Assurance
Framework

What Is Quality?

In Webster’s dictionary, quality is defined as “the essential character of something,
an inherent or distinguishing character, degree, or grade of excellence.” If you look
at the computer literature, you will see that there are two generally accepted mean-
ings of quality. The first is that quality means “meeting requirements.” With this
definition, to have a quality product, the requirements must be measurable, and the
product’s requirements will either be met or not met. With this meaning, quality is
a binary state; that is, a product is either a quality product or it is not. The require-
ments may be complete or they may be simple, but as long as they are measurable, it
can be determined whether quality requirements have or have not been met. This is
the producer’s view of quality as meeting the producer’s requirements or specifica-
tions. Meeting the specifications becomes an end in itself.

Another definition of quality, the customer’s, is the one we use. With this defi-
nition, the customer defines quality as to whether the product or service does what
the customer needs. Another way of wording it is “fit for use.” There should also be
a description of the purpose of the product, typically documented in a customer’s
“requirements specification” (see Appendix C, “Requirements Specification,” for
more details). The requirements are the most important document, and the qual-
ity system revolves around it. In addition, quality attributes are described in the
customer’s requirements specification. Examples include usability, the relative ease
with which a user communicates with the application; portability, the capability

13

© 2009 by Taylor & Francis Group, LLC

14 ®m Software Testing and Continuous Quality Improvement

of the system to be executed across a diverse range of hardware architectures; and
reusability, the ability to transfer software components constructed in one software
system into another.

Everyone is committed to quality; however, the following show some of the confus-
ing ideas shared by many individuals that inhibit achieving a quality commitment:

B Quality requires a commitment, particularly from top management. Close
cooperation between management and staff is required to make it happen.

B Many individuals believe that defect-free products and services are impos-
sible, and accept certain levels of defects as normal and acceptable.

B Quality is frequently associated with cost, meaning that high quality equals high
cost. This is a confusion between quality of design and quality of conformance.

B Quality demands requirement specifications in sufficient detail that the
products can be quantitatively measured against those specifications. Many
organizations are not capable or willing to expend the effort to produce speci-
fications at the level of detail required.

B Technical personnel often believe that standards stifle their creativity, and
thus do not abide by standards compliance. However, to ensure quality, well-
defined standards and procedures must be followed.

Prevention versus Detection

Quality cannot be achieved by assessing an already completed product. The aim,
therefore, is to prevent quality defects or deficiencies in the first place, and to make
the products assessable by quality assurance measures. Some quality assurance
measures include structuring the development process with a software development
standard and supporting the development process with methods, techniques, and
tools. The undetected bugs in the software that caused millions of losses to busi-
ness have necessitated the growth of independent testing, which is performed by a
company other than the developers of the system.

In addition to product assessments, process assessments are essential to a qual-
ity management program. Examples include documentation of coding standards,
prescription and use of standards, methods, and tools, procedures for data backup,
test methodology, change management, defect documentation, and reconciliation.

Quality management decreases production costs because the sooner a defect
is located and corrected, the less costly it will be in the long run. With the advent
of automated testing tools, although the initial investment can be substantial, the
long-term result will be higher-quality products and reduced maintenance costs.

The total cost of effective quality management is the sum of four component
costs: prevention, inspection, internal failure, and external failure. Prevention
costs consist of actions taken to prevent defects from occurring in the first place.
Inspection costs consist of measuring, evaluating, and auditing products or services

© 2009 by Taylor & Francis Group, LLC

Quality Assurance framework ® 15

for conformance to standards and specifications. Internal failure costs are those
incurred in fixing defective products before they are delivered. External failure
costs consist of the costs of defects discovered after the product has been released.
The latter can be devastating because they may damage the organization’s reputa-
tion or result in the loss of future sales.

The greatest payback is with prevention. Increasing the emphasis on prevention
costs reduces the number of defects that go to the customer undetected, improves
product quality, and reduces the cost of production and maintenance.

Verification versus Validation

Verification is proving that a product meets the requirements specified during
previous activities carried out correctly throughout the development life cycle.
Validation confirms that the system meets the customer’s requirements at the end
of the life cycle. It is a proof that the product meets the expectations of the users,
and it ensures that the executable system performs as specified. The creation of
the test product is much more closely related to validation than to verification.
Traditionally, software testing has been considered a validation process, that is, a
life-cycle phase. After programming is completed, the system is validated or tested
to determine its functional and operational performance.

When verification is incorporated into testing, testing occurs throughout the
development life cycle. For best results, it is good practice to combine verification with
validation in the testing process. Verification includes systematic procedures of review,
analysis, and testing, employed throughout the software development life cycle, begin-
ning with the software requirements phase and continuing through the coding phase.
Verification ensures the quality of software production and maintenance. In addi-
tion, verification imposes such an organized, systematic development practice that the
resulting program can be easily understood and evaluated by an independent party.

Verification emerged about 20 years ago as a result of the aerospace industry’s
need for extremely reliable software in systems in which an error in a program
could cause mission failure and result in enormous time and financial setbacks, or
even life-threatening situations. The concept of verification includes two funda-
mental criteria: the software must adequately and correctly perform all intended
functions, and the software must not perform any function that either by itself or
in combination with other functions can degrade the performance of the entire
system. The overall goal of verification is to ensure that each software product
developed throughout the software life cycle meets the customer’s needs and objec-
tives as specified in the software requirements document.

Verification also establishes tractability between the various sections of the soft-
ware documentation and the associated parts of the requirements specification. A
comprehensive verification effort ensures that all software performance and quality
requirements in the specification are adequately tested and that the test results can

© 2009 by Taylor & Francis Group, LLC

16 m Software Testing and Continuous Quality Improvement

be repeated after changes are installed. Verification is a “continuous improvement
process” and has no definite termination. It should be used throughout the system
life cycle to maintain configuration and operational integrity.

Verification ensures that the software functions as intended and has the required
actributes (e.g., portability), and increases the chances that the software will contain
few errors (i.e., an acceptable number in the final product). It provides a method
for closely monitoring the software development project and provides management
with a detailed status of the project at any point in time. When verification pro-
cedures are used, management can be assured that the developers have followed a
formal, sequential, traceable software development process, with a minimum set of
activities to enhance the quality of the system.

One criticism of verification is that it increases software development costs con-
siderably. When the cost of software throughout the total life cycle from inception
to the final abandonment of the system is considered, however, verification actually
reduces the overall cost of the software. With an effective verification program,
there is typically a four-to-one reduction in defects in the installed system. Because
error corrections can cost 20 to 100 times more during operations and maintenance
than during design, overall savings far outweigh the initial extra expense.

Software Quality Assurance

A formal definition of software quality assurance is that it is the systematic activi-
ties providing evidence of the fitness for use of the total software product. Software
quality assurance is achieved through the use of established guidelines for quality
control to ensure the integrity and long life of software. The relationships between
quality assurance, quality control, the auditing function, and software testing are
often confused.

Quality assurance is the set of support activities needed to provide adequate
confidence that processes are established and continuously improved to ensure
products that meet specifications and are fit for use. Quality control is the process
by which product quality is compared with applicable standards and action taken
when nonconformance is detected. Auditing is the inspection/assessment activity
that verifies compliance with plans, policies, and procedures.

Software quality assurance is a planned effort to ensure that a software product
fulfills these criteria and has additional attributes specific to the project, for exam-
ple, portability, efficiency, reusability, and flexibility. It is the collection of activities
and functions used to monitor and control a software project so that specific objec-
tives are achieved with the desired level of confidence. It is not the sole responsibil-
ity of the software quality assurance group, but is determined by the consensus of
the project manager, project leader, project personnel, and users.

Quality assurance is the function responsible for managing quality. The word
assurance means that if the processes are followed, management can be assured of

© 2009 by Taylor & Francis Group, LLC

Quality Assurance framework ® 17

product quality. Quality assurance is a catalytic function that should encourage
quality attitudes and discipline on the part of management and workers. Successful
quality assurance managers know how to make people quality conscious and to make
them recognize the benefits of quality to themselves and to the organization.

The objectives of software quality are typically achieved by following a software
quality assurance plan that states the methods the project will employ to ensure that
the documents or products produced and reviewed at each milestone are of high
quality. Such an explicit approach ensures that all steps have been taken to achieve
software quality and provides management with documentation of those actions. The
plan states the criteria by which quality activities can be monitored rather than setting
impossible goals, such as no software defects or 100 percent reliable software.

Software quality assurance is a strategy for risk management. It exists because soft-
ware quality is typically costly and should be incorporated into the formal risk man-
agement of a project. Some examples of poor software quality include the following:

B Delivered software frequently fails.

B Consequences of system failure are unacceptable, from financial to life-
threatening scenarios.

B Systems are often not available for their intended purpose.

B System enhancements are often very costly.

B Costs of detecting and removing defects are excessive.

Although most quality risks are related to defects, this only tells part of the story. A
defect is a failure to comply with a requirement. If the requirements are inadequate
or even incorrect, the risks of defects are more pervasive. The result is too many
built-in defects and products that are not verifiable. Some risk management strate-
gies and techniques include software testing, technical reviews, peer reviews, and
compliance verification.

Components of Quality Assurance

Most software quality assurance activities can be categorized into software test-
ing (that is, verification and validation), software configuration management, and
quality control. However, the success of a software quality assurance program also
depends on a coherent collection of standards, practices, conventions, and specifi-
cations, as shown in Figure 2.1.

Software Testing

Software testing is a popular risk management strategy. It is used to verify that
functional requirements were met. The limitation of this approach, however, is that
by the time testing occurs, it is too late to build quality into the product. Tests

© 2009 by Taylor & Francis Group, LLC

18 m Software Testing and Continuous Quality Improvement

Software Quality Assurance

SOON_ LN
[Software \ /' Quality \
\ Testing Control /

N / A4

Standards / N’rocedures

/

/ Software \
| Configuration |

\'\Management/J

e g mar

Conventions Specifications

Figure 2.1 Quality assurance components.

are only as good as the test cases, but they can be inspected to ensure that all the
requirements are tested across all possible combinations of inputs and system states.
However, not all defects are discovered during testing. Software testing includes
the activities outlined in this text, including verification and validation activities.
In many organizations, these activities, or their supervision, are included within the
charter for the software quality assurance function. The extent to which personnel
independent of design and coding should participate in software quality assurance
activities is a matter of institutional, organizational, and project policy.

The major purpose of verification and validation activities is to ensure that soft-
ware design, code, and documentation meet all the requirements imposed on them.
Examples of requirements include user requirements; specifications derived from
and designed to meet user requirements; code review and inspection criteria; test
requirements at the modular, subsystem, and integrated software levels; and accep-
tance testing of the code after it has been fully integrated with hardware.

During software design and implementation, verification helps determine
whether the products of one phase of the software development life cycle fulfill the
requirements established during the previous phase. The verification effort takes less
time and is less complex when conducted throughout the development process.

Quality Control

Quality control is defined as the processes and methods used to monitor work and
observe whether requirements are met. It focuses on reviews and removal of defects
before shipment of products. Quality control should be the responsibility of the orga-
nizational unit producing the product. It is possible to have the same group that
builds the product perform the quality control function, or to establish a quality con-
trol group or department within the organizational unit that develops the product.

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ® 19

Quality control consists of well-defined checks on a product that are specified in
the product quality assurance plan. For software products, quality control typically
includes specification reviews, inspections of code and documents, and checks for
user deliverables. Usually, document and product inspections are conducted at each
life-cycle milestone to demonstrate that the items produced satisfy the criteria spec-
ified by the software quality assurance plan. These criteria are normally provided
in the requirements specifications, conceptual and detailed design documents, and
test plans. The documents given to users are the requirement specifications, design
documentation, results from the user acceptance test, the software code, user guide,
and the operations and maintenance guide. Additional documents are specified in
the software quality assurance plan.

Quality control can be provided by various sources. For small projects, the project
personnel’s peer group or the department’s software quality coordinator can inspect
the documents. On large projects, a configuration control board may be responsible
for quality control. The board may include the users or a user representative, a mem-
ber of the software quality assurance department, and the project leader.

Inspections are traditional functions of quality control, that is, independent
examinations to assess compliance with some stated criteria. Peers and subject matter
experts review specifications and engineering work products to identify defects and
suggest improvements. They are used to examine the software project for adherence
to the written project rules at a project’s milestones and at other times during the
project’s life cycle as deemed necessary by the project leader or the software quality
assurance personnel. An inspection may be a detailed checklist for assessing compli-
ance or a brief checklist to determine the existence of such deliverables as documen-
tation. A report stating the purpose of the inspection and the deficiencies found goes
to the project supervisor, project leader, and project personnel for action.

Responsibility for inspections is stated in the software quality assurance plan.
For small projects, the project leader or the department’s quality coordinator can
perform the inspections. For large projects, a member of the software quality assur-
ance group may lead an inspection performed by an audit team, which is similar
to the configuration control board mentioned previously. Following the inspection,
project personnel are assigned to correct the problems on a specific schedule.

Quality control is designed to detect and correct defects, whereas quality assur-
ance is oriented toward preventing them. Detection implies flaws in the processes
that are supposed to produce defect-free products and services. Quality assurance is
a managerial function that prevents problems by heading them off, and by advising
restraint and redirection.

Software Configuration Management

Software configuration management is concerned with labeling, tracking, and control-
ling changes in the software elements of a system. It controls the evolution of a software
system by managing versions of its software components and their relationships.

© 2009 by Taylor & Francis Group, LLC

20 m Software Testing and Continuous Quality Improvement

The purpose of software configuration management is to identify all the inter-
related components of software and to control their evolution throughout the vari-
ous life-cycle phases. Software configuration management is a discipline that can
be applied to activities including software development, document control, prob-
lem tracking, change control, and maintenance. It can provide high cost savings in
software reusability because each software component and its relationship to other
software components have been defined.

Software configuration management consists of activities that ensure that
design and code are defined and cannot be changed without a review of the effect
of the change itself and its documentation. The purpose of configuration manage-
ment is to control code and its associated documentation so that final code and its
description are consistent and represent those items that were actually reviewed and
tested. Thus, spurious, last-minute software changes are eliminated.

For concurrent software development projects, software configuration manage-
ment can have considerable benefits. It can organize the software under develop-
ment and minimize the probability of inadvertent changes. Software configuration
management has a stabilizing effect on all software when there is a great deal of
change activity or a considerable risk of selecting the wrong software components.

Elements of Software Configuration Management

Software configuration management identifies a system configuration to systemati-
cally control changes, maintain integrity, and enforce tractability of the configu-
ration throughout its life cycle. Components to be controlled include planning,
analysis, and design documents, source code, executable code, utilities, job control
language (JCL), test plans, test scripts, test cases, and development reports. The
software configuration process typically consists of four elements: software compo-
nent identification, software version control, configuration building, and software
change control, as shown in Figure 2.2.

Component Identification

A basic software configuration management activity is the identification of the
software components that make up a deliverable at each point of its development.
Software configuration management provides guidelines to identify and name soft-
ware baselines, software components, and software configurations.

Software components go through a series of changes. To manage the develop-
ment process, one must establish methods and name standards for uniquely iden-
tifying each revision. A simple way to name component revisions is to use a series
of discrete digits. The first integer could refer to a software component’s external
release number. The second integer could represent the internal software develop-
ment release number. The transition from version number 2.9 to 3.1 would indi-
cate that a new external release, 3, has occurred. The software component version

© 2009 by Taylor & Francis Group, LLC

Quality Assurance framework ® 21

Software
Configuration
Management
Component Version Configuration Change
Identification Control Building Control

Figure 2.2 Software configuration management.

number is automatically incremented when the component is checked into the soft-
ware library. Further levels of qualifiers could also be used as necessary, such as the
date of a new version.

A software configuration is a collection of software elements that comprise a
major business function. An example of a configuration is the set of program mod-
ules for an order system. Identifying a configuration is quite similar to identifying
individual software components. Configurations can have a sequence of versions.
Each configuration must be named in a way that distinguishes it from others. Each
configuration version must be differentiated from other versions. The identification
of a configuration must also include its approval status and a description of how the
configuration was built.

A simple technique for identifying a configuration is to store all its software
components in a single library or repository. The listing of all the components can
also be documented.

Version Control

As an application evolves over time, many different versions of its software compo-
nents are created, and there needs to be an organized process to manage changes
in the software components and their relationships. In addition, there is usually a
requirement to support parallel component development and maintenance.

Software is frequently changed as it evolves through a succession of temporary
states called versions. A software configuration management facility for control-
ling versions is a software configuration management repository or library. Version
control provides the tractability or history of each software change, including who
did what, why, and when.

Within the software life cycle, software components evolve, and at a certain point
each reaches a relatively stable state. However, as defects are corrected and enhance-
ment features are implemented, the changes result in new versions of the components.
Maintaining control of these software component versions is called versioning.

A component is identified and labeled to differentiate it from all other software
versions of the component. When a software component is modified, both the old
and new versions should be separately identifiable. Therefore, each version, except

© 2009 by Taylor & Francis Group, LLC

22 m Software Testing and Continuous Quality Improvement

the initial one, has a predecessor. The succession of component versions is the com-
ponent’s history and tractability. Different versions also act as backups so that one
can return to previous versions of the software.

Configuration Building

To build a software configuration, one needs to identify the correct component
versions and execute the component build procedures. This is often called configu-
ration building.

A software configuration consists of a set of derived software components. An
example is executable object programs derived from source programs. Derived soft-
ware components are correctly associated with each source component to obtain an
accurate derivation. The configuration build model defines how to control the way
derived software components are put together.

The inputs and outputs required for a configuration build model include the pri-
mary inputs such as the source components, the version selection procedures, and
the system model, which describes how the software components are related. The
outputs are the target configuration and respectively derived software components.

Software configuration management environments use different approaches
to select versions. The simplest approach to version selection is to maintain a list
of component versions. Other approaches entail selecting the most recently tested
component versions, or those modified on a particular date.

Change Control

Change control is the process by which a modification to a software component is
proposed, evaluated, approved or rejected, scheduled, and tracked. Its basic foun-
dation is a change control process, a component status reporting process, and an
auditing process.

Software change control is a decision process used in controlling the changes
made to software. Some proposed changes are accepted and implemented during
this process. Others are rejected or postponed, and are not implemented. Change
control also provides for impact analysis to determine the dependencies.

Modification of a configuration has at least four elements: a change request,
an impact analysis of the change, a set of modifications and additions of new
components, and a method for reliably installing the modifications as a new base-
line (see Appendix D, “Change Request Form,” for more details).

A change often involves modifications to multiple software components.
Therefore, a storage system that provides for multiple versions of a single file is usu-
ally not sufficient. A technique is required to identify the set of modifications as a
single change. This is often called delta storage.

Every software component has a development life cycle. A life cycle consists of
states and allowable transitions between those states. When a software component

© 2009 by Taylor & Francis Group, LLC

Quality Assurance framework ® 23

is changed, it should always be reviewed and further modifications should be dis-
allowed (i.e., it should be frozen) until a new version is created. The reviewing
authority must approve or reject the modified software component. A software
library holds all software components as soon as they are frozen and also acts as a
repository for approved components.

A derived component is linked to its source and has the same status as its source.
In addition, a configuration cannot have a more complete status than any of its
components, because it is meaningless to review a configuration when some of the
associated components are not frozen.

All components controlled by software configuration management are stored in
a software configuration library, including work products such as business data and
process models, architecture groups, design units, tested application software, reusable
software, and special test software. When a software component is to be modified, it is
checked out of the repository into a private workspace. It evolves through many states,
which are temporarily beyond the scope of configuration management control.

When a change is completed, the component is checked into the library and
becomes a new software component version. The previous component version is
also retained.

Software Quality Assurance Plan

The software quality assurance (SQA) plan is an outline of quality measures to
ensure quality levels within a software development effort. The plan is used as
a baseline to compare the actual levels of quality during development with the
planned levels of quality. If the levels of quality are not within the planned quality
levels, management will respond appropriately as documented within the plan.

The plan provides the framework and guidelines for development of under-
standable and maintainable code. These ingredients help ensure the quality sought
in a software project. An SQA plan also provides the procedures for ensuring that
quality software will be produced or maintained in-house or under contract. These
procedures affect planning, designing, writing, testing, documenting, storing, and
maintaining computer software. It should be organized in this way because the
plan ensures the quality of the software rather than describing specific procedures
for developing and maintaining it.

Steps to Develop and Implement a
Software Quality Assurance Plan

Step 1: Document the Plan

The software quality assurance plan should include the following sections (see Appendix
B, “Software Quality Assurance Plan,” which contains a template for the plan):

© 2009 by Taylor & Francis Group, LLC

24 m Software Testing and Continuous Quality Improvement

B Purpose Section—This section delineates the specific purpose and scope of the
particular SQA plan. It should list the names of the software items covered by
the SQA plan and the intended use of the software. It states the portion of the
software life cycle covered by the SQA plan for each software item specified.

B Reference Document Section—This section provides a complete list of docu-
ments referenced elsewhere in the text of the SQA plan.

B Management Section—This section describes the project’s organizational
structure, tasks, and responsibilities.

B Documentation Section—This section identifies the documentation governing
the development, verification and validation, use, and maintenance of the
software. It also states how the documents are to be checked for adequacy.
This includes the criteria and the identification of the review or audit by
which the adequacy of each document will be confirmed.

B Standards, Practices, Conventions, and Metrics Section—This section identi-
fies the standards, practices, conventions, and metrics to be applied, and also
states how compliance with these items is to be monitored and assured.

B Reviews and Inspections Section—This section defines the technical and mana-
gerial reviews, walkthroughs, and inspections to be conducted. It also states
how the reviews, walkthroughs, and inspections are to be accomplished,
including follow-up activities and approvals.

B Software Configuration Management Section—This section is addressed in
detail in the project’s software configuration management plan.

B Problem Reporting and Corrective Action Section—This section is addressed in
detail in the project’s software configuration management plan.

W Tools, Techniques, and Methodologies Section—This section identifies the spe-
cial software tools, techniques, and methodologies that support SQA, states
their purposes, and describes their use.

B Code Control Section—This section defines the methods and facilities used to
maintain, store, secure, and document the controlled versions of the identi-
fied software during all phases of development. This may be implemented in
conjunction with a computer program library or may be provided as a part of
the software configuration management plan.

B Media Control Section—This section describes the methods and facilities to
be used to identify the media for each computer product and the documenta-
tion required to store the media, including the copy and restore process, and
protects the computer program physical media from unauthorized access or
inadvertent damage or degradation during all phases of development. This
may be provided by the software configuration management plan.

B Supplier Control Section—This section states the provisions for ensuring that
software provided by suppliers meets established requirements. In addition,
it should specify the methods that will be used to ensure that the software
supplier receives adequate and complete requirements. For previously devel-
oped software, this section describes the methods to be used to ensure the

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ® 25

suitability of the product for use with the software items covered by the SQA
plan. For software to be developed, the supplier will be required to prepare
and implement an SQA plan in accordance with this standard. This section
will also state the methods to be employed to ensure that the developers com-
ply with the requirements of this standard.

B Records Collection, Maintenance, and Retention Section—This section identi-
fies the SQA documentation to be retained. It states the methods and facilities
to assemble, safeguard, and maintain this documentation, and will designate
the retention period. The implementation of the SQA plan involves the nec-
essary approvals for the plan as well as development of a plan for execution.
The subsequent evaluation of the SQA plan will be performed as a result of
its execution.

B Testing Methodology—This section defines the testing approach, techniques,
and automated tools that will be used.

Step 2: Obtain Management Acceptance

Management participation is necessary for the successful implementation of an
SQA plan. Management is responsible for both ensuring the quality of a software
project and for providing the resources needed for software development.

The level of management commitment required for implementing an SQA plan
depends on the scope of the project. If a project spans organizational boundar-
ies, approval should be obtained from all affected departments. Once approval has
been obtained, the SQA plan is placed under configuration control.

In the management approval process, management relinquishes tight control
over software quality to the SQA plan administrator in exchange for improved soft-
ware quality. Software quality is often left to software developers. Quality is desir-
able, but management may express concern as to the cost of a formal SQA plan.
Staff should be aware that management views the program as a means of ensuring
software quality, and not as an end in itself.

To address management concerns, software life-cycle costs should be formally
estimated for projects implemented both with and without a formal SQA plan. In
general, implementing a formal SQA plan makes economic and management sense.

Step 3: Obtain Development Acceptance

Because the software development and maintenance personnel are the primary
users of an SQA plan, their approval and cooperation in implementing the plan are
essential. The software project team members must adhere to the project SQA plan;
everyone must accept it and follow it.

No SQA plan is successfully implemented without the involvement of the soft-
ware team members and their managers in the development of the plan. Because
project teams generally have only a few members, all team members should actively

© 2009 by Taylor & Francis Group, LLC

26 m Software Testing and Continuous Quality Improvement

participate in writing the SQA plan. When projects become much larger (i.e.,
encompassing entire divisions or departments), representatives of project subgroups
should provide input. Constant feedback from representatives to team members
helps gain acceptance of the plan.

Step 4: Plan for Implementation of the SQA Plan

The process of planning, formulating, and drafting an SQA plan requires staff
and word-processing resources. The individual responsible for implementing an
SQA plan must have access to these resources. In addition, the commitment of
resources requires management approval and, consequently, management support.
To facilitate resource allocation, management should be made aware of any project
risks that may impede the implementation process (e.g., limited availability of staff
or equipment). A schedule for drafting, reviewing, and approving the SQA plan
should be developed.

Step 5: Execute the SQA Plan

The actual process of executing an SQA plan by the software development and main-
tenance team involves determining necessary audit points for monitoring it. The
auditing function must be scheduled during the implementation phase of the software
product so that improper monitoring of the software project will not hurt the SQA
plan. Audit points should occur either periodically during development or at specific
project milestones (e.g., at major reviews or when part of the project is delivered).

Quality Standards

The following section describes the leading quality standards for IT.

Sarbanes—Oxley

The Sarbanes—Oxley Act of 2002, also known as the Public Company Accounting
Reform and Investor Protection Act of 2002 and commonly called SOx or Sarbox,
is a U.S. federal law enacted on July 30, 2002, in response to a number of major
corporate and accounting scandals: Enron, Tyco Internation, Adelphia, Peregrine
Systems, and WorldCom.

The Sarbanes—Oxley Act is designed to ensure the following within a business:

B There are sufficient controls to prevent fraud, misuse, or loss of financial data/
transactions. In many companies, most of these controls are IT-based.

B There are controls to enable speedy detection if and when such problems occur.

B Effective action is taken to limit the effects of such problems.

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ® 27

Table 2.1 Top COBIT Controls
Rank Control Objective What to Implement
1 Network security Updated firewall, secure wireless

transmissions

2 Virus protection

Updated anti-virus, anti-spyware
applications

3 Backups

Regular and tested backup procedures

4 | File access privilege controls

Role-based access control, least
privilege

5 IT as part of strategic plans Technologies that support business
goals
6 IT continuity and recovery Basic disaster recovery plan (DRP)
plans procedures
7 ID and authorization Complex passwords, password change
procedures policies

8 Management support/buy-in | Leadership from CEO for IT control

projects

9 Risk evaluation program

10 Basic risk assessment and Training for e-mail, Web, and
self-audits password use
11 Data input controls Field formats, periodic data range

testing

Not only must controls be in place; they must be effective, and it must be possible
to note exceptions caught by the controls and follow audit trails to take appropriate
action in response to those exceptions. This requirement puts new pressure on IT
that until now few IT departments have faced.

The ISACA subset of COBIT ensures that the key IT aspects related to
Sarbanes—Oxley are being tested. The top COBIT controls, as recommended in
the ISACA study, are in Table 2.1, along with a list of tactical solutions that satisfy
those controls.

The COBIT objectives are specifically designed to aid the effective management
of information and IT, with particular emphasis on IT governance. They provide
management with a framework for implementing internal control systems that sup-
port core business processes. They clarify areas of responsibility and due diligence
by all individuals engaged in the management, use, design, development, mainte-
nance, and operation of a company’s information systems.

© 2009 by Taylor & Francis Group, LLC

28 m Software Testing and Continuous Quality Improvement

Table 2.2 attempts to break the 318 COBIT controls down into areas of activ-
ity, to try to make the task more manageable. This helps you to understand the key
areas that will need to be addressed, either through the introduction of internal
controls, through automated solutions, or both.

Table 2.2 COBIT Controls by Areas of Activity

General Activity

COBIT Controls

Comment

IT Planning and
Management

83

The top-level control elements of
the IT process. Largely concerned
with establishing policy and
responsibility and managing and
reporting on this.

Human Resources

17

The definition of the roles of staff
in the IT process, and the issues of
business continuity and security
during staff movement.

Security

29

The definition of the
responsibilities and tasks
involved in executing a coherent
security plan.

Systems Monitoring
& Utilities

81

Availability and operation of the
system on a day-to-day basis.
The also covers third-party
support.

Change Management

1

You will need to talk to change
management vendors about
developing an effective change
management policy. Original
software solutions integrate with
some of the most established
change management solutions on
the market.

Data Management

27

Covering authority, protocol, error
handling, security, etc.

Testing

70

Covers the establishment and
execution of a formal QA policy.
Original software addresses all of
these areas.

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ®m 29

Table 2.3 Companion ISO Standards

International | United States | Europe | United Kingdom

1SO9000 ANSI/ASQA | EN29000 | BS5750 (Part 0.1)

1SO9001 ANSI/ASQC | EN29001 | BS5750 (Part 1)

1SO9002 ANSI/ASQC | EN29002 | BS5750 (Part 2)

1SO9003 ANSI/ASQC | EN29003 | BS5750 (Part 3)

1SO9004 ANSI/ASQC | EN29004 | BS5750 (Part 4)

1SO9000

ISO9000 is a quality series and comprises a set of five documents developed in 1987
by the International Standards Organization (ISO). ISO9000 standards and certifi-
cation are usually associated with non-IS manufacturing processes. However, appli-
cation development organizations can benefit from these standards and position
themselves for certification, if necessary. All the ISO9000 standards are guidelines
and are interpretive because of their lack of stringency and rules. ISO certification
is becoming more and more important throughout Europe and the United States
for the manufacture of hardware. Software suppliers will increasingly be required
to have certification. ISO9000 is a definitive set of quality standards, but it rep-
resents quality standards as part of a total quality management (TQM) program.
It consists of ISO9001, ISO9002, or ISO9003, and it provides the guidelines for
selecting and implementing a quality assurance standard.

ISO9001 is a very comprehensive standard and defines all the quality elements
required to demonstrate the supplier’s ability to design and deliver a quality prod-
uct. ISO9002 covers quality considerations for the supplier to control design and
development activities. ISO9003 demonstrates the supplier’s ability to detect and
control product nonconformity during inspection and testing. ISO9004 describes
the quality standards associated with 1SO9001, 1SO9002, and ISO9003 and pro-
vides a comprehensive quality checklist.

Table 2.3 shows the ISO9000 and companion international standards.

Capability Maturity Model (CMM)

The Software Engineering Institute—Capability Maturity Model (SEI-CMM) is
a model for judging the maturity of the software processes of an organization and
for identifying the key practices that are required to increase the maturity of these
processes. As organizations enhance their software process capabilities, they prog-
ress through the various levels of maturity. The achievement of each level of matu-
rity signifies a different component in the software process, resulting in an overall

© 2009 by Taylor & Francis Group, LLC

30 m Software Testing and Continuous Quality Improvement

P Y—
Yo

@ pefined

(O repeatable

(O mitial

Figure 2.3 Maturity levels.

increase in the process capability of the organization. The Capability Maturity
Model for Software describes the principles and practices underlying software pro-
cess maturity and is intended to help software organizations improve the maturity
of their software processes in terms of an evolutionary path from ad hoc chaotic
processes to mature, disciplined software processes.

The CMM is organized into five maturity levels (see Figure 2.3):

1. Initial. The software process is characterized as ad hoc, and occasionally even
chaotic. Few processes are defined, and success depends on individual effort
and heroics.

2. Repeatable. Basic project management processes are established to track cost,
schedule, and functionality. The necessary process discipline is in place to
repeat earlier successes on projects with similar applications.

3. Defined. The software process for both management and engineering activities
is documented, standardized, and integrated into a standard software process
for the organization. All projects use an approved, tailored version of the organ-
ization’s standard software process for developing and maintaining software.

4. Managed. Detailed measures of the software process and product quality are
collected. Both the software process and products are quantitatively under-
stood and controlled.

5. Optimizing. Continuous process improvement is enabled by quantitative feed-
back from the process and from piloting innovative ideas and technologies.

Level 1: Initial

The organization typically does not provide a stable environment for develop-
ing and maintaining software. This period is chaotic without any procedure and

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Fframework ® 31

process established for software development and testing. When an organization
lacks sound management practices, ineffective planning and reaction-driven com-
mitment systems undermine the benefits of good software engineering practices.

In this phase, projects typically abandon planned procedures and revert to cod-
ing and testing. Success depends entirely on having an exceptional manager and
effective software team. The project performance depends on capable and forceful
project managers. However, when they leave the project, their stabilizing influence
leaves with them. Even a strong engineering process cannot overcome the instabil-
ity created by the absence of sound management practices.

Level 2: Repeatable

During this phase, measures and metrics will be reviewed to include percentage
compliance with various processes, percentage of allocated requirements delivered,
number of changes to requirements, number of changes to project plans, variance
between estimated and actual size of deliverables, and variance between actual
PQA audits performed and planned and number of change requests processed over
a period of time. The following are the key process activities during Level 2:

Software configuration management
Software quality assurance

Software subcontract management
Software project tracking and oversight
Software project planning
Requirements management

Level 3: Defined

During this phase measures and metrics will be reviewed to include percentage of
total project time spent on test activities, testing efliciency, inspection rate for deliv-
erables, inspection efficiency, variance between actual attendance and planned atten-
dance for training programs, and variance between actual and planned management
effort. Level 3 compliance means an organization’s processes for management and
engineering activities have been formally defined, documented, and integrated into
a standard process that is understood and followed by the organization’s staff when
developing and maintaining software. Once an organization has reached this level,
it has a foundation for continuing progress. New processes and tools can be added
with minimal disruption, and new staff members can be easily trained to adapt to
the organization’s practices. The following are the key process areas for Level 3:

B Peer reviews
B Intergroup coordination
B Software product engineering

© 2009 by Taylor & Francis Group, LLC

32 m Software Testing and Continuous Quality Improvement

B Integrated software management
B Training program

B Organization process definition
B Organization process focus

The software process capability of Level 3 organizations can be summarized as
standard and consistent because both software engineering and management activ-
ities are stable and repeatable. Within established product lines, cost, schedule,
and functionality are under control, and software quality is tracked. This process
capability is based on a common organizationwide understanding of the activities,
roles, and responsibilities in a defined software process.

Level 4: Managed

This phase denotes that the processes are well defined and professionally managed.
The quality standards are on an upswing. With sound quality processes in place,
the organization is better equipped to meet customer expectations of high-quality/
high-performance software at reasonable cost and committed deliveries. Delivering
consistency in software work products and consistency throughout the software
development life cycle, including plans, process, requirements, design, code, and
testing, helps create satisfied customers. Projects achieve control over their prod-
ucts and processes by narrowing the variation in their process performance within
acceptable quantitative boundaries. Meaningful variations in process performance
can be distinguished from random variations (noise), particularly within estab-
lished product lines. The risks involved in moving up the learning curve of a new
application domain are known and carefully managed:

B Software quality management
B Quantitative process management

The software process capability of Level 4 organizations can be summarized as
predictable because the process is measured and operates within measurable limits.
The level of process capability allows an organization to predict trends in process
and product quality within the quantitative bounds of these limits. When these
limits are exceeded, action is taken to correct the situation. Software products are
of predictably high quality.

Level 5: Optimized

A continuous emphasis on process improvement and defect reduction avoids pro-
cess stagnancy or degeneration and ensures continual improvement translating
into improved productivity, reduced defect leakage, and greater timeliness. Tracing
requirements across each development phase improves the completeness of software,

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework ® 33

reduces rework, and simplifies maintenance. Verification and validation activities
are planned and executed to reduce defect leakage. Customers have access to the
project plan, receive regular status reports, and their feedback is sought and used
for process tuning. The KPA at Level 5 are:

B Process change management
B Technology change management
B Defect prevention

Software project teams in Level 5 organizations analyze defects to determine their
causes. Software processes are evaluated to prevent known types of defects from
recurring, and lessons learned are disseminated to other projects. The software
process capability of Level 5 organizations can be characterized as continuously
improving because Level 5 organizations are continuously striving to improve the
range of their process capability, thereby improving the process performance of
their projects. Improvement occurs both by incremental advancements in the exist-
ing process and by innovations using new technologies and methods.

People CMM

The People Capability Maturity Model (People CMM) is a framework that helps
organizations successfully address their critical people issues. On the basis of the best
current practices in fields such as human resources, knowledge management, and
organizational development, the People CMM guides organizations in improving
their processes for managing and developing their workforces. The People CMM
helps organizations characterize the maturity of their workforce practices, establish a
program of continuous workforce development, set priorities for improvement actions,
integrate workforce development with process improvement, and establish a culture
of excellence. Since its release in 1995, thousands of copies of the People CMM have
been distributed, and it is used worldwide by organizations small and large.

The People CMM consists of five maturity levels that establish successive foun-
dations for continuously improving individual competencies, developing effective
teams, motivating improved performance, and shaping the workforce the organi-
zation needs to accomplish its future business plans. Each maturity level is a well-
defined evolutionary plateau that institutionalizes new capabilities for developing
the organization’s workforce. By following the maturity framework, an organiza-
tion can avoid introducing workforce practices that its employees are unprepared
to implement effectively.

CMMI

The CMMI Product Suite provides the latest best practices for product and ser-
vice development and maintenance (Andrews and Whittaker, 2006). The CMMI

© 2009 by Taylor & Francis Group, LLC

34 m Software Testing and Continuous Quality Improvement

models are the best process improvement models available for product and ser-
vice development and maintenance. These models extend the best practices of the
Capability Maturity Model for Software (SW-CMM?®), the Systems Engineering
Capability Model (SECM), and the Integrated Product Development Capability
Maturity Model (IPD-CMM).

Organizations reported that CMMI is adequate for guiding their process
improvement activities and that CMMI training courses and appraisal methods are
suitable for their needs, although there are specific opportunities for improvement.
The cost of CMMTI is an issue that affected adoption decisions for some, but not for
others. Finally, return-on-investment information is usually helpful to organiza-
tions when making the business case to adopt CMMI.

Malcolm Baldrige National Quality Award
As the National Institute of Standards and Technology (NIST) says:

In the early and mid-1980s, many industry and government leaders
saw that a renewed emphasis on quality was no longer an option for
American companies but a necessity for doing business in an ever-
expanding, and more demanding, competitive world market. But many
American businesses either did not believe quality mattered for them or
did not know where to begin (Arthur, 1993).

Public Law 100-107, signed into law on August 20, 1987, created the Malcolm
Baldrige National Quality Award. The Award Program led to the creation of a
new public—private partnership. Principal support for the program comes from
the Foundation for the Malcolm Baldrige National Quality Award, established
in 1988. The Award is named for Malcolm Baldrige, who served as Secretary of
Commerce from 1981 until his tragic death in a rodeo accident in 1987.

The Baldrige Award is given by the President of the United States to
businesses—manufacturing and service, small and large—and to edu-
cation and health care organizations that apply and are judged to be
outstanding in seven areas: leadership, strategic planning, customer
and market focus, information and analysis, human resource focus,
process management, and business results. . . . While the Baldrige
Award and the Baldrige recipients are the very visible centerpiece of the
U.S. quality movement, a broader national quality program has evolved
around the award and its criteria. A report, “Building on Baldrige:
American Quality for the 21st Century,” by the private Council on
Competitiveness, said, ‘More than any other program, the Baldrige
Quality Award is responsible for making quality a national priority and
disseminating best practices across the United States.’

© 2009 by Taylor & Francis Group, LLC

Quality Assurance framework ® 35

Leadership

U

Information Analysis
Planning
Human Resource
Quality Assurance

U

Results

U

Customer Satisfaction

Figure 2.4

Each year, more than 300 experts from industry, educational institu-
tions, governments at all levels, and nonprofit organizations volunteer
many hours reviewing applications for the award, conducting site visits,
and providing each applicant with an extensive feedback report citing
strengths and opportunities to improve. In addition, board members
have given thousands of presentations on quality management, perfor-
mance improvement, and the Baldrige Award (Arthur, 1993).

The Baldrige performance excellence criteria are a framework (see Table 2.4) that
any organization can use to improve overall performance. Seven categories make
up the award criteria.

The system for scoring examination items is based on these evaluation dimensions:

1. Approach: Approach indicates the method that the company uses to achieve
the purposes. The following are the factors to decide on the correct approach:
the degree to which the approach is prevention-based; the appropriateness of
the tools, techniques, and methods; the effectiveness of their use; whether
the approach is systematic, integrated, and consistently applied; effective self-
evaluation and feedback; quantitative information gathered; and the unique-
ness and innovativeness of the approach.

2. Deployment: This concerns the areas where the approach is deployed. It evalu-
ates whether the approach is implemented in all the products and services and
all internal processes, activities, facilities, and employees.

3. Results: This refers to the outcome of the approach. The quality levels demon-
strated, rate of quality improvement, breadth, significance, and comparison
of the quality improvement and the extent to which quality improvement is
demonstrated are the key factors involved.

© 2009 by Taylor & Francis Group, LLC

36 m Software Testing and Continuous Quality Improvement

Table 2.4 Baldrige Performance Framework

1. Leadership—Examines how senior executives guide the organization and
how the organization addresses its responsibilities to the public and
practices good citizenship. Evaluations are based on the appropriateness,
effectiveness, and extent of the leader’s and the company’s involvement in
relation to the size and type of business.

2. Measurement, analysis, and knowledge management—Examines the
management, effective use, analysis, and improvement of data and
information to support key organization processes and the organization’s
performance management system. The scope, management, and analysis
of data depend on the type of business, its resources, and the geographical
distribution.

3. Strategic planning—Examines how the organization sets strategic directions
and how it determines key action plans. Evaluations are based on the
thoroughness and effectiveness of the processes.

4. Human resource focus—Examines how the organization enables its
workforce to develop its full potential and how the workforce is aligned
with the organization’s objectives. Evaluation depends on the human
resource approach of the company.

5. Process management—Examines aspects of how key production/delivery
and support processes are designed, managed, and improved. The types
of products and services, customer and government requirements,
regulatory requirements, and number of business locations are the factors
influencing this.

6. Business results—Examines the organization’s performance and
improvement in its key business areas: customer satisfaction, financial and
marketplace performance, human resources, supplier and partner
performance, operational performance, and governance and social
responsibility. The category also examines how the organization performs
relative to competitors.

7. Customer and market focus—Examines how the organization determines
requirements and expectations of customers and markets; builds
relationships with customers; and acquires, satisfies, and retains
customers.

As compared to other programs such as ISO, Japan’s Deming award and America’s
Baldrige Award:

B Focus more on results and service
B Rely on the involvement of many different professional and trade groups
B Provide special credits for innovative approaches to quality

© 2009 by Taylor & Francis Group, LLC

Quality Assurance Framework

B Include a strong customer and human resource focus
B Stress the importance of sharing information

Notes

1. heep://www.sei.cmu.edu/cmmi/adoption/cmmi-start.heml.
2. http://www.nist.gov/public_affairs/factsheet/baldfaqs.htm.

© 2009 by Taylor & Francis Group, LLC

37

http://www.sei.cmu.edu
http://www.nist.gov

Chapter 3

Overview of Testing
Techniques

Software testing, as a separate process, witnessed vertical growth and received the
actention of project stakeholders and business sponsors in the last decade. Various
new techniques have been continuously introduced. Apart from the traditional
testing techniques, various new techniques necessitated by the complicated busi-
ness and development logic were realized to make software testing more meaning-
ful and purposeful. This part discusses some of the popular testing techniques that
have been adopted by the testing community.

Black-Box Testing (Functional)

In black-box, or functional testing, test conditions are developed on the basis of
the program or system’s functionality; that is, the tester requires information about
the input data and observed output, but does not know how the program or sys-
tem works. Just as one does not have to know how a car works internally to drive
it, it is not necessary to know the internal structure of a program to execute it.
The tester focuses on testing the program’s functionality against the specification.
With black-box testing, the tester views the program as a black box and is com-
pletely unconcerned with the internal structure of the program or system. Some
examples in this category include decision tables, equivalence partitioning, range
testing, boundary value testing, database integrity testing, cause—effect graphing,

© 2009 by Taylor & Francis Group, LLC

40 m Software Testing and Continuous Quality Improvement

orthogonal array testing, array and table testing, exception testing, limit testing,
and random testing,.

A major advantage of black-box testing is that the tests are geared to what the
program or system is supposed to do, which is natural and understood by everyone.
This should be verified with techniques such as structured walkthroughs, inspec-
tions, and joint application designs (JADs). A limitation is that exhaustive input
testing is not achievable, because this requires that every possible input condition
or combination be tested. In addition, because there is no knowledge of the internal
structure or logic, there could be errors or deliberate mischief on the part of a pro-
grammer that may not be detectable with black-box testing. For example, suppose
a payroll programmer wants to insert some job security into a payroll application
he is developing. By inserting the following extra code into the application, if the
employee were to be terminated, that is, his employee ID no longer existed in the
system, justice would sooner or later prevail:

if my employee ID exists

deposit regular pay check into my bank account

else

deposit an enormous amount of money into my bank account
erase any possible financial audit trails

erase this code

White-Box Testing (Structural)

In white-box, or structural testing, test conditions are designed by examining paths
of logic. The tester examines the internal structure of the program or system. Test
data is driven by examining the logic of the program or system, without concern for
the program or system requirements. The tester knows the internal program struc-
ture and logic, just as a car mechanic knows the inner workings of an automobile.
Specific examples in this category include basis path analysis, statement coverage,
branch coverage, condition coverage, and branch/condition coverage.

An advantage of white-box testing is that it is thorough and focuses on the produced
code. Because there is knowledge of the internal structure or logic, errors or deliberate
mischief on the part of a programmer has a higher probability of being detected.

One disadvantage of white-box testing is that it does not verify that the specifi-
cations are correct; that is, it focuses only on the internal logic and does not verify
the conformance of the logic to the specification. Another disadvantage is that
there is no way to detect missing paths and data-sensitive errors. For example, if
the statement in a program should be coded “if |a-b| < 10” but is coded “if (a—b) <
1,” this would not be detectable without specification details. A final disadvantage
is that white-box testing cannot execute all possible logic paths through a program
because this would entail an astronomically large number of tests.

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ® 41

Gray-Box Testing (Functional and Structural)

Black-box testing focuses on the program’s functionality against the specification.
White-box testing focuses on the paths of logic. Gray-box testing is a combination
of black- and white-box testing. The tester studies the requirements specifications
and communicates with the developer to understand the internal structure of the
system. The motivation is to clear up ambiguous specifications and “read between
the lines” to design implied tests. One example of the use of gray-box testing is when
it appears to the tester that a certain functionality seems to be reused throughout
an application. If the tester communicates with the developer and understands the
internal design and architecture, many tests will be eliminated, because it may be
possible to test the functionality only once. Another example is when the syntax of
a command consists of seven possible parameters that can be entered in any order,
as follows:

Command parml, parm2, parm3, parmé4, parm5, parmé6, parm7

In theory, a tester would have to create 7!, or 5040 tests. The problem is com-
pounded further if some of the parameters are optional. If the tester uses gray-box
testing, by talking with the developer and understanding the parser algorithm, if
cach parameter is independent, only seven tests may be required.

Manual versus Automated Testing

The basis of the manual testing categorization is that it is not typically carried out
by people and it is not implemented on the computer. Examples include structured
walkthroughs, inspections, JADs, and desk checking.

The basis of the automated testing categorization is that it is implemented on
the computer. Examples include boundary value testing, branch coverage testing,
prototyping, and syntax testing. Syntax testing is performed by a language com-
piler, and the compiler is a program that executes on a computer.

Static versus Dynamic Testing

Static testing approaches are time independent and are classified in this way because
they do not necessarily involve either manual or automated execution of the prod-
uct being tested. Examples include syntax checking, structured walkthroughs, and
inspections. An inspection of a program occurs against a source code listing in
which each code line is read line by line and discussed. An example of static test-
ing using the computer is a static flow analysis tool, which investigates another
program for errors without executing the program. It analyzes the other program’s

© 2009 by Taylor & Francis Group, LLC

42 m Software Testing and Continuous Quality Improvement

control and data flow to discover problems such as references to a variable that has
not been initialized, and unreachable code.

Dynamic testing techniques are time dependent and involve executing a specific
sequence of instructions on paper or by the computer. Examples include structured
walkthroughs, in which the program logic is simulated by walking through the
code and verbally describing it. Boundary testing is a dynamic testing technique
that requires the execution of test cases on the computer with a specific focus on the
boundary values associated with the inputs or outputs of the program.

Taxonomy of Software Testing Techniques

A testing technique is a set of interrelated procedures that, together, produce a test
deliverable. There are many possible classification schemes for software testing, and
Table 3.1 describes one way. The table reviews formal popular testing techniques
and also classifies each per the foregoing discussion as manual, automated, static,
dynamic, functional (black-box), or structural (white-box).

Table 3.2 describes each of the software testing methods.

© 2009 by Taylor & Francis Group, LLC

Table 3.1 Testing Technique Categories

Overview of Testing Techniques ®m 43

Technique Manual | Automated | Static | Dynamic | Functional | Structural
Acceptance testing X X X X
Ad hoc testing X X
Alpha testing X X X
Basis path testing X X X
Beta testing X X X
Black-box testing X X X
Bottom-up testing X X X
Boundary value X X X
testing
Branch coverage X X X
testing
Branch/condition X X X
coverage
Cause—effect graphing X X X
Comparison testing X X X X X
Compatibility testing X X X
Condition coverage X X X
testing
CRUD (create, read, X X X
update, and delete)
testing
Database testing X X X
Decision tables X X X
Desk checking X X X
End-to-end testing X X X
Equivalence X X
partitioning
Exception testing X X X
Exploratory testing X X X
Free-form testing X X X
Gray-box testing X X X X
Histograms X X
Incremental X X X X
integration testing
Inspections X X X X
Integration testing X X X X
JADs (joint application X X X
designs)
Load testing X X X X
Mutation testing X X X X
Continued

© 2009 by Taylor & Francis Group, LLC

44 m Software Testing and Continuous Quality Improvement

Table 3.1 Testing Technique Categories (Continued)

Technique Manual | Automated | Static | Dynamic | Functional | Structural
Orthogonal array X X X
testing
Pareto analysis X X
Performance testing X X X X X
Positive and negative X X X
testing
Prior defect history X X X
testing
Prototyping X X X
Random testing X X X
Range testing X X X
Recovery testing X X X X
Regression testing X X
Risk-based testing X X X
Run charts X X X
Sandwich testing X X X
Sanity testing X X X X
Security testing X X X
State transition testing X X X
Statement coverage X X X
testing
Statistical profile X X X
testing
Stress testing X X X
Structured X X X X
walkthroughs
Syntax testing X X X X
System testing X X X X
Table testing X X X
Thread testing X X X
Top-down testing X X X X
Unit testing X X X X
Usability testing X X X X
User acceptance X X X X
testing
White-box testing X X X

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ®m 45

Table 3.2 Testing Technique Descriptions

Technique

Brief Description

Acceptance testing

Final testing based on the end-user/customer
specifications, or based on use by end users/
customers over a defined period of time

Ad hoc testing

Similar to exploratory testing, but often taken to
mean that the testers have significant
understanding of the software before testing it

Alpha testing

Testing of an application when development is
nearing completion; minor design changes may
still be made as a result of such testing. Typically
done by end users or others, not by programmers
or testers

Basis path testing

Identifying tests based on flow and paths of a
program or system

Beta testing

Testing when development and testing are
essentially completed and final bugs and
problems need to be found before final release.
Typically done by end users or others, not by
programmers or testers

Black-box testing

Testing cases generated based on the system’s
functionality

Bottom-up testing

Integrating modules or programs starting from the
bottom

Boundary value testing

Testing cases generated from boundary values of
equivalence classes

Branch coverage testing

Verifying that each branch has true and false
outcomes at least once

Branch/condition
coverage testing

Verifying that each condition in a decision takes
on all possible outcomes at least once

Cause—effect graphing

Mapping multiple simultaneous inputs that may
affect others, to identify their conditions to test

Comparison testing

Comparing software weaknesses and strengths to
competing products

© 2009 by Taylor & Francis Group, LLC

Continued

46 m Software Testing and Continuous Quality Improvement

Table 3.2 Testing Technique Descriptions (Continued)

Technique

Brief Description

Compatibility testing

Testing how well software performs in a particular
hardware/software/operating system/network
environment

Condition coverage
testing

Verifying that each condition in a decision takes
on all possible outcomes at least once

CRUD testing

Building a CRUD matrix and testing all object
creations, reads, updates, and deletions

Database testing

Checking the integrity of database field values

Decision tables

Table showing the decision criteria and the
respective actions

Desk checking

Developer reviews code for accuracy

End-to-end testing

Similar to system testing; the “macro” end of the
test scale; involves testing of a complete
application environment in a situation that
mimics real-world use, such as interacting with a
database, using network communications, or
interacting with other hardware, applications, or
systems if appropriate

Equivalence partitioning

Each input condition is partitioned into two or
more groups. Test cases are generated from
representative valid and invalid classes

Exception testing

Identifying error messages and exception-
handling processes and conditions that trigger
them

Exploratory testing

Often taken to mean a creative, informal software
test that is not based on formal test plans or test
cases; testers may be learning the software as
they test it

Free-form testing

Ad hoc or brainstorming using intuition to define
test cases

Gray-box testing

A combination of black-box and white-box testing
to take advantage of both

Histograms

A graphical representation of measured values
organized according to the frequency of
occurrence; used to pinpoint hot spots

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ®m 47

Table 3.2 Testing Technique Descriptions (Continued)

Technique

Brief Description

Incremental integration
testing

Continuous testing of an application as new
functionality is added; requires that various
aspects of an application’s functionality be
independent enough to work separately before
all parts of the program are completed, or that
test drivers be developed as needed; done by
programmers or by testers

Inspections

Formal peer review that uses checklists, entry
criteria, and exit criteria

Integration testing

Testing of combined parts of an application to
determine if they function together correctly. The
“parts” can be code modules, individual
applications, or client/server applications on a
network. This type of testing is especially relevant
to client/server and distributed systems

JADs

Technique that brings users and developers
together to jointly design systems in facilitated
sessions

Load testing

Testing an application under heavy loads, such as
testing of a Web site under a range of loads to
determine at what point the system’s response
time degrades or fails

Mutation testing

A method for determining if a set of test data or
test cases is useful, by deliberately introducing
various code changes (“bugs”) and retesting with
the original test data/cases to determine if the
bugs are detected. Proper implementation
requires large computational resources

Orthogonal array testing

Mathematical technique to determine which
variations of parameters need to be tested

Pareto analysis

Analyze defect patterns to identify causes and
sources

Performance testing

Term often used interchangeably with stress and
load testing. Ideally, performance testing (and any
other type of testing) is defined in requirements
documentation or QA or Test Plans

© 2009 by Taylor & Francis Group, LLC

Continued

48 m Software Testing and Continuous Quality Improvement

Table 3.2 Testing Technique Descriptions (Continued)

Technique

Brief Description

Positive and negative
testing

Testing the positive and negative values for all
inputs

Prior defect history
testing

Test cases are created or rerun for every defect
found in prior tests of the system

Prototyping

General approach to gather data from users by
building and demonstrating to them some part of
a potential application

Random testing

Technique involving random selection from a
specific set of input values where any value is as
likely as any other

Range testing

For each input, identifies the range over which the
system behavior should be the same

Recovery testing

Testing how well a system recovers from crashes,
hardware failures, or other catastrophic problems

Regression testing

Testing a system in light of changes made during a
development spiral, debugging, maintenance, or
the development of a new release

Risk-based testing

Measures the degree of business risk in a system
to improve testing

Run charts

A graphical representation of how a quality
characteristic varies with time

Sandwich testing

Integrating modules or programs from the top
and bottom simultaneously

Sanity testing

Typically, an initial testing effort to determine if a
new software version is performing well enough
to accept it for a major testing effort. For example,
if the new software is crashing systems every five
minutes, bogging down systems to a crawl, or
destroying databases, the software may not be in
a “sane” enough condition to warrant further
testing in its current state

Security testing

Testing how well the system protects against
unauthorized internal or external access, willful
damage, etc.; may require sophisticated testing
techniques

© 2009 by Taylor & Francis Group, LLC

Overview of Testing Techniques ®m 49

Table 3.2 Testing Technique Descriptions (Continued)

Technique

Brief Description

State transition testing

Technique in which the states of a system are first
identified, and then test cases written to test the
triggers causing a transition from one state to
another

Statement coverage
testing

Every statement in a program is executed at least
once

Statistical profile testing

Statistical techniques are used to develop a usage
profile of the system that helps define transaction
paths, conditions, functions, and data tables

Stress testing

Term often used interchangeably with load and
performance testing. Also used to describe such
tests as system functional testing while under
unusually heavy loads, heavy repetition of certain
actions or inputs, input of large numerical values,
or large complex queries to a database system

Structured
walkthroughs

A technique for conducting a meeting at which
project participants examine a work product for
errors

Syntax testing

Data-driven technique to test combinations of
input syntax

System testing

Black-box type testing that is based on overall
requirements specifications; covers all combined
parts of a system

Table testing

Testing access, security, and data integrity of table
entries

Thread testing

Combining individual units into threads of
functionality that together accomplish a function
or set of functions

Top-down testing

Integrating modules or programs starting from the
top

© 2009 by Taylor & Francis Group, LLC

Continued

50 ®m Software Testing and Continuous Quality Improvement

Table 3.2 Testing Technique Descriptions (Continued)

Technique

Brief Description

Unit testing

The most “micro” scale of testing; to test particular
functions or code modules. Typically done by the
programmer and not by testers, as it requires
detailed knowledge of the internal program
design and code. Not always easily done unless
the application has a well-designed architecture
with tight code; may require developing test
driver modules or test harnesses

Usability testing

Testing for “user-friendliness.” Clearly, this is
subjective, and will depend on the targeted end
user or customer. User interviews, surveys, video
recording of user sessions, and other techniques
can be used. Programmers and testers are usually
not appropriate as usability testers

User acceptance testing

Determining if software is satisfactory to an end
user or customer

White-box testing

Test cases are defined by examining the logic paths
of a system

© 2009 by Taylor & Francis Group, LLC

Chapter 4

Transforming
Requirements to
Testable Test Cases

Introduction

Quality assurance (QA) is a holistic process involving the entire development and
production process, that is, monitoring, improving, and ensuring that issues and
bugs are found and fixed.

Software testing is a major component of the software development life cycle.
Some organizations assign responsibility for testing to their test programmers or
the QA department. Others outsource testing (see Section 5, Chapter 33, “On-Site/
Offshore Model”). During the software testing process, QA project teams are typi-
cally a mix of developers, testers, and the business community who work closely
together, sharing information and assigning tasks to one another.

The following section provides an overview of how to create test cases when
“good” requirements do exist.

Software Requirements as the Basis of Testing

Would you build a house without architecture and specific requirements? The
answer is no, because of the cost of materials and manpower rework. Somehow,

51

© 2009 by Taylor & Francis Group, LLC

52 m Software Testing and Continuous Quality Improvement

Value of Investment in Requirements Process

200 - < 5% on Requirements Process
180 - L 80%-200% Overrun

§ 160
140 -
o
B 120 + 8-14% on Requirements Process
(o]
O : < 60% Overrun
« 100 +
%)
& 80+
I
S 60+
&

40

HEAO
20 - ISEE
0+ IF
T T T T T T
0 5 10 15 20 25

Figure 4.1 Importance of good requirements. (Reference: lvy Hooks.)

there is a prevalent notion that software development efforts are different, that
is, put something together, declare victory, and then spend a great deal of time
fixing and reengineering the software. This is called “maintenance.” According
to Standish Group Statistic, American companies spend $84 billion annually on
failed software projects and $138 billion on projects that significantly exceed their
time and budget estimates, or have reduced functionality.

Figure 4.1 shows that the probability of project success (as measured by meeting
its target cost) is greatest when 8 to 14 percent of the total project cost is invested
in requirements activities.

Requirement Quality Factors

If software testing depends on good requirements, it is important to understand
some of the key elements of quality requirements.

Understandable

Requirements must be understandable. Understandable requirements are organized
in a manner that facilitates reviews. Some techniques to improve understandability
include the following:

B Organize requirements by their object, for example, customer, order, invoice.
B User requirements should be organized by business process or scenario. This
allows the subject matter expert to see if there is a gap in the requirements.

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ® 53

B Separate functional from nonfunctional requirements, for example, func-
tional versus performance.

B Organize requirements by level of detail. This determines their impact on the
system, for example, “the system shall be able to take an order” versus “the
system shall be able to take a retail order from the point of sale.”

B Write requirements grammatically correctly and in a style that facilitates
reviews. If the requirement is written in Microsoft Word, use the spell check
option but beware of the context; that is, spell check may pass a word or
phrase, but it may be contextually inappropriate.

B Use “shall” for requirements. Do not use “will” or “should.” These are goals,
not requirements. Using nonimperative words such as these makes the imple-
mentation of the requirement optional, potentially increasing cost and sched-
ule, reducing quality, and creating contractual misunderstandings.

Necessary

The requirement must also be necessary. The following is an example of an unneces-
sary requirement. Suppose the following requirement is included in a requirement
specification: “The system shall be acceptable if it passes 100 test cases.” This is really
a project process and not a requirement and should not be in a requirement specifi-
cation. A requirement must relate to the target application or system being built.

Modifiable

It must be possible to change requirements and associated information. The tech-
nique used to store requirements affects modifiability. For example, requirements
in a word processor are much more difficult to modify than in a requirements
management tool such as CaliberRM or Doors. However, for a very small project,
the cost and learning curve for the requirements management tool may make the
word processor the best option.

Consistency affects modifiability. Templates and glossaries for requirements
make global changes possible. Templates should be structured to make the require-
ments visible, thus facilitating modifiability. A good best practice is to label each
requirement with a unique identifier. Requirements should also be located in a
central spot and be located with ease. Any requirement dependencies should also be
noted, for example, requirement “Y” may depend on requirement “X.”

Nonredundant

There should not be duplicate requirements, as this causes problems. Duplicates
increase maintenance; that is, every time a requirement changes, its duplicates also
must be updated. Duplicate requirements also increase the potential for injecting
requirement errors.

© 2009 by Taylor & Francis Group, LLC

54 m Software Testing and Continuous Quality Improvement

Terse

A good requirement must have no unnecessary verbiage or information. A tersely
worded requirement gets right to the point; for example, “On the other hand,”
“However,” “In retrospect,” and so on are pedantic.

Testable

It should be possible to verify or validate a testable requirement; that is, it should
be possible to prove the intent of the requirement. Untestable requirements lend
themselves to subjective interpretations by the tester. A best practice is to pretend
that computers do not exist and ask yourself, could I test this requirement and
know that it either works or does not?

Traceable

A requirement must also be traceable. Trace ability is key to verifying that require-
ments have been met. Compound requirements are difficult to trace and may cause
the product to fail testing. For example, the requirement “the system shall calculate
retirement and survivor benefits” is a compound requirement. The list approach avoids
misunderstanding when reviewing requirements for trace ability individually.

Within Scope

All requirements must be defined in the area under consideration. The scope of a
project is determined by all the requirements established for the project. The project
scope is defined and refined as requirements are identified, analyzed, and baselined.
A trace ability matrix will assist in keeping requirements within scope.

Numerical Method for Evaluating Requirement Quality

A best practice to ensure quality requirements is to use a numerical measure rather
than subjective qualifiers such as “poor, acceptable, good, and excellent.”

The first step of this technique is to create a checklist of the requirements qual-
ity factors that will be used in your requirements review. The second step is to
weight each quality factor according to its importance. The total weight of all the
factors will be 100. For example:

Quality factor 1 = 10
Quality factor 2 = 5
Quality factor 3 = 10
Quality factor 4 = 5

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ® 55

Quality factor 5 = 20
Quality factor 6 = 15
Quality factor 7 = 10
Quality factor 8 = 25

The total score for quality starts at 100. The amount for an unmet quality factor is
subtracted from the total. For example, if all quality factors are met except Quality
factor 5, 20 is subtracted from 100, resulting in a final score of 80%.

Process for Creating Test Cases
from Good Requirements

A technique is a process, style, and method of doing something. Appendix G
describes 39 software testing techniques. Examples include black box, white box,
equivalence class partitioning, etc. Techniques are used within a methodology.

A methodology or process is a philosophy, guide, or blueprint that provides
methods and principles for the field employing it. In the context of information
systems, methodologies are strategies with a strong focus on gathering information,
planning, and design elemencs.

The following sections outline a useful methodology for extrapolating test cases
from good requirements.

Step 1: Review the Requirements

Before writing test cases, the requirements need to be reviewed to ensure that they
reflect the requirements’ quality factors.

An inspection is a type of formal, rigorous team manual peer review that can dis-
cover many problems than individual reviewers cannot find on their own. Informal
manual peer reviews are also useful, depending on the situation. Unfortunately,
reviews of requirements are not always productive (see Section 2, “Waterfall Testing
Review,” Chapter 6 for more details about inspections and other types of reviews).

Two popular tools that automate the requirements process include the following:

B Smart Check™ is commercially offered by Smartware Technologies, Inc.
This tool is an automated document review tool that locates anomalies and
ambiguities within requirements or technical specifications based on a word,
word phrases, word category, and complexity level. The tool has a glossary of
words that research has shown to cause ambiguities and structural deficien-
cies. SmartCheck also allows the user to edit and add his or her own words,
phrases, and categories to the dictionary. Reports illustrate the frequency dis-
tribution for the 18 potential anomaly types, or by word or phrase. The tool is

© 2009 by Taylor & Francis Group, LLC

56 ®m Software Testing and Continuous Quality Improvement

3 SmartCheck Report @

4.0
35
3.0
25

20

05

0.0

3 &8 BN WL B E i 0o im

in general in may must ought to should the rule thus will would

Figure 4.2 SmartCheck™ word/phrase distribution report.

not intended to evaluate the correctness of the specified requirements. It is an
aid to writing the requirements right, not to writing the right requirements.

The following is an example of the results obtained by running SmartCheck.
The quote is actually an excerpt from the U.S. Declaration of Independence.
Although this example is not a software requirements specification, it does
illustrate the point.

In every stage of these Oppressions We have Petitioned for Redress in
the most humble terms: Our repeated Petitions have been answered
only by repeated injury. A Prince, whose character is #hus<-- a subor-
dinate conjunction to connect ideas - consider rewording marked
by every act which may<-- a potentially ambiguous condition - con-
sider rewording define a Tyrant, is unfit to be #he rule<-- a potentially
ambiguous noun or variable of a free people.

The SmartCheck™ report in Figure 4.2 illustrates the distribution of words or
phrases located on the basis of the 18 anomaly categories. The SmartCheck™
report in Figure 4.3 illustrates the distribution of the types of 18 anomaly cat-
egories. (Refer to http://www.smartwaretechnologies.com/ for more details).
ARM Tool (The Automated Requirement Measurement) was developed by
the Software Assurance Technology Center (SATC) at the NASA Goddard
Space Flight Center as an early life-cycle tool for assessing requirements that
are specified in natural language. The objective of the ARM tool is to pro-
vide measures that can be used by project managers to assess the quality of
a requirements specification document. The ARM tool scans a requirements
specification document for key words and phrases and generates a report file
summarizing the specific quality indicators. (See http://sw-assurance.gsfc.
nasa.gov/disciplines/quality/index.php for more information.)

© 2009 by Taylor & Francis Group, LLC

http://sw-assurance.gsfc.nasa.gov
http://sw-assurance.gsfc.nasa.gov
http://www.smartwaretechnologies.com

Transforming Requirements to Testable Test Cases ® 57

4, SmartCheck Report m

o | N |

I @ .

Time or Frequency Misused Preposition Ambiguous Condition i Variable i C

Figure 4.3 SmartCheck™ anomaly-type report.

The following are some requirements review tips to improve the process:

1. Prepare the reviewers—Provide the reviewer the requirements before the

actual review, and tell them what kind of input you are seeking. Give them
guidance on how to study and analyze a requirements specification. For
example, point to the sections that you want them to review.

Give the reviewers a checklist of typical requirements errors so that they
can focus their examination on those points (see several checklists in the
appendices and on the CD provided with the book).

Tell the reviewers how to behave during the review. Make sure the partici-
pants understand how to collaborate effectively and constructively. Tell them
that there is no such thing as a stupid question.

Invite the right reviewers—Determine the type of reviewers you need rep-
resented in your requirements reviews. Examples include developers, subject
matter experts (SMEs), business analysts, and testers.

3. Emphasize finding major problems—The real leverage from a review

4

comes from finding major errors of commission and omission. Finding such
errors can help you avoid extensive—and expensive—rework much later in
the project.
Ask the right questions—The following is a list of useful questions during
the reviews:

— Does the software product have a clearly defined purpose and objectives?
— Are the characteristics of users (or user groups) of the product identified?
— Are all external interfaces of the software stated?

— Does each requirement have a unique identifier or label?

— Is each requirement simply stated and can it stand on its own?

— Are all the conditions identified?

— Are multiple actions identified?

© 2009 by Taylor & Francis Group, LLC

58 m Software Testing and Continuous Quality Improvement

— Are requirements organized into logical groupings?

— Are the requirements hierarchically organized?

— Aretherequirements prioritized (see “Requirements Prioritization Model”
on the CD that came with the book)?

— Are the types of requirements defined, for example, functional, perfor-
mance, etc.?

— Are the requirements consistent and nonconflicting?

— Are the requirements written in an active voice?

— Are the requirements ambiguous?

— Are there references to unknown terms, for example, acronyms,
abbreviations?

— Are the input and outputs correct and detailed?

— Do the requirements express what the customer really needs?

5. Send out the revised requirements document—After the requirements
errors have been corrected, send out the requirements document to the same
participants for them to review individually or as a group.

Step 2: Write a Test Plan

A software test plan is a document that describes the objectives, scope, approach,
and focus of a software testing effort. The process of preparing a test plan is a useful
way to think through the efforts needed to validate the acceprability of a software
product. The completed document will help the whole team understand the “why”
and “how” of product validation. It should be thorough enough to be useful but not
so thorough that no one outside the test group will read it.

The task of test planning consists of the following:

B Prioritizing quality goals for the release

B Defining the testing activities to achieve those goals
B Evaluating how well the activities support the goals

B Planning the actions needed to carry out the activities

(See Appendix E and the CD that comes with this book for examples of test plans.)

Step 3: Identify the Test Suite

After the test plan has been completed and the requirements are “testable,” an
effective way of transforming the requirements to test cases is to first design the test
suites. A test suite, also known as a validation suite, is a collection of test cases that
are intended to be used as input to a software program to show that it has some
specified set of behaviors. Test suites are used to group similar test cases together,
for example, Handle Orders.

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ® 59

A test suite often contains detailed instructions or goals for each collection of
test cases and information on the system configuration to be used during testing.
A group of test cases may also contain prerequisite states or steps, and descriptions
of the following tests.

A test suite (or by functionality) document is an organized table of contents for
test cases. It lists the names of all test cases. The suite can be organized by listing the
major product features, and then listing the test cases for each of those, as shown in
Table 4.1 (also see Appendix E5).

Another way is to build a table in which the rows are types of business objects
and the columns are types of operations (see Table 4.2). Each cell in the grid
lists test cases that test one type of operation for one type of object. For example,
an Order System object is “Orders.” The Orders business object would have test
cases for each of the following CRUD-type operations: adding an order, list all
orders, editing orders, deleting orders, searching for orders, etc. The next row
might contain the “Customer” business object and have test cases for almost all
the same operations.

The advantage of using an organized list or grid is that it gives the big picture,
and it helps identify any area that needs more work. It is easy to forget to test
other types of business objects and test business operations, for example, “Create
Coupons.” It is obvious that shoppers use coupons, but it is easy to forget to test
the ability to create coupons. If it is overlooked, there will be a clearly visible blank
space in the test suite document. These clear indications of missing test cases allow
one to improve the test suite sooner, make more realistic estimates of testing time
needed, and find more defects. These advantages allow the discovered defects to be
fixed sooner and help keep management expectations in sync with reality.

Step 4: Name the Test Cases

Having an organized system test suite makes it easier to list test cases because the
task is broken down into many small, specific subtasks.

There may be some list items or grid cells that really should be empty. If you
cannot think of any test cases for a part of the suite that logically should have some
test cases, explicitly mark it as “TBD.”

The name of each test case should be a short phrase describing a general test
situation. Use distinct test cases when different steps will be needed to test each
situation. One test case can be used when the steps are the same and different input
values are needed.

As you fill in the test suite outline, think of features or use cases that should be
in the software requirements specification but are not there yet. Note any missing
requirements in the requirements document as you go along,

At this point, you can already get a better feeling for the scope of the testing
effort. You can already roughly prioritize the test cases. You are already starting to
look at your requirements critically, and you may have identified missing or unclear

© 2009 by Taylor & Francis Group, LLC

Table 4.1

Function versus Test Cases

Function/Test Matrix

Test Case

Business Function | 1

10

11

12| 13

14

15

16

17

18

19

20

24

25

© 2009 by Taylor & Francis Group, LLC

juawanroidwy Ayjend snonunuo) pue urysaj o1emyjos m 09

Table 4.2

Test Suite Identification Matrix

Types of Operations

Business
Object Add Edit Search List Delete
Order 1. Create an 1. Edit an Internet 1. Search an order 1. List all orders by 1. Delete an
Internet order order by customer ID date Internet order
2. Create a POS 2. Edit a POS order 2. Search an order 2. List all orders by 2. Delete a POS
order 3. Edit a catalog by customer customer name order
3. Create a catalog order name and and address 3. Delete a catalog
order address 3. List customers by order
4. Create a 3. Search an order state 4. Delete a
recurring order by zip code 4. List customers by recurring order
products 5. Delete all orders
by product type
Customer 1. Create a retail 1. Edit a retail 1. Search a 1. List all customers 1. Delete a retail
customer customer customer by by data ranges customer
2. Edit a wholesale customer ID date 2. Delete a
customer 2. Search a 2. List all customers wholesale
customer by by last name customer
customer name 3. List customer by
and address product IDs
3. Search a 4. List customers by
customer by zip gender
code
Account etc. etc. etc. etc. etc.
Coupons etc. etc. etc. etc. etc.

© 2009 by Taylor & Francis Group, LLC

19 m S9sB) 1S9] 9jqeisa) 0} spudwalinbay Suiwiojsuely

62 m Software Testing and Continuous Quality Improvement

requirements. Also, you can already estimate the level of specification-based test
coverage that you will achieve (see “Test Case Prioritization Model” on the CD
that came with the book).

Step 5: Write Test Case Descriptions and Objectives

In Step 4, you may have generated approximately one dozen test case names on your
first pass. That number will go up as you continue to make your testing more sys-
tematic. The advantage of having a large number of tests is that it usually increases
the coverage.

The disadvantage to creating a big test suite is simply that it is too big. It could
take a long time to fully specify every test case that you have mapped out. Also, the
resulting document could become too large, making it harder to maintain.

For each test case, write one or two sentences describing its purpose and objec-
tives. The description should provide enough information so that you could come
back to it after several weeks and recall the same ad hoc testing steps that you have
in mind now. Later, when you actually write detailed steps in the test case, any team
member can carry out the test the same way that you intended.

The act of writing the descriptions forces you to think a bit more about each test
case. When describing a test case, you may realize that it should actually be split
into two test cases, or merged with another test case. Again, make sure to note any
requirements problems or questions that you uncover.

Step 6: Create the Test Cases

The next step is to write the test case steps and specify test data. This is where the
testing techniques can help you define the test data and conditions. A rule of thumb
is to create approximately ten test cases per day.

Focus on the test cases that seem most in need of additional detail. For example,
select system test cases that cover the following:

High-priority-use cases or features

Software components that are currently available for testing

Features that must work properly before other features can be exercised
Features that are needed for product demos or screenshots
Requirements that need to be clearer

Each test case should be simple enough to clearly succeed or fail. Ideally, the steps
of a test case are a simple sequence: set up the test situation, exercise the system with
specific test inputs, and verify the correctness of the system outputs.

Systems that are highly testable tend to have a large number of simple test
cases that follow the set up—exercise—verify pattern. For those test cases, a one-
column format can clearly express the needed steps. However, not all test cases

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ® 63

are simple. Sometimes it is impractical to test one requirement at a time. Instead,
some system test cases may be longer scenarios that exercise several requirements
and verify correctness at each step. For those test cases, a two-column format
may be useful.

In the one-column format, each step is a brief verb phrase that describes
the action that the tester should take. For example, “Enter Username,” “Enter
Password,” “Select Login,” and “See Home Page.” Verification of expected outputs
are written using the verbs “observe” and “verify.” If multiple inputs are needed,
multiple outputs must be verified.

In the two-column formart, each test case step has two parts. The test input is a
verb phrase describing what the tester should do in that step. The expected output
is a noun phrase describing all the output that the tester should observe at that step.
(See Appendix E, “Test Templates,” and the templates in the CD that came with
the book.)

If you only have one test input value for a given test case, then you could write
that test data value directly into the step where it is used. However, many test cases
will have a set of test data values that must all be used to adequately cover all pos-
sible inputs. Define and use test input variables. Each variable is defined with a set
of its selected values, and then it is used in test case steps just as you would use a
variable in a programming language. When carrying out the tests, the tester should
repeat each test case with each possible combination of test variable values, or as
many as are practical.

Carefully selecting test data is as important as defining the steps of the test case.
The concepts of boundary conditions and equivalence partitions are key to good
test data selection. Try these steps to select test data:

B Determine the set of all input values that can possibly be entered for a given
input parameter.

B Define the boundary between valid and invalid input values. For example,
negative ages are impossible. You might also check for clearly unreasonable
inputs. For example, an age entered as 200 is unrealistic.

(See Appendix G, “Software Testing Techniques,” for more information on how to
write test cases. Thirty-nine testing techniques are included.)

Step 7: Review the Test Cases

A suite of system test cases can find many defects, but still leave many other critical
defects undetected. One clear way to guard against undetected defects is to increase
the coverage of your test suite.

Although a suite of unit tests might be evaluated in terms of its implementa-
tion coverage, a suite of system test cases should instead be evaluated in terms of
specification coverage. Implementation coverage measures the percentage of lines

© 2009 by Taylor & Francis Group, LLC

64 m Software Testing and Continuous Quality Improvement

of code that are executed by the unit test cases. If there is a line of code that is never
executed, then there could be an undetected defect on that line.

Specification coverage measures the percentage of written requirements that the
system test suite covers. If there is a requirement that is not tested by any system test
case, then you are not assured that the requirement has been satisfied.

You can evaluate the coverage of your system tests at two levels: (1) the test
suite itself is an organized table of contents for the test cases that can make it easy
to notice parts of the system that are not being tested; and (2) within an individual
test case, the set of possible input values should cover all input values. (See the “Test
Case Review Checklist” located on the CD that came with the book.)

Transforming Use Cases to Test Cases

The use case, created by Ivar Jacobsen, is a scenario that describes the use of a sys-
tem by an actor to accomplish work.

The following are the steps the tester can follow to create effective test cases
from use cases.

Step 1: Draw a Use Case Diagram

Use cases can be represented visually with use case diagrams as shown in Figure 4.4.

The ovals represent use cases, and the stick figures represent “actors,” which can
be either humans or other systems. The lines represent communication between
an actor and a use case. Use cases provide the “big picture.” Each use case repre-
sents functionality that will be implemented, and each actor represents someone or
something outside our system that interacts with it.

Step 2: Write the Detailed Use Case Text

The details of each use case are then documented in text format. Table 4.3 illus-
trates the “Enroll” use case details consisting of the normal and alternative flows.

/\ Change

Student

Drop

Figure 4.4 Use case diagram.

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ® 65

Table 4.3 Format for the “Enroll” Use Case Textual Description

Use case ID Enroll_001
Use case name Enroll a Student
Created by John Doe Last updated
by:
Date created 3/15/2008 Date last
updated:
Actors Student
Description Enroll a student into classes
Trigger Student wishes to enroll before the enrollment
deadline
Preconditions Student has been accepted to the university

Enrollment period has started

Postconditions Student’s information has been validated and stored
in the university enrollment system

Basic flow Enrollment:

Student enters his or her name

Student enters his or her address

Student enters his or her phone number

Student enters his or her student number

Student presses the “Submit” button

Enrollment system lists the available courses from a
drop-down list

Student selects a course from a drop-down list and
presses the “Accept” button

The system stores the course information and asks
the student if he or she wants to select another
course

The student selects “Yes,” and the enrollment
process continues (Step 6) until all the courses
have been selected and the student presses “No”

All selected courses and schedule are printed out

The student logs off the system

Alternative flows A1. The “Submit” button is pressed (Step 5) and if any
information is incorrect, an error message is displayed
next to the error field and Step 5 is repeated

A2. The student presses the “Reject” button (Step 7)

Continued

© 2009 by Taylor & Francis Group, LLC

66 ®m Software Testing and Continuous Quality Improvement

Table 4.3 Format for the “Enroll” Use Case Textual Description (Continued)

Actors Student
Includes N/A
Priority High
Frequency of use As needed
Business rules N/A

Special requirements | N/A

Assumptions Selected courses must not be full

Notes and Issues N/A

Table 4.4 Use Case Scenarios

Scenario 1 Basic flow

Scenario 2 Basic flow Alternate
flow 1

Scenario 3 Basic flow Alternate
flow 2

Scenario 4 Basic flow Alternate Alternate
flow 2 flow 3

Step 3: Identify Use Case Scenarios

A use case scenario is an instance of a use case, or a complete “path” through the
use case. End users of a system can go down many paths as they execute the func-
tionality specified in the use case. To illustrate this, Figure 4.5 is a flowchart of the
enrollment process. The basic (or normal) path is illustrated by the dotted lines.

The alternate paths (or exceptions) are depicted as Al and A2. Al is the case
when an error occurs when the student is entering his or her information into the
system. A2 depicts the case when the student has selected a particular course but
then chooses not to accept it.

Table 4.4 lists some possible combinations of scenarios for Figure 4.5. Starting
with the basic low combinations, alternative flows are added to define the sce-
narios. These scenarios will be used as the basis for creating test cases.

Step 4: Generating the Test Cases

A test case is a set of test inputs, execution conditions, and expected results devel-
oped for a particular objective.

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases

Start Enrollment

Student Enters
Information

Al

No

System Lists
Course

!

Student
Selects a
Course

!

No

Yes

A2
System Stores

Information

l

Yes

A3
Courses?

System Prints
Courses

!

Student Logs
Off System

End-Use Case

Figure 4.5 Enrollment flowchart.

© 2009 by Taylor & Francis Group, LLC

68 m Software Testing and Continuous Quality Improvement

Once the set of scenarios has been identified, the next step is to identify the test
cases. This is accomplished by analyzing the scenarios and reviewing the use case
textual descriptions. There should be at least one test case for each scenario. For
each invalid test case, there should be only one invalid input.

To document the test cases, a matrix format can be used, as illustrated in
Table 4.5. The first column of the first row contains the test case ID, and the second
column has a brief description of the test case and the scenario being tested. All the
other columns except the last one contain data elements that will be used to imple-
ment the tests. The last column contains a description of the test case’s expected
output. The “V” depicts a valid test input, and an “I” depicts an invalid test input.

Step 5: Generating Test Data

Once all of the test cases have been identified, they should be reviewed and validated
to ensure accuracy and to identify redundant or missing test cases. Then, once they
are approved, the final step is to substitute actual data values for the I's and Vs.
Table 4.6 shows a test case matrix with values substituted for the I's and V’s in the
previous matrix. A number of techniques can be used for identifying data values.
Two valuable techniques are Equivalence Class Partitioning and Boundary
Value Analysis (see Appendix G, “Software Testing Techniques,” for more details).

Summary

Use cases are useful in the front end of the software development life cycle, and test
cases are typically associated with the latter part of the life cycle. By leveraging use
cases to generate test cases, testing teams can get started much earlier in the life cycle.

What to Do When Requirements
Are Nonexistent or Poor?

The following section provides an overview of how to create test cases when “good”
requirements do not exist.

Depending on the project and organization, requirements may be very well
written and satisfy the requirements quality factors described earlier. On the other
hand, it is often the case that requirements are not clear, unambiguous, and pres-
ent. In this case, other alternatives need to be considered.

Ad Hoc Testing
The Art of Ad Hoc Testing

Ad hoc testing is the least formal of test techniques. It has been criticized because
it is not structured. This testing type is most often used as a complement to other

© 2009 by Taylor & Francis Group, LLC

Table 4.5 Enrollment Test Case Matrix

Test Case Student Phone | Student | Course Exit
ID Scenario/Condition Name | Address | Number | Number | Rejected | Enrollment | Expected Result
Enroll 1 Scenario 1— \% \% \% \ No Yes Selected courses
successful enrollment are displayed
and exit system
Enroll 2 Scenario 2—unidentified I N/A N/A N/A N/A No Error message;
student back to list of
available courses
Enroll 3 Scenario 3—rejects a \% \% \% \ Yes No Selected course

course

is selected,
rejected; back to
list of available
courses

© 2009 by Taylor & Francis Group, LLC

69 m S9SBD) 1S9J 9jqeisa) 0} spudwaiinbay Suiwiojsuely

Table 4.6 Enrollment Test Case Details

Test Case Scenario/ Student Phone Student Course
ID Condition Name Address Number Number Selected Expected Result

Enroll 1 Scenario 1— John Doe | 2719 Brook (972) 9832876 | G3982 | Oceanography | Coursesand
successful Avenue, Dallas, schedule displayed;
registration Texas 75093 exit system

Enroll 2 Scenario 2— Invalid 2719 Brook (972) 9832876 | G3982 | Oceanography | Error message; back
unidentified Avenue, Dallas, to login screen
student Texas 75093

Enroll 3 Scenario 2— John Doe | Invalid (972) 9832876 | G3982 | Oceanography | Error message; back
unidentified to login screen
student

Enroll 4 Scenario 2— John Doe | 2719 Brook Invalid G3982 Oceanography | Error message; back
unidentified Avenue, Dallas, to login screen
student Texas 75093

Enroll 5 Scenario 2— John Doe | 2719 Brook (972) 9832876 Invalid Oceanography | Error message; back
unidentified Avenue, Dallas, to login screen
student Texas 75093

Enroll 6 Scenario 2— John Doe | 2719 Brook (972) 9832876 G3982 Invalid Error message; back
unidentified Avenue, Dallas, to login screen
student Texas 75093

Enroll 7 Scenario 3— John Doe | 2719 Brook (972) 9832876 | G3982 Oceanography | Back to login screen
unidentified Avenue, Dallas, rejected
student Texas 75093

© 2009 by Taylor & Francis Group, LLC

juawanrosdwy Ayjend snonunuo) pue 8urysa] o1emjos m 0L

Transforming Requirements to Testable Test Cases ® 71

types of testing. Ad hoc testing finds a place during the entire testing cycle. Early
in the project, ad hoc testing provides breadth to testers’ understanding of your pro-
gram, thus aiding in discovery. In the middle of a project, the data obtained helps
set priorities and schedules. As a project nears the ship date, ad hoc testing can be
used to examine defect fixes more rigorously, as described eatlier.

However, this is also a strength; that is, important things can be found quickly.
Ad hoc testing is performed with improvisation in which the tester seeks to find
defects with any means that seem appropriate. It is different from regression test-
ing, which looks for a specific issue with detailed reproducible steps, with a clear
expected result.

Ad hoc testing is in many ways similar to jazz improvisation. Jazz musicians
sometimes use a fake book consisting of lead sheets for the songs on which they
will improvise. After playing the recognizable melody once, the musicians take
turns playing extemporaneous solos. Sometimes they will also vary the rhythm
of the piece while improvising; for example, by playing behind the beat. These
improvisational solos may be recognizable as related to the original tune, or they
may not. However, toward the end of the song, the players typically return to the
original melody.

There is a parallel to software testing. Testers often start with a documented test
design that systematically describes all the cases to be covered. One of the more
productive ways to perform improvisational testing is to gather a group of two or
more skilled testers in the same room, and ask them to collaborate on extemporane-
ous testing. The defect-finding power of testers collaborating with improvisational
testing is very similar to the power of collaboration exhibited in jazz sessions.

One approach to improvisational testing is to use existing documented tests as
the basis, and then invent variations on that theme.

Advantages and Disadvantages of Ad Hoc Testing

One of the best uses of ad hoc testing is for discovery. Reading the requirements or
specifications (if they exist) often does not provide a good sense of how a program
behaves. Ad hoc testing can find holes in your test strategy, and can expose rela-
tionships between subsystems that would otherwise not be apparent. In this way, it
serves as a tool for checking the completeness of your testing.

Missing cases may be found that would not otherwise be apparent with formal
test cases, as these are set in concrete. Defects found while doing ad hoc testing are
often examples of entire classes of forgotten test cases.

Another use for ad hoc testing is to determine the priorities for your other test-
ing activities. Low-level housekeeping functions and basic features often do not
make it into the requirements and thus have no associated test cases.

A disadvantage of ad hoc testing is that these forms of tests are not documented
and, therefore, not repeatable. This limits ad hoc tests from the regression testing
suite.

© 2009 by Taylor & Francis Group, LLC

72 m Software Testing and Continuous Quality Improvement

Exploratory Testing
The Art of Exploratory Testing

Exploratory testing is extra suitable if requirements and specifications are incom-
plete, or if there is lack of time. The approach can also be used to verify that pre-
vious testing has found the most important defects. It is common to perform a
combination of exploratory and scripted testing, i.c., a written set of test steps to
test software, where the choice is based on risk.

Exploratory testing as a technique for testing computer software does not require
significant advanced planning and is tolerant of limited documentation. It relies on
the skill and knowledge of the tester to guide the testing, and uses an active feed-
back loop to guide and calibrate the effort. According to James Bach, “The classical
approach to test design, i.e., scripted testing, is like playing 20 Questions’ by writ-
ing out all the questions in advance.”

Exploratory testing is the tactical pursuit of software faults and defects driven
by challenging assumptions. It is an approach in software testing with simultane-
ous learning, test design, and test execution. While the software is being tested, the
tester learns things that together with experience and creativity generates new good
tests to run.

Exploratory testing has been performed for a long time, and has similarities to
ad hoc testing. In the early 1990s, ad hoc was too often synonymous with sloppy
and careless work. This new terminology was first published by Cem Kaner in his
book Testing Computer Software. Exploratory testing is more structured than classi-
cal ad hoc testing and can be as disciplined as any other intellectual activity.

Exploratory testing seeks to find out how the software actually works, and to
ask questions about how it will handle difficult and easy cases. The testing is depen-
dent on the tester’s skill of inventing test cases and finding defects. The more the
tester knows about the product and different test methods, the better the testing
will be.

When performing exploratory testing, there are no exact expected results; it is
the tester who decides what will be verified, critically investigating the correctness
of the result.

In reality, testing almost always is a combination of exploratory and scripted
testing, but with a tendency toward either one, depending on the context.

According to Cem Kaner and James Bach, exploratory testing is more a [mind-
set] or “... away of thinking about testing” than a methodology. The documentation
of exploratory testing ranges from documenting all tests performed to document-
ing just the bugs.

Exploratory Testing Process

The basic steps of exploratory testing are as follows:

© 2009 by Taylor & Francis Group, LLC

Transforming Requirements to Testable Test Cases ® 73

1. Identify the purpose of the product.

2. Identify functions.

3. Identify areas of potential instability.

4. Test each function and record problems.

5. Design and record a consistency verification test.

According to James Bach, “Exploratory Testing, as I practice it, usually proceeds
according to a conscious plan. But not a rigorous plan ... it is not scripted in detail.
To the extent that the next test we do is influenced by the result of the last test we
did, we are doing exploratory testing. We become more exploratory when we can’t
tell what tests should be run in advance of the test cycle.”

Test cases themselves are not preplanned:

B Exploratory testing can be concurrent with product development and test
execution.

B Such testing is based on implicit and explicit (if they exist) specifications as
well as the “as-built” product.

B Exploratory testing starts with a conjecture as to correct behavior, followed
by exploration for evidence that it works/does not work.

B [t is based on some kind of mental model.

“Try it and see if it works.”

Advantages and Disadvantages of Exploratory Testing

The main advantage of exploratory testing is that less preparation is needed, important
bugs are found fast, and it is more intellectually stimulating than scripted testing.

Another major benefit is that testers can use deductive reasoning based on the
results of previous tests to guide their future testing on the fly. They do not have
to complete a current series of scripted tests before focusing in on or moving on to
exploring a more target-rich environment. This also accelerates bug detection when
used intelligently.

Another benefit is that, after initial testing, most bugs are discovered by some
kind of exploratory testing. This can be demonstrated logically by stating, “Programs
that pass certain tests tend to continue to pass the same tests and are more likely to
fail other tests or scenarios that are yet to be explored.”

Disadvantages are that the tests cannot be reviewed in advance (and thus can-
not prevent errors in code and test cases), and that it can be dificult to show exactly
which tests have been run.

When repeating exploratory tests, they will not be performed in precisely the
same manner, which can be a disadvantage if it is more important to know what
exact functionality.

© 2009 by Taylor & Francis Group, LLC

Chapter 5

Quality through
Continuous
Improvement Process

Contribution of Edward Deming

Although Henry Ford and Fredrick Winslow Taylor made enormous contributions
to factory production, Dr. Edward Deming has gone beyond them. He has influ-
enced every facet of work in every industry, including government, schools, and
hospitals. Deming has had a profound effect on how people think, how they see
themselves, and how they relate to their customers, to one another, and to society.

In 1928 he earned his Ph.D. in physics and in the next four years published
papers about the effect of electrons on the structure of materials. He started his
career at the frontiers of physics. In 1934 he began to move away from physics and
physical chemistry and published his first paper in the field of statistics. In 1937 he
wrote a paper on the statistical theory of errors.

By law the federal government is required to take a population census every
ten years, and in 1940 Deming became involved with the Census Bureau of the
Department of Commerce. The proper tool for this task was statistics, and so we
find in his list of publications a series of 26 papers dealing almost solely with prob-
lems of sampling. One paper published in 1944, during World War II, introduced
Shewhart’s methods of quality control to engineers. He took the lead in getting this

75

© 2009 by Taylor & Francis Group, LLC

76 m Software Testing and Continuous Quality Improvement

subject into the wartime training of engineers, giving the first course himself at
Stanford University. From around 1945 onward, people did not think of Deming
as a physicist but as a statistician. It is not surprising, therefore, that when General
MacArthur needed to make a population survey in Japan in 1948, he called upon
Deming. In 1953—3 years after he started to work with Japanese managers—
Deming started his crusade to bring quality management principles to American
managers. In 1953 he published Management’s Responsibility for the Use of Statistical
Techniques in Industry, thus marking the start of a theme he would pursue for the
next 40 years. He had begun to see the transformation in Japan.

Role of Statistical Methods

Deming’s quality method includes the use of statistical methods that he believed
were essential to minimize confusion when there was variation in a process.
Statistics also help us to understand the processes themselves, gain control, and
improve them. This is brought home by the quote, “In God we trust. All others
must use data.” Particular attention is paid to locating a problem’s major causes,
which, when removed, improve quality significantly. Deming points out that many
statistical techniques are not difficult and require some background in mathemart-
ics. Education is a very powerful tool and is required at all levels of an organization
to make it work.

The following is an outline of some statistical methods that are further described
and applied to software testing. More details are provided in Section 3.

Cause-and-Effect Diagram

Often called the “fishbone” diagram, this method can be used in brainstorming
sessions to locate factors that may influence a situation. This is a tool used to iden-
tify possible causes of a problem by representing the relationship between an effect
and its possible cause.

Flowchart

This is a graphical method of documenting a process. It is a diagram that shows
the sequential steps of a process or of a workflow that go into creating a product or
service. The justification of flowcharts is that to improve a process, one must first
understand it.

Pareto Chart

This is a commonly used graphical technique in which events to be analyzed are
named. The incidents are counted by name, and the events are ranked by frequency

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ®m 77

in a bar chart in ascending sequence. Pareto analysis applies the 80/20 rule. An
example of this is when 20 percent of an organization’s customers accounts for 80
percent of the revenue. This implies that the focus should be on the 20 percent.

Run Chart

A run chart is a graphical technique that graphs data points in chronological order
to illustrate trends of a characteristic being measured, to assign a potential cause
rather than random variation.

Histogram

A histogram is a graphical description of measured values organized according to the fre-
quency or relative frequency of occurrence. It also provides the average and variation.

Scatter Diagram

A scatter diagram is a graph designed to show where there is a relationship between
two variables or changing factors.

Control Chart

A control chart is a statistical method for distinguishing between special and com-
mon variations exhibited by processes. It is a run chart with statistically determined
upper and lower limits drawn on either side of the process averages.

Deming’s 14 Quality Principles

Deming outlined 14 quality principles that must be used concurrently to achieve
quality. Although these principles were applied to industry, influencing government,
schools, and hospitals, many are also applicable to achieving software quality from an
information technology perspective. The following is a brief discussion of each point,
followed by a description of how a quality assurance organization might apply each.

Point 1: Create Constancy of Purpose

Most companies tend to dwell on their immediate problems without adequate atten-
tion to the future. According to Deming, “It is easy to stay bound up in the tangled
knots of the problems of today, becoming ever more and more efficient in the future,
but no company without a plan for the future will stay in business.” A constancy of
purpose requires innovation (e.g., long-term planning for it), investment in research
and education, and continuous improvement of products and service.

© 2009 by Taylor & Francis Group, LLC

78 m Software Testing and Continuous Quality Improvement

To apply this point, an information technology quality assurance organization
can do the following:

B Develop a quality assurance plan that provides a long-range quality direction.

B Require software testers to develop and maintain comprehensive test plans
for each project.

B Encourage quality analysts and testers to come up with new and innovative
ideas to maximize quality.

B Strive to continuously improve quality processes.

Point 2: Adopt the New Philosophy

Quality must become the new religion. According to Deming, “The cost of living
depends inversely on the goods and services that a given amount of money will
buy, for example, reliable service reduces costs. Delays and mistakes raise costs.”
Consumers of goods and services end up paying for delays and mistakes, which
reduces their standard of living. Tolerance of acceptable levels of defects in systems
is the roadblock between quality and productivity, i.e., the rush to verify quality
will diminish the quality level.

To apply this point, an information technology quality assurance organization
can do the following:

B Educate the information technology organization on the need and value
of quality.

B Promote the quality assurance department to the same level as any other
department.

B Defuse the notion that quality assurance is negative and that it is a “watch-
dog” function.

B Develop a risk management plan, and do not accept any anomalies outside
the range of acceptable risk tolerance.

Point 3: Cease Dependence on Mass Inspection

The old way of thinking is to inspect bad quality out. A better approach is to use
inspection to see how we are doing, and not leave it to the final product stage, when
it is difficult to determine where in the process a defect took place. Quality should
be built in without the dependence on mass inspections.

To apply this point, an information technology quality assurance organization
can do the following:

B Promote and interject technical reviews, walkthroughs, and inspections as
nondefensive techniques for achieving quality throughout the entire develop-
ment cycle.

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ® 79

B Instill the need for the whole organization to be quality conscious and treat it
as a tangible, measurable work product deliverable.
B Require statistical evidence of information technology quality.

Point 4: End the Practice of Awarding
Business on Price Tag Alone

“Two or more suppliers for the same item will mulciply the evils that are necessar-
ily inherent and bad enough with any one supplier.” A buyer will serve her com-
pany best by developing a long-term relationship of loyalty and trust with a single
vendor. Rather than using standards manuals by which vendors must qualify for
business, a better approach is active involvement by the supplier’s management with
Deming’s 14 points.

To apply this point, an information technology quality assurance organization
can do the following:

B Require software quality and test vendors to provide statistical evidence of
their quality.

B Pick the best vendor for each quality assurance tool, testing tool, or service,
and develop a working relationship consistent with the quality plan.

Point 5: Improve Constantly and Ceaselessly
the System of Production and Service

Improvement is not a one-time effort: management is obliged to improve qual-
ity continuously. As Deming points out, “Putting out fires is not improvement.
Finding a point out of control, finding the special cause and removing it is only put-
ting the process back to where it was in the first place. The obligation for improve-
ment is a ceaseless process.”

To apply this point, an information technology quality assurance organization
can do the following:

B Constantly improve quality assurance and testing processes.

B Not rely on judgment.

B Use statistical techniques such as root cause-and-effect analysis to uncover
the sources of problems and test analysis.

Point 6: Institute Training and Retraining

Often, little or no training is provided to workers, and they do not know when they
have done their jobs correctly. It is very difficult for a worker to unlearn improper
training. Deming stresses that training should not end as long as performance is
not in statistical control and there is something to be gained.

© 2009 by Taylor & Francis Group, LLC

80 m Software Testing and Continuous Quality Improvement

To apply this point, an information technology quality assurance organization
can do the following:

Institute modern training aids and practices.

Encourage quality staff to constantly increase their knowledge of quality and
testing techniques by attending seminars and classes.

Reward staff for creating new seminars and special interest groups.

Use statistical techniques to determine when training is needed and completed.

Point 7: Institute Leadership

As Deming points out, “There is no excuse to offer for putting people on a job
that they know not how to do. Most so-called ‘goofing of’—somebody seems to
be lazy, doesn’t seem to care—that person is almost always in the wrong job, or
has very poor management.” It is the responsibility of management to discover the
inhibitors that prevent workers from taking pride in their jobs. From an informa-
tion technology point of view, development often views the job of quality to be the
QA department’s responsibility. QA should be very aggressive as quality leaders and
point out that quality is everyone’s responsibility.

To apply this point, an information technology quality assurance organization
can do the following:

B Take the time to train a developer on how to unit test code effectively if an
excessive number of defects in his or her code are discovered by QA testing.

B Improve supervision, which is the responsibility of management.

B Allow the project leader to have more time to help people on the job.

B Use statistical methods to indicate where there are faults.

Point 8: Drive Out Fear

There is often no incentive for problem solving. Suggesting new ideas is too risky.
People are afraid of losing their raises, promotions, or jobs. As Deming points out,
“Fear takes a horrible toll. Fear is all around, robbing people of their pride, hurt-
ing them, robbing them of a chance to contribute to the company. It is unbe-
lievable what happens when you unloose fear.” A common problem is the fear of
inspections.

To apply this point, an information technology quality assurance organization
can do the following:

B Promote the idea that quality is goodness and should be rewarded, and pro-
mote any new ideas to improve quality.

B Prior to a structured walkthrough, inspection, or JAD session, make sure
everyone understands the ground rules; promote an “egoless” environment.

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ®m 81

B Periodically schedule a “Quality Day” in which quality improvement ideas
are openly shared.

Point 9: Break Down Barriers between Staff Areas

There are numerous problems when departments have different goals and do not
work as a team to solve problems, set policies, or define new directions. As Deming
points out, “People can work superbly in their respective departments, but if their
goals are in conflict, they can ruin the company. It is better to have teamwork,
working for the company.”

To apply this point, an information technology quality assurance organization
can do the following:

B Promote the need for the quality assurance and other departments (partic-
ularly development) to work closely together; QA should be viewed as the
“good guys” trying to make the software products the best in the world.

B Doint out that a defect discovered before production is one that will not be
discovered by end users.

Point 10: Eliminate Slogans, Exhortations,
and Targets for the Workforce

As Deming points out, “Slogans never helped anybody do a good job. They gener-
ate frustration and resentment.” Slogans such as “Zero Defects” or “Do It Right
the First Time” are fine on the surface. The problem is that they are viewed as
signals that management does not understand employees’ problems, or care. There
is a common practice of setting goals without describing how they are going to be
accomplished.

To apply this point, an information technology quality assurance organization
can do the following:

B Encourage management to avoid the use of slogans.

B Rather than generate slogans, develop and document quality standards, pro-
cedures, and processes that the rest of the organization can use to help maxi-
mize quality.

Point 11: Eliminate Numerical Goals

As Deming points out, “Quotas or other work standards, such as measured day
work or rates, impede quality perhaps more than any other single working condi-
tion. As work standards are generally used, they guarantee inefliciency and high
costs.” A proper work standard would define what is and is not acceptable in terms
of quality.

© 2009 by Taylor & Francis Group, LLC

82 m Software Testing and Continuous Quality Improvement

To apply this point, an information technology quality assurance organization
can do the following:

B Look not just at the numbers, but look carefully at the quality standards.

B Avoid formally publicizing defect rates by individual or department.

B Work with the development organization to define quality standards and
procedures to improve quality.

B When there are specific quality issues, have the department manager address
them informally.

Point 12: Remove Barriers to Pride of Workmanship

People are regarded as a commodity, to be used as needed. If not needed, they
are returned to the market. Managers cope with many problems, but tend to shy
away from people problems. They often form “Quality Control Circles,” but this
is often a way for a manager to pretend to be doing something about a problem.
Management seldom invests employees with any authority, nor does it act upon
their recommendations.

To apply this point, an information technology quality assurance organization
can do the following:

B Instill an image that quality is their deliverable and is a very valuable
commodity.

B Delegate responsibility to the stafl to seck out quality and do whatever it
takes to accomplish it.

Point 13: Institute a Vigorous Program
of Education and Retraining

People must acquire new knowledge and skills. Education and retraining are an
investment in people, which is required for long-term planning. Education and
training must fit people into new jobs and responsibilities.

To apply this point, an information technology quality assurance organization
can do the following:

B Encourage quality staff to constantly increase their knowledge of quality and
testing techniques by attending seminars and classes.

B Reward staff for creating new seminars and special interest groups.

B Retrain individuals in new quality skills.

Point 14: Take Action to Accomplish the Transformation

Top management needs to push these 13 points. Every employee, including man-
agers, should acquire a precise idea of how to improve quality continually, but the

© 2009 by Taylor & Francis Group, LLC

Quality through Continuous Improvement Process ® 83

initiative must come from top management. The following discusses a process that
can be used to apply Deming’s Point 14. It is also the process that is constantly
reinforced in this text to improve software testing processes.

Continuous Improvement through the
Plan, Do, Check, Act Process

The term conzrol has various meanings, including supervising, governing, regulat-
ing, or restraining. The control in quality control means defining the objective of
the job, developing and carrying out a plan to meet that objective, and checking to
determine if the anticipated results are achieved. If the anticipated results are not
achieved, modifications are made in the work procedure to fulfill the plan.

One way to describe the foregoing is with the Deming Cycle (or PDCA cir-
cle; see Figure 5.1), named after Deming in Japan because he introduced it there,
although it was originated by Shewhart. It was the basis of the turnaround of the
Japanese manufacturing industry, in addition to other Deming management prin-
ciples. The word management describes many different functions, encompassing
policy management, human resources management, and safety control, as well as
component control and management of materials, equipment, and daily schedules.
In this text, the Deming model is applied to software quality.

In the Plan quadrant of the circle, one defines objectives and determines the
conditions and methods required to achieve them. It is crucial to clearly describe
the goals and policies needed to achieve the objectives at this stage. A specific objec-
tive should be documented numerically, if possible. The procedures and conditions
for the means and methods to achieve the objectives are described.

In the Do quadrant of the circle, the conditions are created and the necessary
training to execute the plan is imparted. It is paramount that everyone thoroughly
understands the objectives and the plan. Workers need to be taught the procedures
and skills required to fulfill the plan and thoroughly understand the job. The work
is then performed according to these procedures.

In the Check quadrant of the circle, one must check to determine whether
work is progressing according to the plan and whether the expected results are
obtained. The performance of the set procedures must be checked against changes

an
&/

Figure 5.1 The Deming quality circle.

© 2009 by Taylor & Francis Group, LLC

84 m Software Testing and Continuous Quality Improvement

ACT(A)
Check(C)

Plan(P)
DO(D)

Quality
Product or
Service

Figure 5.2 The ascending spiral.

in conditions, or abnormalities that may appear. As often as possible, the results of
the work should be compared with the objectives. If a check detects an abnormal-
ity—that is, if the actual value differs from the target value—then a search for the
cause of the abnormality must be initiated to prevent its recurrence. Sometimes, it
is necessary to retrain workers and revise procedures. It is important to make sure
these changes are reflected and more fully developed in the next plan.

In the Action quadrant of the circle, if the checkup reveals that the work is not
being performed according to plan or results are not what was anticipated, mea-
sures must be devised for appropriate action.

Going around the PDCA Circle

The foregoing procedures not only ensure that the quality of the products meets
expectations, but they also ensure that the anticipated price and delivery date are
fulfilled. Sometimes our preoccupation with current concerns makes us unable
to achieve optimal results. By going around the PDCA circle, we can improve
our working methods and obtain the desired results. Repeated use of PDCA
makes it possible to improve the quality of the work, the work methods, and the
results. Sometimes this concept is depicted as an ascending spiral, as illustrated in
Figure 5.2.

© 2009 by Taylor & Francis Group, LLC

WATERFALL
TESTING REVIEW

The waterfall life-cycle development methodology consists of distinct phases from
requirements to coding. Life-cycle testing means that testing occurs in parallel
with the development life cycle and is a continuous process. Deming’s continuous
improvement process is applied to software testing using the quality circle, prin-
ciples, and statistical techniques.

The psychology of life-cycle testing encourages testing to be performed outside
the development organization. The motivation for this is that there are clearly defined
requirements, and it is more efficient for a third party to verify these requirements.

The test plan is the bible of software testing. It is a document prescribing the test
objectives, scope, strategy approach, and test details. There are specific guidelines
for building a good test plan.

The two major quality assurance verification approaches for each life-cycle phase
are technical reviews and software testing. Technical reviews are more preventive;
that is, they aim to remove defects as soon as possible. Software testing verifies the
actual code that has been produced.

The objectives of this section are to:

Discuss how life-cycle testing is a parallel activity.

Describe how Deming’s process improvement is applied.

Discuss the psychology of life-cycle development and testing.

Discuss the components of a good test.

List and describe how technical review and testing are verification techniques.

© 2009 by Taylor & Francis Group, LLC

Chapter 6

Overview

The following provides an overview of the waterfall life-cycle devel-
opment methodology and the associated testing activities. Deming’s
continuous quality improvement is applied with technical review and
testing techniques.

Waterfall Development Methodology

The life-cycle development or waterfall approach breaks the development cycle
down into discrete phases, each with a rigid sequential beginning and end (see
Figure 6.1). Each phase is fully completed before the next is started. Once a phase is
completed, in theory during development, one never goes back to change it.

In Figure 6.1 you can see that the first phase in the waterfall is user require-
ments. In this phase, the users are interviewed, their requirements are analyzed,
and a document is produced detailing what the users’ requirements are. Any reen-
gineering or process redesign is incorporated into this phase.

In the next phase, entity relation diagrams, process decomposition diagrams,
and data flow diagrams are created to allow the system to be broken down into man-
ageable components from a data and functional point of view. The outputs from the
logical design phase are used to develop the physical design of the system. During
the physical and program unit design phases, various structured design techniques,
such as database schemas, Yourdon structure charts, and Warnier—Orr diagrams,
are used to produce a design specification that will be used in the next phase.

© 2009 by Taylor & Francis Group, LLC

88 m Software Testing and Continuous Quality Improvement

Use
Requirements

Logical
Design

Physical
Design

Program
Unit Design

Coding

Figure 6.1 Waterfall development methodology.

In the program unit design phase, programmers develop the system according
to the physical design produced in the previous phase. Once complete, the sys-
tem enters the coding phase, where it will be written in a programming language,
unit or component tested, integration tested, system tested, and finally, user tested
(often called acceptance testing).

Now the application is delivered to the users for the operation and mainte-
nance phase (not shown in Figure 6.1). Defects introduced during the life-cycle
phases are detected and corrected, and new enhancements are incorporated into
the application.

Continuous Improvement “Phased” Approach

Deming’s continuous improvement process, which was discussed in the previous
section, is effectively applied to the waterfall development cycle using the Deming
quality cycle, or PDCA; that is, Plan, Do, Check, and Act. It is applied from two
points of view: software testing, and quality control or technical reviews.

As defined in Section 1, “Software Quality in Perspective,” the three major
components of quality assurance are software testing, quality control, and software
configuration management. The purpose of software testing is to verify and validate
the activities to ensure that the software design, code, and documentation meet
all the requirements imposed on them. Software testing focuses on test planning,
test design, test development, and test execution. Quality control is the process
and methods used to monitor work and observe whether requirements are met. It
focuses on structured walkthroughs and inspections to remove defects introduced
during the software development life cycle.

© 2009 by Taylor & Francis Group, LLC

Overview m 89

Psychology of Life-Cycle Testing

In the waterfall development life cycle, there is typically a concerted effort to keep
the testing and development departments separate. This testing organization is
typically separate from the development organization, with a different reporting
structure. The basis of this is that because requirements and design documents
have been created at specific phases in the development life cycle, a separate quality
assurance organization should be able to translate these documents into test plans,
test cases, and test specifications. Underlying assumptions include the belief that (1)
programmers should not test their own programs and (2) programming organiza-
tions should not test their own programs.

It is thought that software testing is a destructive process and that it would be
very difficult for a programmer to suddenly change his perspective from developing
a software product to trying to find defects, or breaking the software. It is believed
that programmers cannot effectively test their own programs because they cannot
bring themselves to attempt to expose errors.

Part of this argument is that there will be errors due to the programmer’s mis-
understanding of the requirements of the programs. Thus, a programmer testing
his own code would have the same bias, and would not be as effective testing it as
someone else.

It is not impossible for a programmer to test her own programs, but testing is
more effective when performed by someone who does not have a stake in it, as a
programmer does. Because the development deliverables have been documented,
why not let another individual verify them?

It is thought that a programming organization is measured by its ability to
produce a program or system on time and economically. As with an individual
programmer, it is difficult for the programming organization to be objective. From
the point of view of the programming organization, if a concerted effort were made
to find as many defects as possible, the project would probably be late and not cost
effective. Less quality is the result.

From a practical point of view, an independent organization should be respon-
sible for the quality of the software products. Product test or quality assurance
organizations were created to serve as independent parties.

Software Testing as a Continuous Improvement Process

Software life-cycle testing means that testing occurs in parallel with the develop-
ment cycle and is a continuous process (see Figure 6.2). The software testing process
should start early in the application life cycle, not just in the traditional validation
testing phase after the coding phase has been completed. Testing should be inte-
grated into application development. For this, there needs to be a commitment

© 2009 by Taylor & Francis Group, LLC

90 m Software Testing and Continuous Quality Improvement

User - Verifies Acceptance
Requirements Testing
Logical | Verifies System
Design | Testing

Physical | Verifies Integration
Design | Testing
Verifies

Program Unit
Unit Design ™ Testing

Coding

Figure 6.2 Development phases versus testing types.

on the part of the development organization and close communication with the
quality assurance function.

A test plan is initiated during the requirements phase. It describes the organiza-
tion of testing work. It is a document describing the approach to be taken for the
intended testing activities and includes the items to be tested, the types of tests to
be performed, test schedules, human resources, reporting procedures, evaluation
criteria, and so on.

During logical, physical, and program unit design, the test plan is refined with
more details. Test cases are also created. A test case is a specific set of test data and
test scripts. A test script guides the tester through a test and ensures consistency
among separate executions of the test. A test also includes the expected results, so
that it can be verified whether the test met the objective correctly. During the cod-
ing phase, test scripts and test data are generated. During application testing, the
test scripts are executed and the results are analyzed.

Figure 6.2 shows a correspondence between application development and the
testing activities. The application development cycle proceeds from user require-
ments and design until the code is completed. During test design and development,
the acceptance test criteria are established in a test plan. As more details are refined,
the system, integration, and unit testing requirements are established. There may be
a separate test plan for each test type, or one plan may be used.

During test execution, the process is reversed. Test execution starts with unit
testing. Integration tests are performed that combine individual unit-tested pieces
of code. Once this is completed, the system is tested from a total system point of
view. This is known as system testing. System testing is a multifaceted test to evalu-
ate the functionality, performance, and usability of the system. The final test is the
acceptance test, which is a user-run test that verifies the ability of the system to

© 2009 by Taylor & Francis Group, LLC

Overview m 91

meet the original user objectives and requirements. In some cases the system test
serves as the acceptance test.

If you will recall, the PDCA approach (i.e., Plan, Do, Check, and Act) is a con-
trol mechanism used to control, supervise, govern, regulate, or restrain a system.
The approach first defines the objectives of a process, develops and carries out the
plan to meet those objectives, and checks to determine if the anticipated results are
achieved. If they are not achieved, the plan is modified to fulfill the objectives. The
PDCA quality cycle can be applied to software testing.

The Plan step of the continuous improvement process, when applied to soft-
ware testing, starts with a definition of the test objectives; for example, what is to be
accomplished as a result of testing. Testing criteria do more than simply ensure that
the software performs according to specifications. Objectives ensure that all respon-
sible individuals contribute to the definition of the test criteria, to maximize quality.

A major deliverable of this step is a software test plan. A test plan is the basis for
accomplishing testing. The test plan should be considered an ongoing document.
As the system changes, so does the plan. The test plan also becomes part of the sys-
tem maintenance documentation after the application is delivered to the user. The
outline of a good test plan includes an introduction, the overall plan, and testing
requirements. As more detail is available, the business functions, test logs, problem
and summary reports, test software, hardware, data, personnel requirements, test
schedule, test entry criteria, and exit criteria are added.

The Do step of the continuous improvement process when applied to software
testing describes how to design and execute the tests included in the test plan. The
test design includes test cases, test procedures and scripts, expected results, func-
tion/test case matrix, test logs, and so on. The more definitive a test plan is, the
casier the test design will be. If the system changes between development of the test
plan and when the tests are to be executed, the test plan should be updated accord-
ingly; that is, whenever the system changes, the test plan should change.

The test team is responsible for the execution of the tests and must ensure that
the test is executed according to the plan. Elements of the Do step include selecting
test tools; defining the resource requirements; and defining the test setup conditions
and environment, test requirements, and the actual testing of the application.

The Check step of the continuous improvement process when applied to soft-
ware testing includes the evaluation of how the testing process is progressing. Again,
the credo for statisticians, “In God we trust. All others must use data,” is crucial
to the Deming method. It is important to base decisions as much as possible on
accurate and timely data. Testing metrics such as the number and types of defects,
the workload effort, and the schedule status are key.

It is also important to create test reports. Testing began with setting objectives,
identifying functions, selecting tests to validate the test functions, creating test
conditions, and executing the tests. To construct test reports, the test team must
formally record the results and relate them to the test plan and system objectives.
In this sense, the test report reverses all the previous testing tasks.

© 2009 by Taylor & Francis Group, LLC

92 m Software Testing and Continuous Quality Improvement

Summary and interim test reports should be written at the end of testing and
at key testing checkpoints. The process used for report writing is the same whether
it is an interim or a summary report, and, similar to other tasks in testing, report
writing is also subject to quality control; that is, it should be reviewed. A test report
should at least include a record of defects discovered, data reduction techniques,
root cause analysis, the development of findings, and recommendations to manage-
ment to improve the testing process.

The Act step of the continuous improvement process when applied to software
testing includes devising measures for appropriate actions relating to work that was
not performed according to the plan or results that were not anticipated in the plan.
This analysis is fed back to the plan. Examples include updating the test suites, test
cases, and test scripts, and reevaluating the people, process, and technology dimen-
sions of testing.

The Testing Bible: Software Test Plan

A test plan is a document describing the approach to be taken for intended testing
activities and serves as a service-level agreement between the quality assurance test-
ing function and other interested parties, such as development. A test plan should be
developed early in the development cycle, and will help improve the interactions of
the analysis, design, and coding activities. A test plan defines the test objectives, scope,
strategy and approach, test procedures, test environment, test completion criteria,
test cases, items to be tested, the tests to be performed, the test schedules, personnel
requirements, reporting procedures, assumptions, risks, and contingency planning.

When developing a test plan, one should be sure that it is simple, complete,
current, and accessible by the appropriate individuals for feedback and approval. A
good test plan flows logically and minimizes redundant testing, demonstrates full
functional coverage, provides workable procedures for monitoring, tracking, and
reporting test status, contains a clear definition of the roles and responsibilities of the
parties involved, has target delivery dates, and clearly documents the test results.

There are two ways of building a test plan. The first approach is a master test
plan that provides an overview of each detailed test plan, that s, a test plan of a test
plan. A detailed test plan verifies a particular phase in the waterfall development
life cycle. Test plan examples include unit, integration, system, and acceptance.
Other detailed test plans include application enhancements, regression testing, and
package installation. Unit test plans are code oriented and very detailed, but short
because of their limited scope. System or acceptance test plans focus on the func-
tional test or black-box view of the entire system, not just a software unit. (See
Appendix E1, “Unit Test Plan,” and Appendix E2, “System/Acceptance Test Plan,”
for more details.)

The second approach is one test plan. This approach includes all the test types
in one test plan, often called the acceptance/system test plan, but covers unit,

© 2009 by Taylor & Francis Group, LLC

Overview m 93

integration, system, and acceptance testing, and all the planning considerations to
complete the tests.

A major component of a test plan, often in the “Test Procedure” section, is a
test case, as shown in Figure 6.3. (Also see Appendix E8, “Test Case.”) A test case
defines the step-by-step process whereby a test is executed. It includes the objectives
and conditions of the test, the steps needed to set up the test, the data inputs, the
expected results, and the actual results. Other information such as the software,
environment, version, test ID, screen, and test type is also provided.

Major Steps in Developing a Test Plan

A test plan is the basis for accomplishing testing and should be considered a living
document; that is, as the application changes, the test plan should change.

A good test plan encourages the attitude of “quality before design and coding.”
It is able to demonstrate that it contains full functional coverage, and the test cases
trace back to the functions being tested. It also contains workable mechanisms for
monitoring and tracking discovered defects and report status. Appendix E2 is a
System/Acceptance Test Plan template that combines unit, integration, and system
test plans into one. It is also used in this section to describe how a test plan is built
during the waterfall life-cycle development methodology.

The following are the major steps that need to be completed to build a good
test plan.

Step 1: Define the Test Objectives

The first step in planning any test is to establish what is to be accomplished as a
result of the testing. This step ensures that all responsible individuals contribute
to the definition of the test criteria that will be used. The developer of a test plan
determines what is going to be accomplished with the test, the specific tests to be
performed, the test expectations, the critical success factors of the test, constraints,
scope of the tests to be performed, the expected end products of the test, a final
system summary report (see Appendix E11, “System Summary Report”), and the
final signatures and approvals. The test objectives are reviewed and approval for the
objectives is obtained.

Step 2: Develop the Test Approach

The test plan developer outlines the overall approach or how each test will be per-
formed. This includes the testing techniques that will be used, test entry criteria,
test exit criteria, procedures to coordinate testing activities with development, the
test management approach, such as defect reporting and tracking, test progress

© 2009 by Taylor & Francis Group, LLC

94 m Software Testing and Continuous Quality Improvement

Date: Tested by:

System: Environment:

Objective: Test ID Reg. ID
Function: Screen:

Version: Test Type:

(Unit, Integ., System, Accept.)

Condition to test:

Data/steps to perform

Expected results:

Actual results: Passed Failed

Figure 6.3 Test case form.

© 2009 by Taylor & Francis Group, LLC

Overview ® 95

tracking, status reporting, test resources and skills, risks, and a definition of the test
basis (functional requirement specifications, etc.).

Step 3: Define the Test Environment

The test plan developer examines the physical test facilities, defines the hardware,
software, and networks, determines which automated test tools and support tools
are required, defines the help desk support required, builds special software required
for the test effort, and develops a plan to support the foregoing,.

Step 4: Develop the Test Specifications

The developer of the test plan forms the test team to write the test specifications,
develops test specification format standards, divides up the work tasks and work
breakdown, assigns team members to tasks, and identifies features to be tested. The
test team documents the test specifications for each feature and cross-references
them to the functional specifications. It also identifies the interdependencies and
work flow of the test specifications and reviews the test specifications.

Step 5: Schedule the Test

The test plan developer develops a test schedule based on the resource availabil-
ity and development schedule, compares the schedule with deadlines, balances
resources and workload demands, defines major checkpoints, and develops con-
tingency plans.

Step 6: Review and Approve the Test Plan

The test plan developer or manager schedules a review meeting with the major play-
ers, reviews the plan in detail to ensure it is complete and workable, and obtains
approval to proceed.

Components of a Test Plan

A system or acceptance test plan is based on the requirement specifications and is
required in a very structured development and test environment. System testing
evaluates the functionality and performance of the whole application and consists
of a variety of tests, including performance, usability, stress, documentation, secu-
rity, volume, recovery, and so on. Acceptance testing is a user-run test that demon-
strates the application’s ability to meet the original business objectives and system
requirements, and usually consists of a subset of system tests.

© 2009 by Taylor & Francis Group, LLC

96 m Software Testing and Continuous Quality Improvement

Table 6.1 cross-references the sections of Appendix E2, “System/Acceptance
Test Plan,” against the waterfall life-cycle development phases. “Start” in the
intersection indicates the recommended start time, or first-cut of a test activ-
ity. “Refine” indicates a refinement of the test activity started in a previous life-
cycle phase. “Complete” indicates the life-cycle phase in which the test activity
is completed.

Technical Reviews as a Continuous
Improvement Process

Quality control is a key preventive component of quality assurance. Defect removal
via technical reviews during the development life cycle is an example of a quality
control technique. The purpose of technical reviews is to increase the efficiency
of the development life cycle and provide a method to measure the quality of the
products. Technical reviews reduce the amount of rework, testing, and “quality
escapes,” that is, undetected defects. They are the missing links to removing defects
and can also be viewed as a testing technique, even though we have categorized
testing as a separate quality assurance component.

Originally developed by Michael Fagan of IBM in the 1970s, inspections have
several aliases. They are often referred to interchangeably as “peer reviews,” “inspec-
tions,” or “structured walkthroughs.” Inspections are performed at each phase of
the development life cycle from user requirements through coding. In the latter,
code walkthroughs are performed in which the developer walks through the code
for the reviewer.

Research demonstrates that technical reviews can be a lot more productive than
automated testing techniques in which the application is executed and tested. A
technical review is a form of testing, or manual testing, not involving program
execution on the computer. Structured walkthroughs and inspections are a more
efficient means of removing defects than software testing alone. They also remove
defects eatlier in the life cycle, thereby reducing defect-removal costs significantly.
They represent a highly efficient, low-cost technique of defect removal and can
potentially result in a reduction of defect-removal costs of greater than two thirds
when compared to dynamic software testing. A side benefit of inspections includes
the ability to periodically analyze the defects recorded and remove the root causes
early in the software development life cycle.

The purpose of the following section is to provide a framework for implementing
software reviews. Discussed is the rationale for reviews, the roles of the participants,
planning steps for effective reviews, scheduling, allocation, agenda definition, and
review reports.

© 2009 by Taylor & Francis Group, LLC

Table 6.1

System/Acceptance Test Plan versus Phase

Logical | Physical Program
Requirements | Design | Design | Unit Design Coding
Test Section Phase Phase Phase Phase Phase
1. Introduction
a. System description Start Refine | Refine Complete
b. Objective Start Refine | Refine Complete
c. Assumptions Start Refine | Refine Complete
d. Risks Start Refine | Refine Complete
e. Contingencies Start Refine | Refine Complete
f. Constraints Start Refine | Refine Complete
g. Approval signatures Start Refine | Refine Complete
2. Test approach and strategy
a. Scope of testing Start Refine | Refine Complete
b. Test approach Start Refine | Refine Complete
c. Types of tests Start Refine | Refine Complete
d. Logistics Start Refine | Refine Complete
Continued

© 2009 by Taylor & Francis Group, LLC

/6 W M3IAIDAQ

Table 6.1 System/Acceptance Test Plan versus Phase (Continued)

Logical | Physical Program

Requirements | Design | Design | Unit Design Coding

Test Section Phase Phase Phase Phase Phase
e. Regression policy Start Refine | Refine Complete
f. Test facility Start Refine Complete
g. Test procedures Start Refine Complete
h. Test organization Start Refine Complete
i. Test libraries Start Refine Complete
j. Testtools Start Refine Complete
k. Version control Start Refine Complete
I. Configuration building Start Refine Complete
m. Change control Start Refine Complete

3. Test execution setup

a. System test process Start Refine Complete
b. Facility Start Refine Complete
c. Resources Start Refine Complete
d. Tool plan Start Refine Complete
e. Test organization Start Refine Complete

© 2009 by Taylor & Francis Group, LLC

uawarosdwy Ayen) snonunuoy) pue uisaj 21emijos m 86

4. Test specifications

© 2009 by Taylor & Francis Group, LLC

a. Functional decomposition Start Refine | Refine Complete
b. Functions not to be tested Start Refine | Refine Complete
c. Unit test cases Start Complete
d. Integration test cases Start Complete
e. System test cases Start Refine Complete
f. Acceptance test cases Start Refine | Refine Complete
5. Test procedures
a. Test case, script, data development Start Refine | Refine Refine Complete
b. Test execution Start Refine | Refine Refine Complete
c. Correction Start Refine | Refine Refine Complete
d. Version control Start Refine | Refine Refine Complete
e. Maintaining test libraries Start Refine | Refine Refine Complete
f. Automated test tool usage Start Refine | Refine Refine Complete
g. Project management Start Refine | Refine Refine Complete
h. Monitoring and status reporting Start Refine | Refine Refine Complete
Continued

66 W MIIAIDAQD

Table 6.1 System/Acceptance Test Plan versus Phase (Continued)

Logical | Physical Program
Requirements | Design | Design | Unit Design Coding
Test Section Phase Phase Phase Phase Phase
6. Test tools
a. Tools to use Start Refine Complete
b. Installation and setup Start Refine Complete
c. Supportand help Start Refine Complete
7. Personnel resources
a. Required skills Start Refine | Refine Complete
b. Roles and responsibilities Start Refine | Refine Complete
c. Numbers and time required Start Refine | Refine Complete
d. Training needs Start Refine | Refine Complete
8. Test schedule
a. Development of test plan Start Refine Refine Complete
b. Design of test cases Start Refine Refine Complete
c. Development of test cases Start Refine Refine Complete
d. Execution of test cases Start Refine Refine Complete
e. Reporting of problems Start Refine Refine Complete
f. Developing test summary report Start Refine Refine Complete
g. Documenting test summary report Start Refine Refine Complete

© 2009 by Taylor & Francis Group, LLC

juawarosdwy Aypen snonunuo) pue 8uijsaj a1emyyjos m 0L

Overview m 101

Motivation for Technical Reviews

The motivation for a review is that it is impossible to test all software. Clearly,
exhaustive testing of code is impractical. Technology also does not exist for testing
a specification or high-level design. The idea of testing a software test plan is also
bewildering. Testing also does not address quality issues or adherence to standards,
which are possible with review processes.

There are a variety of software technical reviews available for a project, depending
on the type of software product and the standards that affect the review processes.
The types of reviews depend on the deliverables to be produced. For example, for a
Department of Defense contract, there are certain stringent standards for reviews
that must be followed. These requirements may not be required for in-house appli-
cation development.

A review increases the quality of the software product, reduces rework and
ambiguous efforts, reduces testing, and defines test parameters, and is a repeatable
and predictable process. It is an effective method for finding defects and discrepan-
cies; it increases the reliability of the delivered product, has a positive impact on the
schedule, and reduces development costs.

Early detection of errors reduces rework at later development stages, clarifies
requirements and design, and identifies interfaces. It reduces the number of failures
during testing, reduces the number of retests, identifies requirements testability,
and helps identify missing or ambiguous requirements.

Types of Reviews

There are formal and informal reviews. Informal reviews occur spontaneously
among peers; the reviewers do not necessarily have any responsibility and do not
have to produce a review report. Formal reviews are carefully planned meetings in
which reviewers are held responsible for their participation, and a review report is
generated that contains action items.

The spectrum of review ranges from very informal peer reviews to extremely
formal and structured inspections. The complexity of a review is usually correlated
to the complexity of the project. As the complexity of a project increases, the need
for more formal reviews increases.

Structured Walkthroughs

A structured walkthrough is a presentation review in which a review participant, usu-
ally the developer of the software being reviewed, narrates a description of the soft-
ware, and the remainder of the group provides feedback throughout the presentation.
Testing deliverables such as test plans, test cases, and test scripts can also be reviewed
using the walkchrough technique. These are referred to as presentation reviews because
the bulk of the feedback usually occurs only for the material actually presented.

© 2009 by Taylor & Francis Group, LLC

102 m Software Testing and Continuous Quality Improvement

Advance preparation of the reviewers is not necessarily required. One potential
disadvantage of a structured walkthrough is that, because of its informal struc-
ture, disorganized and uncontrolled reviews may result. Walkthroughs may also be
stressful if the developer is conducting the walkthrough.

Inspections

The inspection technique is a formally defined process for verification of the soft-
ware product throughout its development. All software deliverables are examined
at defined phases to assess the current status and quality effectiveness, from the
requirements to coding phase. One of the major decisions within an inspection is
whether a software deliverable can proceed to the next development phase.

Software quality is achieved in a product during the early stages when the cost
to remedy defects is 10 to 100 times less than it would be during testing or main-
tenance. It is, therefore, advantageous to find and correct defects as near to their
point of origin as possible. Exit criteria are the standard against which inspections
measure completion of the product at the end of a phase.

The advantages of inspections are that they are very systematic, controlled, and
less stressful. The inspection process promotes the concept of egoless programming.
If managed propetly, it is a forum in which developers need not become emotion-
ally protective of the work produced. An inspection requires an agenda to guide the
review preparation and the meeting itself. Inspections have rigorous entry and exit
requirements for the project work deliverables.

A major difference between structured walkthroughs and inspections is that
inspections collect information to improve the development and review processes
themselves. In this sense, an inspection is more of a quality assurance technique
than walkthroughs.

Phased inspections apply the PDCA (Plan, Do, Check, and Act) quality model.
Each development phase has entrance requirements; for example, how to qualify
to enter an inspection and exit criteria, and how to know when to exit the inspec-
tion. In-between the entry and exit are the project deliverables that are inspected.
In Table 6.2, the steps of a phased inspection and the corresponding PDCA steps
are shown.

The Plan step of the continuous improvement process consists of inspection
planning and preparing an education overview. The strategy of an inspection is
to design and implement a review process that is timely, efficient, and effective.
Specific products are designated, as are acceptable criteria, and meaningful metrics
are defined to measure and maximize the efficiency of the process. Inspection mate-
rials must meet inspection entry criteria. The right participants are identified and
scheduled. In addition, a suitable meeting place and time are decided. The group of
participants is educated on what is to be inspected and their roles.

The Do step includes individual preparation for the inspections and the inspec-
tion itself. Participants learn the material and prepare for their assigned roles, and

© 2009 by Taylor & Francis Group, LLC

Overview m 103

Table 6.2 PDCA Process and Inspections

Inspection Step Description Plan | Do | Check | Act

1. Planning Identify participants, get J
materials together, schedule
the overview

2. Overview Educate for the inspections J

3. Preparation Individual preparation for the v
inspections

4. Inspection Actual inspection to identify J v
defects

5. Rework Rework to correct any defects

6. Follow-up Follow up to ensure all defects

are corrected

the inspection proceeds. Each review is assigned one or more specific aspects of the
product to be reviewed in terms of technical accuracy, standards and conventions,
quality assurance, and readability.

The Check step includes the identification and documentation of the defects
uncovered. Defects are discovered during the inspection, but solution hunting and
the discussion of design alternatives are discouraged. Inspections are a review pro-
cess, not a solution session.

The Act step includes the rework and follow-up required to correct any defects.
The author reworks all discovered defects. The team ensures that all the potential cor-
rective actions are effective and no secondary defects are inadvertently introduced.

By going around the PDCA cycle for each development phase using inspec-
tions, we verify and improve each phase deliverable at its origin and stop it dead in
its tracks when defects are discovered (see Figure 6.4). The next phase cannot start
until the discovered defects are corrected. The reason is that it is advantageous to
find and correct defects as near to their point of origin as possible. Repeated applica-
tion of the PDCA results in an ascending spiral, facilitating quality improvement at
each phase. The end product is dramatically improved, and the bewildering task of
the software testing process will be minimized; for example, a lot of the defects will
have been identified and corrected by the time the testing team receives the code.

Participant Roles

Roles will depend on the specific review methodology being followed, that is, struc-
tured walkthroughs or inspections. These roles are functional, which implies that it

© 2009 by Taylor & Francis Group, LLC

104 ®m Software Testing and Continuous Quality Improvement

Verifies
PDCA User < Accepfance
Requirements Testing
Logical |_ Verifies System
PDCA Design Testing

PDCA |:' Physical | Verifies Integration
Design Testing

Verifies

Program Unit
PDCA |: Unit Design = Testing

PDCA [Coding

Figure 6.4 Phased inspections as an ascending spiral.

is possible in some reviews for a participant to execute more than one role. The role of
the review participants after the review is especially important because many errors
identified during a review may not be fixed correctly by the developer. This raises the
issue of who should follow up on a review and whether another review is necessary.

The review leader is responsible for the review. This role requires scheduling the
review, conducting an orderly review meeting, and preparing the review report. The
review leader may also be responsible for ensuring that action items are properly
handled after the review process. Review leaders must possess both technical and
interpersonal management characteristics. The interpersonal management qualities
include leadership ability, mediator skills, and organizational talents. The review
leader must keep the review group focused at all times and prevent the meeting
from becoming a problem-solving session. Material presented for review should not
require the review leader to spend more than two hours for preparation.

The recorder role in the review process guarantees that all information nec-
essary for an accurate review report is preserved. The recorder must understand
complicated discussions and capture their essence in action items. The role of the
recorder is cleatly a technical function and one that cannot be performed by a non-
technical individual.

The reviewer role is to objectively analyze the software and be accountable for
the review. An important guideline is that the reviewer must keep in mind that it
is the software that is being reviewed and not the producer of the software. This
cannot be overemphasized. Also, the number of reviewers should be limited to six.
If too many reviewers are involved, productivity will decrease.

In a technical review, the producer may actually lead the meeting in an orga-
nized discussion of the software. A degree of preparation and planning is needed
in a technical review to present material at the proper level and pace. The attitude

© 2009 by Taylor & Francis Group, LLC

Overview m 105

of the producer is also important, and it is essential that he or she does not become
defensive. This can be facilitated by the group leader’s emphasizing that the purpose
of the inspection is to uncover defects and produce the best product possible.

Steps for an Effective Review

Step 1: Plan for the Review Process

Planning can be described at both the organizational level and the specific review
level. Considerations at the organizational level include the number and types of
reviews that are to be performed for the project. Project resources must be allocated
for accomplishing these reviews.

At the specific review level, planning considerations include selecting partici-
pants and defining their respective roles, scheduling the review, and developing a
review agenda. There are many issues involved in selecting the review participants.
It is a complex task normally performed by management, with technical input.
When selecting review participants, care must be exercised to ensure that each
aspect of the software under review can be addressed by at least some subset of the
review team.

To minimize the stress and possible conflicts in the review processes, it is impor-
tant to discuss the role that a reviewer plays in the organization and the objectives
of the review. Focusing on the review objectives will lessen personality conflicts.

Step 2: Schedule the Review

A review should ideally take place soon after a producer has completed the software
but before additional effort is expended on work dependent on the software. The
review leader must state the agenda based on a well-thought-out schedule. If all the
inspection items have not been completed, another inspection should be scheduled.
The problem of allocating sufficient time to a review stems from the difficulty in
estimating the time needed to perform the review. The approach that must be taken
is the same as that for estimating the time to be allocated for any meeting; that is,
an agenda must be formulated and time estimated for each agenda item. An effec-
tive technique is to estimate the time for each inspection item on a time line.
Another scheduling problem is the duration of the review when the review is
too long. This requires that review processes be focused in terms of their objec-
tives. Review participants must understand these review objectives and their
implications in terms of actual review time, as well as preparation time, before
committing to the review. The deliverable to be reviewed should meet a certain
set of entry requirements before the review is scheduled. Exit requirements must

also be defined.

© 2009 by Taylor & Francis Group, LLC

106 ® Software Testing and Continuous Quality Improvement

Step 3: Develop the Review Agenda

A review agenda must be developed by the review leader and the producer prior to
the review. Although review agendas are specific to any particular product and the
objective of its review, generic agendas should be produced for related types of prod-
ucts. These agendas may take the form of checklists (see Appendix F, “Checklists,”
for more details).

Step 4: Create a Review Report

The output of a review is a report. The format of the report is not important. The
contents should address the management perspective, user perspective, developer
perspective, and quality assurance perspective.

From a management perspective, the review report serves as a summary of the
review that highlights what was reviewed, who did the reviewing, and their assess-
ment. Management needs an estimate of when all action items will be resolved to
successfully track the project.

The user may be interested in analyzing review reports for some of the same rea-
sons as the manager. The user may also want to examine the quality of intermediate
work products in an effort to monitor the development organization’s progress.

From a developer’s perspective, the critical information is contained in the
action items. These may correspond to actual errors, possible problems, inconsis-
tencies, or other considerations that the developer must address.

The quality assurance perspective of the review report is twofold: quality assurance
must ensure that all action items in the review report are addressed, and it should also
be concerned with analyzing the data on the review forms and classifying defects to
improve the software development and review process. For example, a large number
of specification errors might suggest a lack of rigor or time in the requirements speci-
fications phase of the project. Another example is a large number of defects reported,
suggesting that the software has not been adequately unit tested.

© 2009 by Taylor & Francis Group, LLC

Chapter 7

Static Testing the
Requirements

The testing process should begin early in the application development life cycle,
not just at the traditional testing phase at the end of coding. Testing should be
integrated with the application development phases.

During the requirements phase of the software development life cycle, the busi-
ness requirements are defined on a high level and are the basis of the subsequent
phases and the final implementation. Testing in its broadest sense commences
during the requirements phase (see Figure 7.1), which increases the probability of
developing a quality system based on the user’s expectations. The result is that the
requirements are verified to be correct and complete. Unfortunately, more often than
not, poor requirements are produced at the expense of the application. Poor require-
ments ripple down the waterfall and result in a product that does not meet the user’s
expectations. Some characteristics of poor requirements include the following:

Partial set of functions defined
Performance not considered
Ambiguous requirements

Security not defined

Interfaces not documented

Erroneous and redundant requirements
Requirements too restrictive
Contradictory requirements

Functionality is the most important part of the specification and should include
a hierarchic decomposition of the functions. The reason for this is that it provides

107

© 2009 by Taylor & Francis Group, LLC

108 ®m Software Testing and Continuous Quality Improvement

. User - Verifies Acceptance
PDCA Requirements Testing
i i Verifies
PDCA Logl.cal < Systfem
Design Testing

PDCA Physical | Verifies | Integration

Design Testing
Verifies
PDCA P.rograr.n < Unit
Unit Design Testing

PDCA |: Coding

Figure 7.1 Requirements phase and acceptance testing.

a description that is described in levels to enable all the reviewers to read as much
detail as needed. Specifically, this will make the task of translating the specification
to test requirements much easier.

Another important element of the requirements specification is the data descrip-
tion (see Appendix C, “Requirements Specification,” for more details). It should
contain details such as whether the database is relational or hierarchical. If it is
hierarchical, a good representation is a data model or entity relationship diagram in
terms of entities, attributes, and relationships.

Another section in the requirements should be a description of the interfaces
between the system and external entities that interact with the system, such as
users, external software, or external hardware. A description of how users will inter-
act with the system should be included. This would include the form of the inter-
face and the technical capabilities of the users.

During the requirements phase, the testing organization needs to perform two
functions simultaneously. It needs to build the system/acceptance test plan and also
verify the requirements. The requirements verification entails ensuring the correct-
ness and completeness of the documentation prepared by the development team.

Testing the Requirements with Ambiguity Reviews

An Ambiguity Review, developed by Richard Bender from Bender RBT, Inc., is a
very powerful testing technique that eliminates defects in the requirements phase
of the software life cycle, thereby avoiding those defects from propagating to the
remaining phases of the software development life cycle. A QA Engineer trained in
the technique performs the Ambiguity Review. The Engineer is not a domain expert

© 2009 by Taylor & Francis Group, LLC

Static Testing the Requirements ® 109

(SME), and is not reading the requirements for content, but only to identify ambi-
guities in the logic and structure of the wording. The Ambiguity Review takes place
after the requirements, or section of the requirements, reach first draft, and prior
to them being reviewed for content, i.e. correctness and completeness by domain
experts. The Engineer identifies all ambiguous words and phrases on a copy of the
requirements. A summary of the findings is presented to the Business Analyst.

The Ambiguity Review Checklist identifies 15 common problems that occur in
writing requirements.

Testing the Requirements with Technical Reviews

A software technical review is a form of peer review in which a team of qualified
personnel examines the suitability of the software product for its intended use and
identifies descrepancies from specifications and standards. Technical reviews may
also provide recommendations of alternatives and examiniation of various alterna-
tives. Technical reviews differ from software walkthroughs in its specific focus is on
the technical quality of the product reviews. It differs from a software inspection
in its ability to suggest direct alterations to the product reviewed, and its lack of a
direct focus on training and process improvements (Source: Std. 1028-1997, IEEE
Standard for Software Reviews, clause 3.7).

Inspections and Walkthroughs

These are formal techniques to evaluate the documentation form, interface require-
ments, and solution constraints as described in the previous section.

Checklists

These are oriented toward quality control and include questions to ensure the com-
pleteness of the requirements.

Methodology Checklist

This provides the methodology steps and tasks to ensure that the methodology
is followed.

If the review is totally successful with no outstanding issues or defects dis-
covered, the requirements specification is frozen, and any further refinements are
monitored rigorously. If the review is not totally successful and there are minor
issues during the review, the author corrects them. The corrections are reviewed by
the moderator and signed off. On the other hand, if major issues and defects are

© 2009 by Taylor & Francis Group, LLC

110 m Software Testing and Continuous Quality Improvement

Table 7.1 Requirements Phase Defect Recording

Defect Category Missing | Wrong Extra Total

1. Operating rules (or
information) are inadequate or
partially missing

2. Performance criteria (or
information) are inadequate or
partially missing

3. Environment information is
inadequate or partially missing

4. System mission information is
inadequate or partially missing

5. Requirements are incompatible

6. Requirements are incomplete

7. Requirements are missing

8. Requirements are incorrect

9. The accuracy specified does not
conform to the actual need

10. The data environment is
inadequately described

discovered during the requirements review process, the defects are corrected; a new
review then occurs with the same review members at a later time.

Each defect uncovered during the requirements phase review should be docu-
mented. Requirement defect trouble reports are designed to assist in the proper
recording of these defects. It includes the defect category and defect type. The
description of each defect is recorded under the missing, wrong, or extra columns.
At the conclusion of the requirements review, the defects are summarized and
totaled. Table 7.1 shows a partial requirements phase defect recording form (see
Appendix F1, “Requirements Phase Defect Checklist,” for more details).

Requirements Traceability Matrix

A requirements traceability matrix is a document that traces user requirements from
analysis through implementation. It can be used as a completeness check to verify
that all requirements are present or that there are no unnecessary/extra features,

© 2009 by Taylor & Francis Group, LLC

Static Testing the Requirements ® 111

and as a maintenance guide for new personnel. At each step in the development
cycle, the requirements, code, and associated test cases are recorded to ensure that
the user requirement is addressed in the final system. Both the user and developer
have the ability to easily cross-reference the requirements to the design specifica-
tions, programming, and test cases. (See Appendix E3, “Requirements Traceability
Matrix,” for more details.)

Building the System/Acceptance Test Plan

Acceprance testing verifies that a system satisfies the user’s acceptance criteria. The
acceptance test plan is based on the requirement specifications and is required in
a formal test environment. This test uses black-box techniques to test the system
against its specifications and is generally performed by the end user. During accep-
tance testing, it is important for the project team to coordinate the testing process
and update the acceptance criteria, as needed. Acceptance testing is often combined
with the system-level test plan, which is the case in this discussion.

The requirements phase is the first development phase that is completed before
proceeding to the logical design, physical design, program unit design, and coding
phases. During the requirements phase, it is not expected that all sections in the
test plan will be completed, because not enough information is available.

In the Introduction section of the test plan (see Appendix E2, “System/
Acceptance Test Plan”), the documentation of “first-cut” test activities begins.
Included are the system description, the overall system description, acceptance test
objectives, assumptions, risks, contingencies, and constraints. At this point, some
thought about the appropriate authorities for the approval signatures begins.

The key parts in the Test Approach and Strategy section include: (1) the scope
of testing, (2) test approach, (3) types of tests, (4) logistics, and (5) the regression
policy. The scope of testing defines the magnitude of the testing effort, for example,
whether to test the whole system or part of it. The testing approach documents the
basis of the test design approach, for example, black-box, white-box, gray-box test-
ing, incremental integration, and so on. The types of tests identify the test types,
such as unit, integration, system, or acceptance, that will be performed within the
testing scope. Details of the types of system-level tests may not be available at this
point because of the lack of details, but will be available during the next phase.
Logistics documents the working relationship between the development and test-
ing organizations and other interested parties. It defines such issues as how and
when the testing group will receive the software, and how defects will be recorded,
corrected, and verified. The regression policy determines whether previously tested
system functions perform properly after changes are introduced.

A major difficulty in testing the requirements document is that testers have
to determine whether the problem definition has been translated properly to the

© 2009 by Taylor & Francis Group, LLC

112 ®m Software Testing and Continuous Quality Improvement

Test Test Case

Requirement\ | 1 | 23| 45|67 |8]9 Comment

Functional
1
2 Q T
3
4 Q Q
Performance
1
2 T
3 Q Q Q

Security
1 U

2
3 Q
4

U — Users reviewed
Q - QA reviewed
T — Ready for testing

Figure 7.2 Requirements/test matrix.

requirements document. This requires envisioning the final product and coming up
with what should be tested to determine that the requirement solves the problem.

A useful technique to help analyze, review, and document the initial cut at
the functional decomposition of the system in the Test Specifications section is
the requirement/test matrix (see Figure 7.2). This matrix defines the scope of the
testing for the project and ensures that tests are specified for each requirement as
documented in the requirements specification. It also helps identify the functions
to be tested as well as those not to be tested.

Some benefits of the requirements/test matrix are that it:

1. Correlates the tests and scripts with the requirements

2. Facilitates status of reviews

3. Acts as a traceability mechanism throughout the development cycle, ex.
requirement, test case(s), defect(s) linkage

The requirement/test matrix in Figure 7.2 documents each requirement and cor-
relates it with the test cases and scripts to verify it. The requirements listed on the

© 2009 by Taylor & Francis Group, LLC

Static Testing the Requirements ® 113

left side of the matrix can also aid in defining the types of system tests in the Test
Approach and Strategy section.

It is unusual to come up with a unique test case for each requirement and, there-
fore, it takes several test cases to test a requirement thoroughly. This enables reusability
of some test cases to other requirements. Once the requirement/test matrix has been
built, it can be reviewed, and test case design and script building can commence.

The status column is used to track the status of each test case as it relates to a
requirement. For example, “Q” in the status column can indicate that the require-
ment has been reviewed by QA, “U” can indicate that the users had reviewed the
requirement, and “T” can indicate that the test case specification has been reviewed
and is ready.

In the Test Specifications section of the test plan, information about the accep-
tance tests is available and can be documented. These tests must be passed for the
user to accept the system. A procedure is a series of related actions carried out using
an operational mode, that is, one that tells how to accomplish something. The fol-
lowing information can be documented in the Test Procedures section: test case,
script, data development, test execution, correction, version control, maintaining
test libraries, automated test tool usage, project management, monitoring, and sta-
tus reporting.

It is not too early to start thinking about the testing personnel resources that
will be needed. This includes the required testing skills, roles and responsibilities,
the numbers and time required, and the personnel training needs.

© 2009 by Taylor & Francis Group, LLC

Chapter 8

Static Testing the
Logical Design

The business requirements are defined during the requirements phase. The logical
design phase refines the business requirements in preparation for a system speci-
fication that can be used during physical design and coding. The logical design
phase further refines the business requirements that were defined in the require-
ment phase, from a functional and information model point of view.

Data Model, Process Model, and the Linkage

The logical design phase establishes a detailed system framework for building the
application. Three major deliverables from this phase are the data model, also
known as an entity relationship diagram, a process model, and the linkage between
the two.

A data model is a representation of the information needed or data object types
required by the application. It establishes the associations between people, places,
and entities of importance to the application and is used later in physical database
design, which is part of the physical design phase. A data model is a graphical tech-
nique used to define the entities and the relationships. An entity is something about
which we want to store data. It is a uniquely identifiable person, place, object, or
event of interest to the user, about which the application is to maintain and report
data. Examples of entities are customers, orders, offices, and purchase orders.

115

© 2009 by Taylor & Francis Group, LLC

116 ®m Software Testing and Continuous Quality Improvement

Each entity is a table divided horizontally into rows and columns. Each row is
a specific occurrence of each entity, much like records in a file. Each column is an
actribute that helps describe the entity. Examples of attributes include size, date,
value, and address. Each entity in a data model does not exist by itself; it is linked
to other entities by relationships. A relationship is an association between two or
more entities of interest to the user, about which the application is to maintain and
report data. There are three types of relationships: a one-to-one relationship links
a single occurrence of an entity to zero or one occurrence of another entity; a one-
to-many relationship links one occurrence of an entity to zero or more occurrences
of an entity; and a many-to-many relationship links many occurrences of an entity
to many occurrences of an entity. The type of relationship defines the cardinality
of the entity relationships. See Appendix G10, “Database Testing,” for more details
about data modeling.

A process is a business activity together with the associated inputs and outputs.
Examples of processes are accept order, update inventory, ship orders, and schedule
class. A process model is a graphical representation and should describe what the
process does but not refer to why, how, or when the process is carried out. These are
physical attributes of a process that are defined in the physical design phase.

A process model is a decomposition of the business. Process decomposition is
the breakdown of the activities into successively more detail. It starts at the top
until elementary processes, the smallest unit of activity that has meaning to the
user, are defined.

A process decomposition diagram is used to illustrate processes in a hierarchi-
cal structure showing successive levels of detail. The diagram is built iteratively as
processes and nonelementary processes are decomposed. The root of a process is the
starting point of the decomposition. A parent is the process at a higher level than
lower levels. A child is the lower level that is joined to a higher level, or parent. A
data flow diagram is often used to verify the process decomposition. It shows all
the processes, data store accesses, and the incoming and outgoing data flows. It also
shows the flows of data to and from entities external to the processes.

An association diagram, often called a CRUD matrix or process/data matrix,
links data and process models (see Figure 8.1). It helps ensure that the data and
processes are discovered and assessed. It identifies and resolves matrix omissions
and conflicts, and helps refine the data and process models, as necessary. It maps
processes against entities, showing which processes create, read, update, or delete
the instances in an entity.

This is often called “entity life-cycle analysis.” It analyzes the birth and death
of an entity and is performed by process against the entity. The analyst first verifies
that there is an associated process to create instances in the entity. If there is an
entity that has no associated process that creates it, a process is missing and must
be defined. It is then verified that there are associated processes to update, read,
or delete instances in an entity. If there is an entity that is never updated, read, or

© 2009 by Taylor & Francis Group, LLC

Static Testing the Logical Design ® 117

Entity Entity Type

Process 1 (2|34 |5|6|7 |89 Comment
Planning crud| cu cu
Selling ud | ¢ c
Scheduling c d [crud d
Compensation cu|c | d cu
Shipping crud| ud [u | ¢ |crud
Operations crud crud
Maintenance c cu cu
Cost Planning |crud crud|
Purchasing ud d
Forecasting c
Receiving c | c c
Ordering d d cu
Research crud c crud

.

Figure 8.1 CRUD matrix.

deleted, perhaps the entity may be eliminated. See Appendix G9, “CRUD Testing,”
for more details of how this can be applied to software testing,

Testing the Logical Design with Technical Reviews

The logical design phase is verified with static techniques, that is, nonexecution of
the application. As utilized in the requirements phase, these techniques check the
adherence to specification conventions and completeness of the models. The same
static testing techniques used to verify the requirements are used in the logical
design phase. The work products to be reviewed include the data model, the process
model, and CRUD matrix.

Each defect discovered during the logical design review should be documented.
A defect trouble report is designed to assist in the proper recording of these defects.
It includes the defect category and defect type. The description of each defect is
recorded under the missing, wrong, or extra columns. At the conclusion of the
logical design review, the defects are summarized and totaled. Table 8.1 shows
a sample logical design phase defect recording form (see Appendix F2, “Logical
Design Phase Defect Checklist,” for more details).

© 2009 by Taylor & Francis Group, LLC

118 ®m Software Testing and Continuous Quality Improvement

Table 8.1 Logical Design Phase Defect Recording

Defect Category Missing | Wrong Extra Total

1. The data has not been
adequately defined

2. Entity definition is incomplete

3. Entity cardinality is incorrect

4. Entity attribute is incomplete

5. Normalization is violated

6. Incorrect primary key

7. Incorrect foreign key

8. Incorrect compound key

9. Incorrect entity subtype

10. The process has not been
adequately defined

Refining the System/Acceptance Test Plan

System testing is a multifaceted test that evaluates the functionality, performance,
and fit of the whole application. It demonstrates whether the system satisfies the
original objectives. During the requirements phase, enough detail was not available
to define these types of tests. The logical design provides a great deal more informa-
tion with data and process models. The scope of testing and types of tests in the
Test Approach and Strategy section (see Appendix E2, “System/Acceptance Test
Plan”) can now be refined to include details concerning the types of system-level
tests to be performed. Examples of system-level tests to measure the fitness of use
include functional, performance, security, usability, and compatibility. The testing
approach, logistics, and regression policy are refined in this section. The rest of the
items in this section, such as the test facility, test procedures, test organization, test
libraries, and test tools, are begun. Preliminary planning for the software configu-
ration management elements, such as version and change control and configuration
building, can begin. This includes acquiring a software configuration management
tool if it does not already exist in the organization.

The Test Execution Setup section deals with those considerations for prepar-
ing for testing and includes the system test process, test facility, required testing
resources, the testing tool plan, and test organization.

In the Test Specifications section, more functional details are available from the
data and process models and added in the requirements/test matrix. At this point,

© 2009 by Taylor & Francis Group, LLC

Static Testing the Logical Design ® 119

system-level test case design is started. However, it is too early to complete detailed
test development, for example, test procedures, scripts, and the test case input/
output data values associated with each test case. Acceptance test cases should be
completed during this phase.

In the Test Procedures section, the items begun in the previous phase are refined.
Test items in the Test Tools and Test Schedule sections are begun.

© 2009 by Taylor & Francis Group, LLC

Chapter 9

Static Testing the
Physical Design

The logical design phase translates the business requirements into system specifica-
tions that can be used by programmers during physical design and coding. The
physical design phase determines how the requirements can be automated. During
this phase a high-level design is created in which the basic procedural components
and their interrelationships and major data representations are defined.

The physical design phase develops the architecture, or structural aspects, of
the system. Logical design testing is functional; however, physical design testing is
structural. This phase verifies that the design is structurally sound and accomplishes
the intent of the documented requirements. It assumes that the requirements and
logical design are correct and concentrates on the integrity of the design itself.

Testing the Physical Design with Technical Reviews

The logical design phase is verified with static techniques, that is, nonexecution of
the application. As with the requirements and logical design phases, the static tech-
niques check the adherence to specification conventions and completeness, with a
focus on the architectural design. The basis for physical design verification is design
representation schemes used to specify the design. Example design representation
schemes include structure charts, Warnier—Orr diagrams, Jackson diagrams, data
navigation diagrams, and relational database diagrams, which have been mapped
from the logical design phase.

121

© 2009 by Taylor & Francis Group, LLC

122 m Software Testing and Continuous Quality Improvement

Design representation schemes provide mechanisms for specifying algorithms
and their inputs and outputs to software modules. Various inconsistencies are pos-
sible in specifying the control flow of data objects through the modules. For exam-
ple, a module may need a particular data item that another module creates but is
not provided correctly. Static analysis can be applied to detect these types of control
flow errors.

Other errors made during the physical design can also be detected. Design
specifications are created by iteratively supplying detail. Although a hierarchical
specification structure is an excellent vehicle for expressing the design, it does not
allow for inconsistencies between levels of detail. For example, coupling measures
the degree of independence between modules. When there is little interaction
between two modules, the modules are described as loosely coupled. When there is
a great deal of interaction, they are tightly coupled. Loose coupling is considered a
good design practice.

Examples of coupling include content, common, control, stamp, and data cou-
pling. Content coupling occurs when one module refers to or changes the internals
of another module. Data coupling occurs when two modules communicate via a
variable or array (table) that is passed directly as a parameter between the two mod-
ules. Static analysis techniques can determine the presence or absence of coupling.

Static analysis of the design representations detects static errors and seman-
tic errors. Semantic errors involve information or data decomposition, functional
decomposition, and control flow. Each defect uncovered during the physical design
review should be documented, categorized, recorded, presented to the design team
for correction, and referenced to the specific document in which the defect was
noted. Table 9.1 shows a sample physical design phase defect recording form (see
Appendix F3, “Physical Design Phase Defect Checklist,” for more details).

Creating Integration Test Cases

Integration testing is designed to test the structure and the architecture of the soft-
ware and determine whether all software components interface propetly. It does not
verify that the system is functionally correct, only that it performs as designed.

Integration testing is the process of identifying errors introduced by combining
individual program unit-tested modules. It should not begin until all units are known
to perform according to the unit specifications. Integration testing can start with test-
ing several logical units or can incorporate all units in a single integration test.

Because the primary concern in integration testing is that the units interface
propetly, the objective of this test is to ensure that they integrate, that param-
eters are passed, and the file processing is correct. Integration testing techniques
include top-down, bottom-up, sandwich testing, and thread testing (see Appendix
G, “Software Testing Techniques,” for more details).

© 2009 by Taylor & Francis Group, LLC

Static Testing the Physical Design ®m 123

Table 9.1 Physical Design Phase Defect Recording

Defect Category Missing | Wrong Extra Total

1. Logic or sequencing is
erroneous

2. Processing is inaccurate

3. Routine does not input or
output required parameters

4. Routine does not accept all data
within the allowable range

5. Limit and validity checks are
made on input data

6. Recovery procedures are not
implemented or are not
adequate

7. Required processing is missing
or inadequate

8. Values are erroneous or
ambiguous

9. Data storage is erroneous or
inadequate

10. Variables are missing

Methodology for Integration Testing

The following describes a methodology for creating integration test cases.

Step 1: Identify Unit Interfaces

The developer of each program unit identifies and documents the unit’s interfaces
for the following unit operations:

External inquiry (responding to queries from terminals for information)
External input (managing transaction data entered for processing)
External filing (obtaining, updating, or creating transactions on computer files)

Internal filing (passing or receiving information from other logical process-
ing units)

© 2009 by Taylor & Francis Group, LLC

124 m Software Testing and Continuous Quality Improvement

B External display (sending messages to terminals)
B External output (providing the results of processing to some output device
or unit)

Step 2: Reconcile Interfaces for Completeness

The information needed for the integration test template is collected for all program
units in the software being tested. Whenever one unit interfaces with another, those
interfaces are reconciled. For example, if program unit A transmits data to program
unit B, program unit B should indicate that it has received that input from program
unit A. Interfaces not reconciled are examined before integration tests are executed.

Step 3: Create Integration Test Conditions

One or more test conditions are prepared for integrating each program unit. After
the condition is created, the number of the test condition is documented in the
test template.

Step 4: Evaluate the Completeness of
Integration Test Conditions

The following list of questions will help guide evaluation of the completeness of
integration test conditions recorded on the integration testing template. This list
can also help determine whether test conditions created for the integration process
are complete.

B [s an integration test developed for each of the following external inquiries?
— Record test
— File test
— Search test
— Match/merge test
— Attributes test
— Stress test
— Control test
B Are all interfaces between modules validated so that the output of one is
recorded as input to another?
B If file test transactions are developed, do the modules interface with all those
indicated files?
B s the processing of each unit validated before integration testing?
B Do all unit developers agree that integration test conditions are adequate to
test each unit’s interfaces?
B Are all software units included in integration testing?

© 2009 by Taylor & Francis Group, LLC

Static Testing the Physical Design ® 125

B Are all files used by the software being tested included in integration testing?

B Are all business transactions associated with the software being tested
included in integration testing?

B Are all terminal functions incorporated in the software being tested included
in integration testing?

The documentation of integration tests is started in the Test Specifications section
(see Appendix E2, “System/Acceptance Test Plan”). Also in this section, the func-
tional decomposition continues to be refined, but the system-level test cases should
be completed during this phase.

Test items in the Introduction section are completed during this phase. Items in
the Test Approach and Strategy, Test Execution Setup, Test Procedures, Test Tool,
Personnel Requirements, and Test Schedule continue to be refined.

© 2009 by Taylor & Francis Group, LLC

Chapter 10

Static Testing the
Program Unit Design

The design phase develops the physical architecture, or structural aspects, of the
system. The program unit design phase is refined to enable detailed design. The
program unit design is the detailed design in which specific algorithmic and data
structure choices are made. It is the specifying of the detailed flow of control that
will make it easily translatable to program code with a programming language.

Testing the Program Unit Design

with Technical Reviews

A good detailed program unit design is one that can easily be translated to many
programming languages. It uses structured techniques such as while, for, repeat,
if, and case constructs. These are examples of the constructs used in structured
programming. The objective of structured programming is to produce programs

with high quality at low cost. A structured program is one in which only three basic
control constructs are used.

Sequence

Statements are executed one after another in the same order that they appear in the
source listing. An example of a sequence is an assignment statement.

127

© 2009 by Taylor & Francis Group, LLC

128 m Software Testing and Continuous Quality Improvement

Selection

A condition is tested and, depending on whether the test is true or false, one or
more alternative execution paths are traversed. An example of a selection is an if-
then-else. With this structure, the condition is tested and, if found to be true, one
set of instructions is executed. If the condition is false, another set of instructions is
executed. Both sets join at a common point.

Iteration

Iteration is used to execute a set of instructions a number of times with a loop.
Examples of iteration are dountil and dowhile. A dountil loop executes a set of
instructions and then tests the loop termination condition. If it is true, the loop
terminates and continues to the next construct. If it is false, the set of instructions
is executed again until the termination logic is reached. A dowhile loop tests the
termination condition. If it is true, control passes to the next construct. If it is false,
a set of instructions is executed until control is unconditionally passed back to the
condition logic.

Static analysis of the detailed design detects semantic errors involving informa-
tion and logic control flow. Each defect uncovered during the program unit design
review should be documented, categorized, recorded, presented to the design team
for correction, and referenced to the specific document in which the defect was noted.
Table 10.1 shows a sample program unit design phase defect recording form (see
Appendix F4, “Program Unit Design Phase Defect Checklist,” for more details).

Creating Unit Test Cases

Unit testing is the process of executing a functional subset of the software system
to determine whether it performs its assigned function. It is oriented toward the
checking of a function or a module. White-box test cases are created and docu-
mented to validate the unit logic and black-box test cases to test the unit against
the specifications (see Appendix E8, “Test Case,” for a sample test case form). Unit
testing, along with the version control necessary during correction and retesting,
is typically performed by the developer. During unit test case development, it is
important to know which portions of the code have been subjected to test cases
and which have not. By knowing this coverage, the developer can discover lines
of code that are never executed or program functions that do not perform accord-
ing to the specifications. When coverage is inadequate, implementing the system
is risky because defects may be present in the untested portions of the code (see
Appendix G, “Software Testing Techniques,” for more unit test case development
techniques). Unit test case specifications are started and documented in the Test

© 2009 by Taylor & Francis Group, LLC

Static Testing the Program Unit Design ®m 129

Table 10.1 Program Unit Design Phase Defect Recording

Defect Category Missing | Wrong Extra Total

1. Is the if-then-else construct
used incorrectly?

2. Is the dowhile construct used
incorrectly?

3. Is the dountil construct used
incorrectly?

4. Is the case construct used
incorrectly?

5. Are there infinite loops?

6. Is ita proper program?

7. Are there goto statements?

8. Is the program readable?

9. Is the program efficient?

10. Does the case construct contain
all the conditions?

Specification section (see Appendix E2, “System/Acceptance Test Plan”), but all
other items in this section should have been completed.

All items in the Introduction, Test Approach and Strategy, Test Execution
Setup, Test Tools, and Personnel Resources should have been completed prior to
this phase. Items in the Test Procedures section, however, continue to be refined.
The functional decomposition, integration, system, and acceptance test cases
should be completed during this section. Refinement continues for all items in the
Test Procedures and Test Schedule sections.

© 2009 by Taylor & Francis Group, LLC

Chapter 11

Static Testing and
Dynamic Testing
the Code

The program unit design is the detailed design in which specific algorithmic and
data structure choices are made. Specifying the detailed flow of control will make
it easily translatable to program code with a programming language. The coding
phase is the translation of the detailed design to executable code using a program-
ming language.

Testing Coding with Technical Reviews

The coding phase produces executable source modules. The basis of good program-
ming is programming standards that have been defined. Some good standards
should include commenting, unsafe programming constructs, program layout,
defensive programming, and so on. Commenting refers to how a program should
be documented and to what level or degree. Unsafe programming constructions
are practices that can make the program hard to maintain. An example is goto
statements. Program layout refers to how a standard program should be laid out on
a page, indentation of control constructs, and initialization. A defensive program-
ming practice describes the mandatory components of the defensive programming
strategy. An example is error condition handling and transfer of control to a com-
mon error routine.

131

© 2009 by Taylor & Francis Group, LLC

132 m Software Testing and Continuous Quality Improvement

Table 11.1 Coding Phase Defect Recording

Defect Category Missing | Wrong Extra Total

1. Decision logic or sequencing is
erroneous or inadequate

2. Arithmetic computations are
erroneous or inadequate

3. Branching is erroneous

4. Branching or other testing is
performed incorrectly

5. There are undefined loop
terminations

6. Programming language rules
are violated

7. Programming standards are
violated

8. The programmer misinterprets
language constructs

9. Typographical errors exist

10. Main storage allocation errors
exist

Static analysis techniques, such as structured walkthroughs and inspections,
are used to ensure the proper form of the program code and documentation. This
is accomplished by checking adherence to coding and documentation conventions
and type checking.

Each defect uncovered during the coding phase review should be documented,
categorized, recorded, presented to the design team for correction, and referenced
to the specific document in which the defect was noted. Table 11.1 shows a sam-
ple coding phase defect recording form (see Appendix F5, “Coding Phase Defect
Checklist,” for more details).

Executing the Test Plan

By the end of this phase, all the items in each section of the test plan should have
been completed. The actual testing of software is accomplished through the test
data in the test plan developed during the requirements, logical design, physical

© 2009 by Taylor & Francis Group, LLC

Static Testing and Dynamic Testing the Code ® 133

User - Verifies Acceptance
Requirement Testing

Logical Verifies System
Design Testing

Physical Verifies | Integration
Design | Testing
Verifies
Program Unit
Unit Design Testing

Figure 11.1 Executing the tests.

design, and program unit design phases. Because results have been specified in the
test cases and test procedures, the correctness of the executions is ensured from a
static test point of view; that is, the tests have been reviewed manually.

Dynamic testing, or time-dependent techniques, involves executing a specific
sequence of instructions with the computer. These techniques are used to study the
functional and computational correctness of the code.

Dynamic testing proceeds in the opposite order of the development life cycle.
It starts with unit testing to verify each program unit independently and then pro-
ceeds to integration, system, and acceptance testing. After acceptance testing has
been completed, the system is ready for operation and maintenance. Figure 11.1
briefly describes each testing type.

Unit Testing

Unit testing is the basic level of testing. Unit testing focuses separately on the
smaller building blocks of a program or system. It is the process of executing each
module to confirm that each performs its assigned function. The advantage of unit
testing is that it permits the testing and debugging of small units, thereby providing
a better way to manage the integration of the units into larger units. In addition,
testing a smaller unit of code makes it mathematically possible to fully test the
code’s logic with fewer tests. Unit testing also facilitates automated testing because
the behavior of smaller units can be captured and played back with maximized
reusability. A unit can be one of several types of application software. Examples
include the module itself as a unit, GUI components such as windows, menus, and
functions, batch programs, online programs, and stored procedures.

© 2009 by Taylor & Francis Group, LLC

134 m Software Testing and Continuous Quality Improvement

Integration Testing

After unit testing is completed, all modules must be integration-tested. During inte-
gration testing, the system is slowly built up by adding one or more modules at a time
to the core of already-integrated modules. Groups of units are fully tested before sys-
tem testing occurs. Because modules have been unit-tested prior to integration testing,
they can be treated as black boxes, allowing integration testing to concentrate on mod-
ule interfaces. The goals of integration testing are to verify that each module performs
correctly within the control structure and that the module interfaces are correct.

Incremental testing is performed by combining modules in steps. At each step
one module is added to the program structure, and testing concentrates on exercising
this newly added module. When it has been demonstrated that a module performs
properly with the program structure, another module is added, and testing contin-
ues. This process is repeated until all modules have been integrated and tested.

System Testing

After integration testing, the system is tested as a whole for functionality and fit-
ness of use based on the System/Acceptance Test Plan. Systems are fully tested in
the computer operating environment before acceptance testing occurs. The sources
of the system tests are the quality attributes that were specified in the Software
Quality Assurance Plan. System testing is a set of tests to verify these quality attri-
butes and ensure that the acceptance test occurs in a relatively trouble-free manner.
System testing verifies that the functions are carried out correctly. It also verifies
that certain nonfunctional characteristics are present. Some examples include
usability testing, performance testing, stress testing, compatibility testing, conver-
sion testing, and document testing,.

Black-box testing is a technique that focuses on testing a program’s function-
ality against its specifications. White-box testing is a testing technique in which
paths of logic are tested to determine how well they produce predictable results.
Gray-box testing is a combination of these two approaches and is usually applied
during system testing. It is a compromise between the two and is a well-balanced
testing approach that is widely used during system testing.

Acceptance Testing

After systems testing, acceptance testing certifies that the software system satisfies
the original requirements. This test should not be performed until the software has
successfully completed systems testing. Acceptance testing is a user-run test that
uses black-box techniques to test the system against its specifications. The end users
are responsible for ensuring that all relevant functionality has been tested.

© 2009 by Taylor & Francis Group, LLC

Static Testing and Dynamic Testing the Code ® 135

The acceptance test plan defines the procedures for executing the acceptance
tests and should be followed as closely as possible. Acceptance testing continues
even when errors are found, unless an error itself prevents continuation. Some proj-
ects do not require formal acceptance testing. This is true when the customer or
user is satisfied with the other system tests, when timing requirements demand it, or
when end users have been involved continuously throughout the development cycle
and have been implicitly applying acceptance testing as the system is developed.

Acceprance tests are often a subset of one or more system tests. Two other ways
to measure acceptance testing are as follows:

1. Parallel Testing—A business-transaction-level comparison with the existing
system to ensure that adequate results are produced by the new system.

2. Benchmarks—A static set of results produced either manually or from an
existing system is used as expected results for the new system.

Defect Recording

Each defect discovered during the foregoing tests is documented to assist in the
proper recording of these defects. A problem report is generated when a test pro-
cedure gives rise to an event that cannot be explained by the tester. The problem
report documents the details of the event and includes at least these items (see
Appendix E12, “Defect Report,” for more details):

Problem identification
Author

Release/build number
Open date

Close date

Problem area

Defect or enhancement
Test environment
Defect type

Who detected

How detected
Assigned to

Priority

Severity

Status

Other test reports to communicate the testing progress and results include a test
case log, test log summary report, and system summary report.

© 2009 by Taylor & Francis Group, LLC

136 m Software Testing and Continuous Quality Improvement

A test case log documents the test cases for a test type to be executed. It also
records the results of the tests, which provides the detailed evidence for the test log
summary report and enables reconstructing testing, if necessary. (See Appendix E9,
“Test Case Log,” for more information.)

A test log summary report documents the test cases from the tester’s logs in
progress or completed for the status reporting and metric collection. (See Appendix
E10, “Test Log Summary Report.”)

A system summary report should be prepared for every major testing event.
Sometimes it summarizes all the tests. It typically includes the following major sec-
tions: general information (describing the test objectives, test environment, refer-
ences, etc.), test results and findings (describing each test), software functions and
findings, and analysis and test summary. (See Appendix E11, “System Summary
Report,” for more details.)

© 2009 by Taylor & Francis Group, LLC

SPIRAL (AGILE)
SOFTWARE
TESTING
METHODOLOGY:
PLAN, DO, CHECK, ACT

Spiral development methodologies are a reaction to the traditional waterfall systems
development, in which the product evolves in sequential phases. A common problem
with the life-cycle development model is that the elapsed time to deliver the product
can be excessive, with user involvement only at the very beginning and very end. As
a result, the system that they are given is often not what they originally requested.

By contrast, spiral development expedites product delivery. A small but func-
tioning initial system is built and quickly delivered, and then enhanced in a series
of iterations. One advantage is that the users receive at least some functionality
quickly. Another advantage is that the product can be shaped by iterative feedback;
for example, users do not have to define every feature correctly and in full detail at
the beginning of the development cycle, but can react to each iteration.

Spiral testing is dynamic and may never be completed in the traditional sense
of a delivered system’s completeness. The term spiral refers to the fact that the tradi-
tional sequence of analysis—design—code—test phases is performed on a microscale
within each spiral or cycle in a short period of time, and then the phases are repeated
within each subsequent cycle.

© 2009 by Taylor & Francis Group, LLC

138 m Spiral (Agile) Software Testing Methodology: Plan, Do, Check, Act

The objectives of this section are to:

Discuss the limitations of waterfall development.
Describe the complications of client/server.

Discuss the psychology of spiral testing.

Describe the iterative/spiral development environment.
Apply Deming’s continuous quality improvement to a spiral development
environment in terms of:

Information gathering

Test planning

Test case design

Test development

Test execution/evaluation

Traceability/coverage matrix

Preparing for the next spiral

System testing
Acceptance testing
Summarizing/reporting spiral test results

© 2009 by Taylor & Francis Group, LLC

Chapter 12

Development
Methodology Overview

Limitations of Life-Cycle Development

In Section 2, “Waterfall Testing Review,” the waterfall development methodology
was reviewed along with the associated testing activities. The life-cycle development
methodology consists of distinct phases from requirements to coding. Life-cycle
testing means that testing occurs in parallel with the development life cycle and is a
continuous process. Although the life-cycle or waterfall development is very effec-
tive for many large applications requiring a lot of computer horsepower, for exam-
ple, DOD, financial, security-based, and so on, it has a number of shortcomings:

B The end users of the system are only involved at the very beginning and the
very end of the process. As a result, the system that they were given at the
end of the development cycle is often not what they originally visualized or
thought they requested.

B The long development cycle and the shortening of business cycles lead to a
gap between what is really needed and what is delivered.

B End users are expected to describe in detail what they want in a system,
before the coding phase. This may seem logical to developers; however, there
are end users who have not used a computer system before and are not certain
of its capabilities.

139

© 2009 by Taylor & Francis Group, LLC

140 m Software Testing and Continuous Quality Improvement

B When the end of a development phase is reached, it is often not quite com-
plete, but the methodology and project plans require that development press
on regardless. In fact, a phase is rarely complete, and there is always more
work than can be done. This results in the “rippling effect”; sooner or later,
one must return to a phase to complete the work.

B Often, the waterfall development methodology is not strictly followed. In the
haste to produce something quickly, critical parts of the methodology are not
followed. The worst case is ad hoc development, in which the analysis and
design phases are bypassed and the coding phase is the first major activity.
This is an example of an unstructured development environment.

B Software testing is often treated as a separate phase starting in the coding
phase as a validation technique and is not integrated into the whole develop-
ment life cycle.

B The waterfall development approach can be woefully inadequate for many
development projects, even if it is followed. An implemented software sys-
tem is not worth very much if it is not the system the user wanted. If the
requirements are incompletely documented, the system will not survive user
validation procedures; that is, it is the wrong system. Another variation is
when the requirements are correct, but the design is inconsistent with the
requirements. Once again, the completed product will probably fail the sys-
tem validation procedures.

B Because of the foregoing issues, experts began to publish methodologies based
on other approaches, such as prototyping.

The Client/Server Challenge

The client/server architecture for application development divides functionality
between a client and server so that each performs its task independently. The client
cooperates with the server to produce the required results.

The client is an intelligent workstation used as a single user, and because it
has its own operating system, it can run other applications such as spreadsheets,
word processors, and file processors. The user and the server process client/server
application functions cooperatively. The server can be a PC, minicomputer, local
area network, or even a mainframe. The server receives requests from the clients
and processes them. The hardware configuration is determined by the application’s
functional requirements.

Some advantages of client/server applications include reduced costs, improved
accessibility of data, and flexibility. However, justifying a client/server approach
and ensuring quality are difficult and present additional difficulties not necessarily
found in mainframe applications. Some of these problems include the following:

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ® 141

B The typical graphical user interface has more possible logic paths, and thus the
large number of test cases in the mainframe environment is compounded.

B Client/server technology is complicated and, often, new to the organization.
Furthermore, this technology often comes from multiple vendors and is used
in multiple configurations and in multiple versions.

B The fact that client/server applications are highly distributed results in a
large number of failure sources and hardware/software configuration control
problems.

B Ashort-and long-term cost—benefitanalysis must be performed to justify client/
server technology in terms of the overall organizational costs and benefits.

B Successful migration to a client/server depends on matching migration plans
to the organization’s readiness for client/server technology.

B The effect of client/server technology on the user’s business may be substantial.

B Choosing which applications will be the best candidates for a client/server
implementation is not straightforward.

B An analysis needs to be performed of which development technologies and
tools enable a client/server.

B Availability of client/server skills and resources, which are expensive, needs
to be considered.

B Although client/server technology is more expensive than mainframe com-
puting, cost is not the only issue. The function, business benefit, and the
pressure from end users have to be balanced.

Integration testing in a client/server environment can be challenging. Client and
server applications are built separately. When they are brought together, conflicts
can arise no matter how clearly defined the interfaces are. When integrating appli-
cations, defect resolutions may have single or multiple solutions, and there must be
open communication between quality assurance and development.

In some circles there exists a belief that the mainframe is dead and the client/
server prevails. The truth of the matter is that applications using mainframe archi-
tecture are not dead, and client/server technology is not necessarily the panacea for
all applications. The two will continue to coexist and complement each other in the
future. Mainframes will certainly be part of any client/server strategy.

Psychology of Client/Server Spiral Testing
The New School of Thought

The psychology of life-cycle testing encourages testing by individuals outside
the development organization. The motivation for this is that with the life-cycle
approach, there typically exist clearly defined requirements, and it is more eflicient

© 2009 by Taylor & Francis Group, LLC

142 m Software Testing and Continuous Quality Improvement

for a third party to verify these. Testing is often viewed as a destructive process
designed to break development’s work.

The psychology of spiral testing, on the other hand, encourages cooperation
between quality assurance and the development organization. The basis of this
argument is that, in a rapid application development environment, requirements
may or may not be available, to varying degrees. Without this cooperation, the test-
ing function would have a difficult task defining the test criteria. The only possible
alternative is for testing and development to work together.

Testers can be powerful allies to development and, with a little effort, they can
be transformed from adversaries into partners. This is possible because most testers
want to be helpful; they just need a little consideration and support. To achieve
this, however, an environment needs to be created to bring out the best of a tester’s
abilities. The tester and development manager must set the stage for cooperation
early in the development cycle and communicate throughout the cycle.

Tester/Developer Perceptions

To understand some of the inhibitors to a good relationship between the testing
function and development, it is helpful to understand how each views his or her
role and responsibilities.

Testing is a difficult effort. It is a task that is both infinite and indefinite. No
matter what testers do, they cannot be sure they will find all the problems, or even
all the important ones.

Many testers are not really interested in testing and do not have the proper
training in basic testing principles and techniques. Testing books or conferences
typically treat the testing subject too rigorously and employ deep mathematical
analysis. The insistence on formal requirement specifications as a prerequisite to
effective testing is not realistic in the real world of a software development project.

It is hard to find individuals who are good at testing. It takes someone who is a
critical thinker motivated to produce a quality software product, likes to evaluate
software deliverables, and is not caught up in the assumption held by many devel-
opers that testing has a lesser job status than development. A good tester is a quick
learner and eager to learn, is a good team player, and can effectively communicate
both verbally and in writing.

The output from development is something that is real and tangible. A pro-
grammer can write code and display it to admiring customers, who assume it is
correct. From a developer’s point of view, testing results in nothing more tangible
than an accurate, useful, and all-too-fleeting perspective on quality. Given these
perspectives, many developers and testers often work together in an uncooperative,
if not hostile, manner.

In many ways the tester and developer roles are in conflict. A developer is com-
mitted to building something successful. A tester tries to minimize the risk of fail-
ure and tries to improve the software by detecting defects. Developers focus on

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ® 143

technology, which takes a lot of time and energy when producing software. A good
tester, on the other hand, is motivated to provide the user with the best software to
solve a problem.

Testers are typically ignored until the end of the development cycle when the
application is “completed.” Testers are always interested in the progress of develop-
ment and realize that quality is only achievable when they take a broad point of
view and consider software quality from multiple dimensions.

Project Goal: Integrate QA and Development

The key to integrating the testing and developing activities is for testers to avoid
giving the impression that they are out to “break the code” or destroy development’s
work. Ideally, testers are human meters of product quality and should examine a
software product, evaluate it, and discover if the product satisfies the customer’s
requirements. They should not be out to embarrass or complain, but inform devel-
opment how to make their product even better. The impression they should foster
is that they are the “developer’s eyes to improved quality.”

Development needs to be truly dedicated to quality and view the test team as an
integral player on the development team. They need to realize that no matter how
much work and effort has been expended by development, if the software does not
have the correct level of quality, it is destined to fail. The testing manager needs to
remind the project manager of this throughout the development cycle. The project
manager needs to instill this perception in the development team.

Testers must coordinate with the project schedule and work in parallel with
development. They need to be informed about what is going on in development,
and so should be included in all planning and status meetings. This lessens the risk
of introducing new bugs, known as “side effects,” near the end of the development
cycle and also reduces the need for time-consuming regression testing,.

Testers must be encouraged to communicate effectively with everyone on the
development team. They should establish a good relationship with the software
users, who can help them better understand acceptable standards of quality. In this
way, testers can provide valuable feedback directly to development.

Testers should intensively review online help and printed manuals whenever they
are available. It will relieve some of the communication burden to get writers and
testers to share notes rather than saddle development with the same information.

Testers need to know the objectives of the software product, how it is intended
to work, how it actually works, the development schedule, any proposed changes,
and the status of reported problems.

Developers need to know what problems were discovered, what part of the
software is or is not working, how users perceive the software, what will be tested,
the testing schedule, the testing resources available, what the testers need to know
to test the system, and the current status of the testing effort.

© 2009 by Taylor & Francis Group, LLC

144 m Software Testing and Continuous Quality Improvement

When quality assurance starts working with a development team, the testing
manager needs to interview the project manager and show an interest in working
in a cooperative manner to produce the best software product possible. The next
section describes how to accomplish this.

Iterative/Spiral Development Methodology

Spiral methodologies are a reaction to the traditional waterfall methodology of sys-
tems development, a sequential solution development approach. A common prob-
lem with the waterfall model is that the elapsed time for delivering the product can
be excessive.

By contrast, spiral development expedites product delivery. A small but func-
tioning initial system is built and quickly delivered, and then enhanced in a series
of iterations. One advantage is that the clients receive at least some functional-
ity quickly. Another is that the product can be shaped by iterative feedback; for
example, users do not have to define every feature correctly and in full detail at the
beginning of the development cycle, but can react to each iteration.

With the spiral approach, the product evolves continually over time; it is not
static and may never be completed in the traditional sense. The term spiral refers to
the fact that the traditional sequence of analysis—design—code—test phases is per-
formed on a microscale within each spiral or cycle, in a short period of time, and
then the phases are repeated within each subsequent cycle. The spiral approach is
often associated with prototyping and rapid application development.

Traditional requirements-based testing expects that the product definition will
be finalized and even frozen prior to detailed test planning. With spiral develop-
ment, the product definition and specifications continue to evolve indefinitely; that
is, there is no such thing as a frozen specification. A comprehensive requirements
definition and system design probably never will be documented.

The only practical way to test in the spiral environment, therefore, is to “get
inside the spiral.” Quality assurance must have a good working relationship with
development. The testers must be very close to the development effort, and test each
new version as it becomes available. Each iteration of testing must be brief, in order
not to disrupt the frequent delivery of the product iterations. The focus of each
iterative test must be first to test only the enhanced and changed features. If time
within the spiral allows, an automated regression test also should be performed;
this requires sufficient time and resources to update the automated regression tests
within each spiral.

Clients typically demand very fast turnarounds on change requests; there may
be neither formal release nor a willingness to wait for the next release to obtain a
new system feature. Ideally, there should be an efficient, automated regression test
facility for the product, which can be used for at least a brief test prior to the release
of the new product version (see Section 6, “Modern Software Testing Tools,” for
more details).

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ® 145

Spiral testing is a process of working from a base and building a system incre-
mentally. Upon reaching the end of each phase, developers reexamine the entire
structure and revise it. Drawing the four major phases of system development—
planning/analysis, design, coding, and test/deliver—into quadrants, as shown in
Figure 12.1, represents the spiral approach. The respective testing phases are test
planning, test case design, test development, and test execution/evaluation.

The spiral process begins with planning and requirements analysis to determine
the functionality. Then a design is made for the base components of the system and
the functionality determined in the first step. Next, the functionality is constructed
and tested. This represents a complete iteration of the spiral.

Having completed this first spiral, users are given the opportunity to examine the
system and enhance its functionality. This begins the second iteration of the spiral.
The process continues, looping around and around the spiral until the users and devel-
opers agree the system is complete; the process then proceeds to implementation.

The spiral approach, if followed systematically, can be effective in ensuring that
the users’ requirements are being adequately addressed and that the users are closely
involved with the project. It can allow for the system to adapt to any changes in
business requirements that occurred after the system development began. However,
there is one major flaw with this methodology: there may never be any firm com-
mitment to implement a working system. One can go around and around the quad-
rants, never actually bringing a system into production. This is often referred to as
“spiral death.”

Design Coding
Test Case Design Test Development
(DO) (DO)

(¢

7

L% *
Test Planning Test Execution/ Evaluation
(Plan) (Do, Check, Act)
Planning/Analysis Test/ Deliver

Figure 12.1 Spiral testing process.

© 2009 by Taylor & Francis Group, LLC

146 m Software Testing and Continuous Quality Improvement

Although the waterfall development has often proved itself to be too inflexible,
the spiral approach can produce the opposite problem. Unfortunately, the flexibil-
ity of the spiral methodology often results in the development team ignoring what
the user really wants, and thus, the product fails the user verification. This is where
quality assurance is a key component of a spiral approach. It will ensure that user
requirements are being satisfied.

A variation to the spiral methodology is the iterative methodology, in which the
development team is forced to reach a point where the system will be implemented.
The iterative methodology recognizes that the system is never truly complete, but
is evolutionary. However, it also realizes that there is a point at which the system is
close enough to completion to be of value to the end user.

The point of implementation is decided upon prior to the start of the system,
and a certain number of iterations will be specified, with goals identified for each
iteration. Upon completion of the final iteration, the system will be implemented
in whatever state it may be.

Role of JADs

During the first spiral, the major deliverables are the objectives, an initial func-
tional decomposition diagram, and a functional specification. The functional speci-
fication also includes an external (user) design of the system. It has been shown that
errors defining the requirements and external design are the most expensive to fix
later in development. It is, therefore, imperative to get the design as correct as pos-
sible the first time.

A technique that helps accomplish this is joint application design sessions (see
Appendix G19, “JADs,” for more details). Studies show that JADs increase pro-
ductivity over traditional design techniques. In JADs, users and IT professionals
jointly design systems in facilitated group sessions. JADs go beyond the one-on-one
interviews to collect information. They promote communication, cooperation, and
teamwork among the participants by placing the users in the drivers’ seats.

JADs are logically divided into phases: customization, session, and wrap-up.
Regardless of what activity one is pursuing in development, these components will
always exist. Each phase has its own objectives.

Role of Prototyping

Prototyping is an iterative approach often used to build systems that users ini-
tially are unable to describe precisely (see Appendix G24, “Prototyping,” for more
details). The concept is made possible largely through the power of fourth-genera-
tion languages (4GLs) and application generators.

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ® 147

Prototyping is, however, as prone to defects as any other development effort,
maybe more so if not performed in a systematic manner. Prototypes need to be
tested as thoroughly as any other system. Testing can be difficult unless a system-
atic process has been established for developing prototypes.

There are various types of software prototypes, ranging from simple printed
descriptions of input, processes, and output to completely automated versions. An
exact definition of a software prototype is impossible to find; the concept is made
up of various components. Among the many characteristics identified by MIS pro-
fessionals are the following:

B Comparatively inexpensive to build (i.e., less than 10 percent of the full sys-
tem’s development cost).
B Relatively quick development so that it can be evaluated early in the life cycle.
B DProvides users with a physical representation of key parts of the system
before implementation.
B Prototypes:
Do not eliminate or reduce the need for comprehensive analysis and specifi-
cation of user requirements.
Do not necessarily represent the complete system.
Perform only a subset of the functions of the final product.
Lack the speed, geographical placement, or other physical characteristics of
the final system.

Basically, prototyping is the building of trial versions of a system. These eatly ver-
sions can be used as the basis for assessing ideas and making decisions about the
complete and final system. Prototyping is based on the premise that, in certain
problem domains (particularly in online interactive systems), users of the proposed
application do not have a clear and comprehensive idea of what the application
should do or how it should operate.

Often, errors or shortcomings overlooked during development appear after a
system becomes operational. Application prototyping seeks to overcome these prob-
lems by providing users and developers with an effective means of communicating
ideas and requirements before a significant amount of development effort has been
expended. The prototyping process results in a functional set of specifications that
can be fully analyzed, understood, and used by users, developers, and management
to decide whether an application is feasible and how it should be developed.

Fourth-generation languages have enabled many organizations to undertake
projects based on prototyping techniques. They provide many of the capabilities
necessary for prototype development, including user functions for defining and
managing the user—system interface, data management functions for organizing
and controlling access, and system functions for defining execution control and
interfaces between the application and its physical environment.

© 2009 by Taylor & Francis Group, LLC

148 m Software Testing and Continuous Quality Improvement

In recent years, the benefits of prototyping have become increasingly recog-
nized. Some include the following:

B Prototyping emphasizes active physical models. The prototype looks, feels,
and acts like a real system.

B Prototyping is highly visible and accountable.

B The burden of attaining performance, optimum access strategies, and com-
plete functioning is eliminated in prototyping.

B Issues of data, functions, and user—system interfaces can be readily addressed.

B Users are usually satisfied, because they get what they see.

B Many design considerations are highlighted, and a high degree of design flex-
ibility becomes apparent.

B [nformation requirements are easily validated.

B Changes and error corrections can be anticipated and, in many cases, made
on the spur of the moment.

B Ambiguities and inconsistencies in requirements become visible and correctable.

B Useless functions and requirements can be quickly eliminated.

Methodology for Developing Prototypes

The following describes a methodology to reduce development time through reuse
of the prototype and knowledge gained in developing and using the prototype.
It does not include how to test the prototype within spiral development. This is
included in the next part.

Step 1: Develop the Prototype

In the construction phase of spiral development, the external design and screen
design are translated into real-world windows using a 4GL tool such as Visual Basic
or PowerBuilder. The detailed business functionality is not built into the screen
prototypes, but a “look and feel” of the user interface is produced so the user can
see how the application will look.

Using a 4GL, the team constructs a prototype system consisting of data entry
screens, printed reports, external file routines, specialized procedures, and proce-
dure selection menus. These are based on the logical database structure developed
in the JAD data modeling sessions. The sequence of events for performing the task
of developing the prototype in a 4GL is iterative and is described as follows.

Define the basic database structures derived from logical data modeling. The data
structures will be populated periodically with test data as required for specific tests.

Define printed report formats. These may initially consist of query commands
saved in an executable procedure file on disk. The benefit of a query language is
that most of the report formatting can be done automatically by the 4GL. The

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ®m 149

prototyping team needs only to define what data elements to print and what selec-
tion and ordering criteria to use for individual reports.

Define interactive data entry screens. Whether each screen is well designed is
immaterial at this point. Obtaining the right information in the form of prompts,
labels, help messages, and validation of input is more important. Initially, defaults
should be used as often as possible.

Define external file routines to process data that is to be submitted in batches to
the prototype or created by the prototype for processing by other systems. This can
be done in parallel with other tasks.

Define algorithms and procedures to be implemented by the prototype and the fin-
ished system. These may include support routines solely for the use of the prototype.

Define procedure selection menus. The developers should concentrate on the func-
tions as the user would see them. This may entail combining seemingly disparate proce-
dures into single functions that can be executed with a single command from the user.

Define test cases to ascertain that:

B Dara entry validation is correct.
B Procedures and algorithms produce expected results.
B System execution is clearly defined throughout a complete cycle of operation.

Repeat this process, adding report and screen formatting options, corrections of
errors discovered in testing, and instructions for the intended users. This process
should end after the second or third iteration or when changes become predomi-
nantly cosmetic rather than functional.

At this point, the prototyping team should have a good understanding of the
overall operation of the proposed system. If time permits, the team must now
describe the operation and underlying structure of the prototype. This is most eas-
ily accomplished through the development of a draft user manual. A printed copy
of each screen, report, query, database structure, selection menu, and catalogued
procedure or algorithm must be included. Instructions for executing each proce-
dure should include an illustration of the actual dialogue.

Step 2: Demonstrate Prototypes to Management

The purpose of this demonstration is to give management the option of making
strategic decisions about the application on the basis of the prototype’s appearance
and objectives. The demonstration consists primarily of a short description of each
prototype component and its effects, and a walkthrough of the typical use of each
component. Every person in attendance at the demonstration should receive a copy
of the draft user manual, if one is available.

The team should emphasize the results of the prototype and its impact on devel-
opment tasks still to be performed. At this stage, the prototype is not necessarily a
functioning system, and management must be made aware of its limitations.

© 2009 by Taylor & Francis Group, LLC

150 m Software Testing and Continuous Quality Improvement

Step 3: Demonstrate Prototype to Users

There are arguments for and against letting the prospective users actually use the
prototype system. There is a risk that users” expectations will be raised to an unre-
alistic level with regard to delivery of the production system and that the prototype
will be placed in production before it is ready. Some users have actually refused
to give up the prototype when the production system was ready for delivery. This
may not be a problem if the prototype meets the users’ expectations and the envi-
ronment can absorb the load of processing without affecting others. On the other
hand, when users exercise the prototype, they can discover the problems in proce-
dures and unacceptable system behavior very quickly.

The prototype should be demonstrated before a representative group of users.
This demonstration should consist of a detailed description of the system operation,
structure, data entry, report generation, and procedure execution. Above all, users
must be made to understand that the prototype is not the final product, that it is flex-
ible, and that it is being demonstrated to find errors from the users’ perspective.

The results of the demonstration include requests for changes, correction of
errors, and overall suggestions for enhancing the system. Once the demonstra-
tion has been held, the prototyping team cycles through the steps in the prototype
process to make the changes, corrections, and enhancements deemed necessary
through consensus of the prototyping team, the end users, and management.

For each iteration through prototype development, demonstrations should be
held to show how the system has changed as a result of feedback from users and
management. The demonstrations increase the users’ sense of ownership, especially
when they can see the results of their suggestions. The changes should therefore be
developed and demonstrated quickly.

Requirements uncovered in the demonstration and use of the prototype may
cause profound changes in the system scope and purpose, the conceptual model
of the system, or the logical data model. Because these modifications occur in the
requirements specification phase rather than in the design, code, or operational
phases, they are much less expensive to implement.

Step 4: Revise and Finalize Specifications

At this point, the prototype consists of data entry formats, report formats, file for-
mats, a logical database structure, algorithms and procedures, selection menus,
system operational flow, and possibly a draft user manual.

The deliverables from this phase consist of formal descriptions of the system
requirements, listings of the 4GL command files for each object programmed (i.c.,
screens, reports, and database structures), sample reports, sample data entry screens,
the logical database structure, data dictionary listings, and a risk analysis. The risk
analysis should include the problems and changes that could not be incorporated

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ® 151

into the prototype and the probable impact that they would have on development
of the full system and subsequent operation.

The prototyping team reviews each component for inconsistencies, ambiguities, and
omissions. Corrections are made, and the specifications are formally documented.

Step 5: Develop the Production System

At this point, development can proceed in one of three directions:

1. The project is suspended or canceled because the prototype has uncovered
insurmountable problems or the environment is not ready to mesh with the
proposed system.

2. The prototype is discarded because it is no longer needed or because it is too
ineflicient for production or maintenance.

3. Iterations of prototype development are continued, with each iteration add-
ing more system functions and optimizing performance until the prototype
evolves into the production system.

The decision on how to proceed is generally based on such factors as:

The actual cost of the prototype

Problems uncovered during prototype development

The availability of maintenance resources

The availability of software technology in the organization
Political and organizational pressures

The amount of satisfaction with the prototype

The difficulty in changing the prototype into a production system
Hardware requirements

Continuous Improvement “Spiral” Testing Approach

The purpose of software testing is to identify the differences between existing and
expected conditions, that is, to detect software defects. Testing identifies the require-
ments that have not been satisfied and the functions that do not work properly. The
most commonly recognized test objective is to identify bugs, but this is a limited
definition of the aim of testing. Not only must bugs be identified, but they must be
put into a framework that enables testers to predict how the software will perform.

In the spiral and rapid application development testing environment, there may
be no final functional requirements for the system. They are probably informal
and evolutionary. Also, the test plan may not be completed until the system is
released for production. The relatively long lead-time to create test plans based on a
good set of requirement specifications may not be available. Testing is an ongoing

© 2009 by Taylor & Francis Group, LLC

152 m Software Testing and Continuous Quality Improvement

Act Plan

P
Check Do

Figure 12.2 Spiral testing and continuous improvement.

improvement process that occurs frequently as the system changes. The product
evolves over time and is not static.

The testing organization needs to get inside the development effort and work
closely with development. Each new version needs to be tested as it becomes avail-
able. The approach is to first test the new enhancements or modified software to
resolve defects reported in the previous spiral. If time permits, regression testing is
then performed to ensure that the rest of the system has not regressed.

In the spiral development environment, software testing is again described as a
continuous improvement process that must be integrated into a rapid application
development methodology. Testing as an integrated function prevents development
from proceeding without testing. Deming’s continuous improvement process using the
PDCA model (see Figure 12.2) will again be applied to the software testing process.

Before the continuous improvement process begins, the testing function needs
to perform a series of information-gathering planning steps to understand the
development project objectives, current status, project plans, function specifica-
tion, and risks.

Once this is completed, the formal Plan step of the continuous improvement
process commences. A major step is to develop a software test plan. The test plan
is the basis for accomplishing testing and should be considered an ongoing docu-
ment; that is, as the system changes, so does the plan. The outline of a good test
plan includes an introduction, the overall plan, testing requirements, test proce-
dures, and test plan details. These are further broken down into business functions,
test scenarios and scripts, function/test matrix, expected results, test case checklists,
discrepancy reports, required software, hardware, data, personnel, test schedule,
test entry criteria, exit criteria, and summary reports.

The more definitive a test plan is, the easier the Plan step will be. If the sys-
tem changes between development of the test plan and when the tests are to be
executed, the test plan should be updated accordingly.

The Do step of the continuous improvement process consists of test case design,
test development, and test execution. This step describes how to design test cases
and execute the tests included in the test plan. Design includes the functional tests,
GUI tests, and fragment system and acceptance tests. Once an overall test design

© 2009 by Taylor & Francis Group, LLC

Development Methodology Overview ® 153

is completed, test development starts. This includes building test scripts and proce-
dures to provide test case details.

The test team is responsible for executing the tests and must ensure that they are
executed according to the test design. The Do step also includes test setup, regres-
sion testing of old and new tests, and recording any defects discovered.

The Check step of the continuous improvement process includes metric mea-
surements and analysis. As discussed in Section 1, Chapter 5, “Quality through
Continuous Improvement Process,” crucial to the Deming method is the need to
base decisions as much as possible on accurate and timely data. Metrics are key to
verifying if the work effort and test schedule are on schedule, and to identify any
new resource requirements.

During the Check step, it is important to publish intermediate test reports.
This includes recording of the test results and relating them to the test plan and
test objectives.

The Act step of the continuous improvement process involves preparation for the
next spiral iteration. It entails refining the function/GUI tests, test suites, test cases,
test scripts, and fragment system and acceptance tests, and modifying the defect-
tracking system and the version and control system, if necessary. It also includes
devising measures for appropriate actions relating to work that was not performed
according to the plan or unanticipated results. Examples include a reevaluation of
the test team, test procedures, and technology dimensions of testing. All these are
fed back to the test plan, which is updated.

Once several testing spirals have been completed and the application has been
verified as functionally stable, full system and acceptance testing starts. These tests
are often optional. Respective system and acceptance test plans are developed,
defining the test objects and the specific tests to be completed.

The final activity in the continuous improvement process is summarizing and
reporting the spiral test results. A major test report should be written at the end of
all testing. The process used for report writing is the same whether it is an interim
or a final report, and, similar to other tasks in testing, report writing is also subject
to quality control. However, the final test report should be much more comprehen-
sive than interim test reports. For each type of test, it should describe a record of
defects discovered, data reduction techniques, root cause analysis, the development
of findings, and follow-on recommendations for current and/or future projects.

Figure 12.3 provides an overview of the spiral testing methodology by relating
each step to the PDCA quality model. Appendix A, “Spiral Testing Methodology,”
provides a detailed representation of each part of the methodology. The methodol-
ogy provides a framework for testing in this environment. The major steps include
information gathering, test planning, test design, test development, test execution/
evaluation, and preparing for the next spiral. It includes a set of tasks associated
with each step or a checklist from which the testing organization can choose based
on its needs. The spiral approach flushes out the system functionality. When this

© 2009 by Taylor & Francis Group, LLC

154 m Software Testing and Continuous Quality Improvement

has been completed, it also provides for classical system testing, acceptance testing,

and summary reports.

;V

(INTERIM
REPORTS)

Continuous Process Improvement

(STEPS)

Information
Gathering

Test
Planning

Test
Case
Design

v

Test
Development

v

Test
Evaluation/
Execution

-

Prepare
for Next
Spiral

v

System
Testing

v

Acceptance
Testing

v

Summary
Report

PLAN DO CHECK ACT
v
v
v
v
v v
v
v v v v
v v v v

Figure 12.3 Spiral testing methodology.

© 2009 by Taylor & Francis Group, LLC

Chapter 13

Information
Gathering (Plan)

You will recall that, in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model (see Figure 13.1) is applied to the software testing process.
We are now in the Plan part of the spiral model.

Figure 13.2 outlines the steps and tasks associated with information gathering
within the Plan part of spiral testing. Each step and task is described along with
valuable tips and techniques.

The purpose of gathering information is to obtain information relevant to the
software development project and organize it, to understand the scope of the devel-
opment project and start building a test plan. Other interviews may occur during
the development project, as necessary.

Proper preparation is critical to the success of the interview. Before the inter-
view, it is important to clearly identify the objectives of the interview and com-
municate them to all parties, identify the quality assurance representative who will
lead the interview, and identify the scribe; schedule a time and place; prepare any
required handouts; and communicate what is required from development.

Although many interviews are unstructured, the interviewing steps and tasks
shown in Figure 13.2 will be helpful.

155

© 2009 by Taylor & Francis Group, LLC

156 m Software Testing and Continuous Quality Improvement

Figure 13.1 Spiral testing and continuous improvement.

Step 1: Prepare for the Interview
Task 1: Identify the Participants

It is recommended that there be no more than two interviewers representing qual-
ity assurance. It is helpful for one of these to assume the role of questioner, with the
other taking detailed notes. This will allow the interviewer to focus on soliciting
information. Ideally, the interviewer should be the manager responsible for the
project-testing activities. The scribe, or note taker, should be a test engineer or lead
tester assigned to the project; the scribe supports the interviewer and records each
pertinent piece of information and lists the issues, the assumptions, and questions.

The recommended development participants attending include the project
sponsor, development manager, or a senior development team member. Alcthough
members of the development team can take notes, this is the responsibility of the
scribe. Having more than one scribe can result in confusion, because multiple sets
of notes will eventually have to be consolidated. The most eflicient approach is for
the scribe to take notes, and summarize at the end of the interview. (See Appendix
F20, “Project Information Gathering Checklist,” which can be used to verify the
information available and required at the beginning of the project.)

Task 2: Define the Agenda

The key factor for a successful interview is a well-thought-out agenda. It should be
prepared by the interviewer ahead of time and agreed upon by the development
leader. The agenda should include an introduction, specific points to cover, and
a summary section. The main purpose of an agenda is to enable the testing man-
ager to gather enough information to scope out the quality assurance activities and
begin a test plan. Table 13.1 depicts a sample agenda (details are described in “Step
2: Conduct the Interview”).

Step 2: Conduct the Interview

A good interview contains certain elements. The first is defining what will be dis-
g g
cussed, or “talking about what we are going to talk about.” The second is discussing

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) m 157

(STEPS) (TASKS)

Identify
Participants

Prepare
for I]
Interview

Define
Agenda

Understand
Project

!

Understand
Project
Objectives

'

Understand
Project
Status

i

Understand
Project
Plans

!

Understand Project
Development
Methodology

Y
Identify High-
Level Business
Requirements

1

Perform
Risk
Analysis

Conduct
Interview

Summarize
Interview

Summarize | |
Findings]
Confirm
Interview
Findings

Figure 13.2 Information gathering (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

158 m Software Testing and Continuous Quality Improvement

Table 13.1 Interview Agenda

I. | Introductions

Il. | Project Overview

I1l. | Project Objectives

IV. | Project Status

V. | Project Plans

VI. | Development Methodology

VIIL. | High-Level Requirements

VIII. | Project Risks and Issues

IX. | Summary

the details, or “talking about it.” The third is summarizing, or “talking about what
we talked about.” The final element is timeliness. The interviewer should state up
front the estimated duration of the interview and set the ground rule that if the
allotted time expires before completing all items on the agenda, a follow-on inter-
view will be scheduled. This is difficult, particularly when the interview is into the
details, but nonetheless it should be followed.

Task 1: Understand the Project

Before getting into the project details, the interviewer should state the objectives
of the interview and present the agenda. As with any type of interview, he or she
should indicate that only one individual should speak, no interruptions should
occur until the speaker acknowledges a request, and the focus should be on the
material being presented.

The interviewer should then introduce himself or herself, introduce the scribe,
and ask the members of the development team to introduce themselves. Each should
indicate name, title, specific roles and job responsibilities, as well as expectations of
the interview. The interviewer should point out that the purpose of this task is to
obtain general project background information.

The following general questions should be asked to solicit basic information:

What is the name of the project?

What are the high-level project objectives?

Who is the audience (users) of the system to be developed?
When was the project started?

When is it anticipated to be complete?

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ®m 159

What is the status of the project?

What is the projected effort in person-months?

Is this a new, maintenance, or package development project?

What are the major problems, issues, and concerns?

Are there plans to address problems and issues?

Is the budget on schedule?

Is the budget too tight, too loose, or about right?

What organizational units are participating in the project?

Is there an established organization chart?

What resources are assigned to each unit?

What is the decision-making structure; that is, who makes the decisions?
What are the project roles and the responsibilities associated with each role?
Who is the resource with whom the test team will communicate on a

daily basis?

Has a quality management plan been developed?
Has a periodic review process been set up?

B Has a representative from the user community been appointed to repre-
sent quality?

Task 2: Understand the Project Objectives

To develop a test plan for a development project, it is important to understand the
objectives of the project. The purpose of this task is to understand the scope, needs,

and high-level requirements of this project.

The following questions should be asked to solicit basic information:

B Purpose:

What type of system is being developed, for example, payroll, order entry,
inventory, or accounts receivable/payable?

Why is the system being developed?

What subsystems are involved?

What are the subjective requirements, for example, ease of use, efficiency,
morale, flexibility?

B Scope:

Who are the users of the system?

What are the users’ job titles and roles?

What are the major functions and subfunctions of the system?

What functions will not be implemented?

What business procedures are within the scope of the system?

Are there analysis diagrams, such as business flow diagrams, data flow
diagrams, or data models, to describe the system?

Have project deliverables been defined along with completeness criteria?

© 2009 by Taylor & Francis Group, LLC

160 ®m Software Testing and Continuous Quality Improvement

B Benefits:
— What are the anticipated benefits that will be provided to the user with
this system?
* Increased productivity
* Improved quality
* Cost savings
* Increased revenue
* More competitive advantage
B Strategic:
— What are the strategic or competitive advantages?
— What impact will the system have on the organization, customers, legal,
government, and so on?
B Constraints:
— What are the financial, organizational, personnel, technological con-
straints, or limitations of the system?
- What business functions and procedures are out of the scope of the system?

Task 3: Understand the Project Status

The purpose of this task is to understand where the project is at this point, which will
help define how to plan the testing effort. For example, if this is the first interview and
the project is at the stage of coding the application, the testing effort is already behind
schedule. The following questions should be asked to solicit basic information:

B Has a detailed project work plan, including activities, tasks, dependencies,
resource assignments, work effort estimates, and milestones, been developed?
Is the project on schedule?

Is the completion time too tight?

Is the completion time too loose?

Is the completion time about right?

Have there been any major slips in the schedule that will have an impact on
the critical path?

How far is the project from meeting its objectives?

Are the user functionality and quality expectations realistic and being met?
Are the project work effort hours trends on schedule?

Are the project costs trends within the budget?

What development deliverables have been delivered?

Task 4: Understand the Project Plans

Because the testing effort needs to track development, it is important to under-
stand the project work plans. The following questions should be asked to solicit
basic information:

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ®m 161

B Work breakdown:
— Has a Microsoft Project (or other tool) plan been developed?
— How detailed is the plan; for example, how many major and bottom-level
tasks have been identified?
— Whart are the major project milestones (internal and external)?
B Assignments:
— Have appropriate resources been assigned to each work plan?
— Is the work plan well balanced?
— What is the plan to stage resources?
B Schedule:
— Is the project plan on schedule?
— Is the project plan behind schedule?
- Is the plan updated periodically?

Task 5: Understand the Project Development Methodology

The testing effort must integrate with the development methodology. If considered
a separate function, it may not receive the appropriate resources and commitment.
When testing is integrated with development, the latter should not proceed without
the former. Testing steps and tasks need to be integrated into the systems develop-
ment methodology through addition or modification of tasks. Specifically, the test-
ing function needs to know when in the development methodology test design can
start. It also needs to know when the system will be available for execution and the
recording and correction of defects.
The following questions should be asked to solicit basic information:

B What is the methodology?
B What development and project management methodology does the develop-
ment organization use?
B How well does the development organization follow the development
methodology?
B s there room for interpretation or flexibility?
B Standards:
— Are standards and practices documented?
— Are the standards useful or do they hinder productivity?
- How well does the development organization enforce standards?

Task 6: Identify the High-Level Business Requirements

A software requirements specification defines the functions of a particular software
product in a specific environment. Depending on the development organization, it
may vary from a loosely defined document with a generalized definition of what

© 2009 by Taylor & Francis Group, LLC

162 m Software Testing and Continuous Quality Improvement

the application will do to a very detailed specification, as shown in Appendix C,
“Requirements Specification.” In either case, the testing manager must assess the
scope of the development project to start a test plan.

The following questions should be asked to solicit basic information:

B What are the high-level functions? The functions at a high level should be
enumerated. Examples include order processing, financial processing,
reporting capability, financial planning, purchasing, inventory control, sales
administration, shipping, cash flow analysis, payroll, cost accounting, and
recruiting. This list defines what the application is supposed to do and gives
the testing manager an idea of the level of test design and implementation
required. The interviewer should solicit as much detail as possible, including
a detailed breakdown of each function. If this detail is not available during
the interview, a request for a detailed functional decomposition should be
made, and it should be pointed out that this information is essential for
preparing a test plan.

B What are the system (minimum,) requirements? A description of the operating
system version (Windows, etc.) and minimum microprocessor, disk space,
RAM, and communications hardware should be provided.

B What are the Windows or external interfaces? The specification should define
how the application should behave from an external viewpoint, usually by
defining the inputs and outputs. It also includes a description of any inter-
faces to other applications or subsystems.

B What are the performance requirements? This includes a description of the
speed, availability, data volume throughput rate, response time, and recovery
time of various functions, stress, and so on. This serves as a basis for under-
standing the level of performance and stress testing that may be required.

B Whar other testing attributes are required? This includes such attributes as
portability, maintainability, security, and usability. This serves as a basis for
understanding the level of other system-level testing that may be required.

B Aye there any design constraints? This includes a description of any limitation
on the operating environments, database integrity, resource limits, imple-
mentation language standards, and so on.

Task 7: Perform Risk Analysis

The purpose of this task is to measure the degree of business risk in an application
system to improve testing. This is accomplished in two ways: high-risk applications
can be identified and subjected to more extensive testing, and risk analysis can help
identify the error-prone components of an individual application so that testing
can be directed at those components. This task describes how to use risk assessment
techniques to measure the risk of an application under testing.

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ®m 163

Computer Risk Analysis

Risk analysis is a formal method for identifying vulnerabilities (i.., areas of poten-
tial loss). Any weakness that could be misused, intentionally or accidentally, and
result in a loss to the organization is a vulnerability. Identification of risks allows
the testing process to measure the potential effect of those vulnerabilities (e.g., the
maximum loss that could occur if the risk or vulnerability were exploited).

Risk has always been a testing consideration. Individuals naturally try to antici-
pate problems and then test to determine whether additional resources and atten-
tion need to be directed at those problems. Often, however, risk analysis methods
are both informal and ineffective.

Through proper analysis, the test manager should be able to predict the prob-
ability of such unfavorable consequences as the following:

Failure to obtain all, or even any, of the expected benefits
Cost and schedule overruns
An inadequate system of internal control

Technical performance of the resulting system that is significantly below
the estimate
B Incompatibility of the system with the selected hardware and software

The following reviews the various methods used for risk analysis and the dimen-
sions of computer risk, and then describes the various approaches to assigning risk
priorities. There are three methods of performing risk analysis.

Method 1: Judgment and Instinct

This method of determining how much testing to perform enables the tester to com-
pare the project with past projects to estimate the magnitude of the risk. Although
this method can be effective, the knowledge and experience it relies on are not
transferable but must be learned over time.

Method 2: Dollar Estimation

Risk is the probability of incurring loss. That probability is expressed through
this formula:

(Frequency of occurrence) x (loss per occurrence) = (annual loss expectation)

Business risk based on this formula can be quantified in dollars. Often, however,
the concept, not the formula, is used to estimate how many dollars might be
involved if problems were to occur. The disadvantages of projecting risks in dollars
are that such numbers (i.e., frequency of occurrence and loss per occurrence) are

© 2009 by Taylor & Francis Group, LLC

164 m Software Testing and Continuous Quality Improvement

difficult to estimate and the method implies a greater degree of precision than may
be realistic.

Method 3: Identifying and Weighting Risk Attributes

Experience has demonstrated that the major attributes causing potential risks are
the project size, experience with the technology, and project structure. The larger
the project is in dollar expense, staffing levels, elapsed time, and number of depart-
ments affected, the greater the risk.

Because of the greater likelihood of unexpected technical problems, project risk
increases as the project team’s familiarity with the hardware, operating systems,
database, and application languages decreases. A project that has a slight risk for a
leading-edge, large systems development department may carry a very high risk for
a smaller, less technically advanced group. The latter group, however, can reduce its
risk by purchasing outside skills for an undertaking that involves a technology in
general commercial use.

In highly structured projects, the nature of the task defines the output com-
pletely, from the beginning. Such output is fixed during the life of the project.
These projects carry much less risk than those whose output is more subject to the
manager’s judgment and changes.

The relationship among these attributes can be determined through weighting,
and the testing manger can use weighted scores to rank application systems accord-
ing to their risk. For example, this method can show application A is a higher risk
than application B.

Risk assessment is applied by first weighting the individual risk attributes. For
example, if an accribute is twice as important as another, it can be multiplied by the
weight of two. The resulting score is compared with other scores developed for the
same development organization and is used to determine a relative risk measure-
ment among applications, but it is not used to determine an absolute measure.

Table 13.2 compares three projects using the weighted risk attribute method.
Project size has a weight factor of 2, experience with technology has a weight factor

Table 13.2 Identifying and Weighting Risk Attributes

Project A | Project B | Project C
(Score x (Score x (Score x
Weighting Factor Weight) Weight) Weight)

Project size (2) 5x2=10 | 3x2=6 | 2x2=4

Experience with technology (3) | 7x3=21 | 1x3=3 | 5x3=15

Project structure (1) 4x1=4 | 6x1=06 3x1=3

Total score 35 15 22

© 2009 by Taylor & Francis Group, LLC

Information Gathering (Plan) ®m 165

of 3, and project structure has a weight factor of 1. When the project scores are each
multiplied by each of the three weight factors, it becomes clear that project A has
the highest risk.

Information gathered during risk analysis can be used to allocate test resources
to test application systems. For example, high-risk applications should receive
extensive testing; medium-risk systems, less testing; and low-risk systems, minimal
testing. The area of testing can be selected on the basis of high-risk characteristics.
For example, if computer technology is a high-risk characteristic, the testing man-
ager may want to spend more time testing how effectively the development team is
using that technology.

Step 3: Summarize the Findings

Task 1: Summarize the Interview

After the interview is completed, the interviewer should review the agenda and out
line the main conclusions. If a follow-up session is needed, one should be scheduled
at this point while the members are present.

Typically, during the interview, the notes are unstructured and hard to follow
by anyone except the note taker. However, the notes should have at least followed
the agenda. After the interview concludes, the notes should be formalized into a
summary report. This should be performed by the scribe note taker. The goal is
to make the results of the session as clear as possible for quality assurance and the
development organization. However, the interview leader may have to embellish the
material or expand certain areas. (See Appendix E16, “Minutes of the Meeting,”
which can be used to document the results and follow-up actions for the project
information-gathering session).

Task 2: Confirm the Interview Findings

The purpose of this task is to bring about agreement between the interviewer and
the development organization, to ensure an understanding of the project. After the
interview notes are formalized, it is important to distribute the summary report
to the other members who attended the interview. A sincere invitation for their
comments or suggestions should be communicated. The interviewer should then
actively follow up interview agreements and disagreements. Any changes should
then be implemented. Once there is full agreement, the interviewer should provide
a copy of the summary report.

© 2009 by Taylor & Francis Group, LLC

Chapter 14

Test Planning (Plan)

The purpose of the test project plan is to provide the basis for accomplishing testing
in an organized manner. From a managerial point of view, it is the most important
document, because it helps manage the test project. If a test plan is comprehensive
and carefully thought out, test execution and analysis should proceed smoothly.
(See Appendix E1 for a sample unit test plan, Appendix E4 for a sample system test
plan, and Appendix F24 for a unit testing checklist, which can be used to verify
that unit testing has been thorough and comprehensive.)

The test project plan is an ongoing document, particularly in the spiral environ-
ment, because the system is constantly changing. As the system changes, so does
the test plan. A good test plan is one that:

Has a good chance of detecting a majority of the defects
Provides test coverage for most of the code

Is flexible

Is executed easily and automatically, and is repeatable
Defines the types of tests to be performed

Clearly documents the expected results

Provides for defect reconciliation when a defect is discovered
Clearly defines the test objectives

Clarifies the test strategy

Clearly defines the test exit criteria

Is not redundant

Identifies the risks

Documents the test requirements

Defines the test deliverables

167

© 2009 by Taylor & Francis Group, LLC

168 ®m Software Testing and Continuous Quality Improvement

Although there are many ways a test plan can be created, Figure 14.1 provides a
framework that includes most of the essential planning considerations. It can be
treated as a checklist of test items to consider. Some of the items, such as defining
the test requirements and test team, are obviously required; however, others may
not be. It depends on the nature of the project and the time constraints.

The planning test methodology includes three steps: building the test project
plan, defining the metrics, and reviewing/approving the test project plan. Each of
these is then broken down into its respective tasks, as shown in Figure 14.1.

Step 1: Build a Test Plan

Task 1: Prepare an Introduction

The first bit of test plan detail is a description of the problems to be solved by the
application of the associated opportunities. This defines the summary background,
describing the events or current status leading up to the decision to develop the
application. Also, the application’s risks, purpose, objectives, and benefits, and the
organization’s critical success factors should be documented in the introduction. A
critical success factor is a measurable item that will have a major influence on whether
a key function meets its objectives. An objective is a measurable end state that the
organization strives to achieve. Examples of objectives include the following:

New product opportunity

Improved efficiency (internal and external)
Organizational image

Growth (internal and external)

Financial (revenue, cost profitability, etc.)
Competitive position

Market leadership

The introduction should also include an executive summary description. The exec-
utive sponsor (often called the project sponsor) is the individual who has ultimate
authority over the project. This individual has a vested interest in the project in
terms of funding, project results, and resolving project conflicts, and is respon-
sible for the success of the project. An executive summary describes the proposed
application from an executive’s point of view. It should describe the problems to be
solved, the application goals, and the business opportunities. The objectives should
indicate whether the application is a replacement of an old system and document
the impact the application will have, if any, on the organization in terms of man-
agement, technology, and so on.

Any available documentation should be listed and its status described.
Examples include requirements specifications, functional specifications, project

© 2009 by Taylor & Francis Group, LLC

(STEPS)

Test Planning (Plan) ® 169

(TASKS)

Prepare
Introduction

<+

Define High-Level
Functional Requirements

+

Identify Types
of Tests

+

Identify Test
Exit Criteria

Establish Regression
Test Strategy

N

Define
Deliverables

-

Organize
Test Team

+

Establish Test
Environment

+

Define
Dependencies

+

Build

Create Test
Schedule

Test

+

Plan

Select Test
Tools

-

Establish Defect Recording/
Tracking Procedures

+

Establish Change
Request Procedures

~

Establish Version
Control Procedures

Define Configuration
Build Procedures

-

Define Project Issue
Resolution Procedures

-

Establish Reporting
Procedures

Define Approval
Procedures

Define

Define
Metrics

Metrics

-

Objectives

I

o et T 1 [1

Define Metric
Points

Figure 14.1

Test planning (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

170 m Software Testing and Continuous Quality Improvement

plan, design specification, prototypes, user manual, business model/flow dia-
grams, data models, and project risk assessments. In addition to project risks,
which are the potential adverse effects on the development project, the risks relat-
ing to the testing effort should be documented. Examples include the lack of
testing skills, scope of the testing effort, lack of automated testing tools, and the
like. See Appendix E4, “Test Plan (Client/Server and Internet Spiral Testing),”
for more details.

Task 2: Define the High-Level Functional
Requirements (in Scope)

A functional specification consists of the hierarchical functional decomposition,
the functional window structure, the window standards, and the minimum system
requirements of the system to be developed. An example of window standards is the
Windows 95 GUI Standards. An example of a minimum system requirement could
be Windows 95, a Pentium II microprocessor, 24 MB RAM, 3 GB disk space, and
a modem. At this point in development, a full functional specification may not
have been defined. However, a list of at least the major business functions of the
basic window structure should be available.

A basic functional list contains the main functions of the system with each
function named and described with a verb—object paradigm. This list serves as the
basis for structuring functional testing (see Figure 14.2).

A functional window structure describes how the functions will be implemented
in the windows environment. At this point, a full functional window structure may
not be available, but a list of the major windows should be (see Figure 14.3).

Order processing (ex. create new order, edit order, etc.)

Customer processing (create new customer, edit customer, etc.)
Financial processing (receive payment, deposit payment, etc.)
Inventory processing (acquire products, adjust product price, etc.)
Reports (create order report, create account receivable report, etc.)

Figure 14.2 High-level business functions.

The Main-Window (menu bar, customer order window, etc.)
The Customer-Order-Window (order summary list, etc.)
The Edit-Order-Window (create order, edit order, etc.)

The Menu Bar (File, Order, View, etc.)

The Tool Bar with icons (FileNew, OrderCreate)

Figure 14.3 Functional window structure.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ® 171

Task 3: Identify Manual/Automated Test Types

The types of tests that need to be designed and executed depend only on the objec-
tives of the application, that is, the measurable end state the organization is striving
to achieve. For example, if the application is a financial application used by a large
number of individuals, special security and usability tests need to be performed.
However, three types of tests that are nearly always required are function, user
interface, and regression testing. Function testing comprises the majority of the
testing effort and is concerned with verifying that the functions work properly. It is
a black-box-oriented activity in which the tester is completely unconcerned with the
internal behavior and structure of the application. User interface testing, or GUI
testing, checks the user’s interaction or functional window structure. It ensures that
object state dependencies work properly and provide useful navigation through the
functions. Regression testing tests the application in light of changes made during
debugging, maintenance, or the development of a new release.

Other types of tests that need to be considered include system and acceptance
testing. System testing is the highest level of testing and evaluates functionality
as a total system, its performance, and overall fitness of use. Acceptance testing is
an optional user-run test that demonstrates the ability of the application to meet
the user’s requirements. This test may or may not be performed, depending on the
formality of the project. Sometimes the system test suffices.

Finally, the tests that can be automated with a testing tool need to be identi-
fied. Automated tests provide three benefits: repeatability, leverage, and increased
functionality. Repeatability enables automated tests to be executed more than once,
consistently. Leverage comes from repeatability, from tests previously captured and
tests that can be programmed with the tool, which may not have been possible
without automation. As applications evolve, more and more functionality is added.
With automation, the functional coverage is maintained with the test library.

Task 4: Identify the Test Exit Criteria

One of the most difficult and political problems is deciding when to stop testing,
because it is impossible to know when all the defects have been detected. There are
at least four criteria for exiting testing:

1. Scheduled resting time has expired—This criterion is very weak, inasmuch as it
has nothing to do with verifying the quality of the application. This does not
take into account that there may be an inadequate number of test cases or the
fact that there may not be any more defects that are easily detectable.

2. Some predefined number of defects discovered—The problems with this is
knowing the number of errors to detect and also overestimating the num-
ber of defects. If the number of defects is underestimated, testing will be
incomplete. Potential solutions include experience with similar applications

© 2009 by Taylor & Francis Group, LLC

172 m Software Testing and Continuous Quality Improvement

developed by the same development team, predictive models, and industry-
wide averages. If the number of defects is overestimated, the test may never
be completed within a reasonable time frame. A possible solution is to esti-
mate completion time, plotting defects detected per unit of time. If the rate
of defect detection is decreasing dramatically, there may be “burnout,” an
indication that a majority of the defects have been discovered.

3. All the formal tests execute without detecting any defects—A major problem
with this is that the tester is not motivated to design destructive test cases
that force the tested program to its design limits; for example, the tester’s
job is completed when the test program fields no more errors. The tester is
motivated to not find errors and may subconsciously write test cases that
show the program is error free. This criterion is only valid if there is a rigorous
and totally comprehensive test case suite created that approaches 100 percent
coverage. The problem with this is determining when there is a comprehen-
sive suite of test cases. If it is felt that this is the case, a good strategy at this
point is to continue with ad hoc testing. Ad hoc testing is a black-box testing
technique in which the tester lets his or her mind run freely to enumerate as
many test conditions as possible. Experience has shown that this technique
can be a very powerful supplemental or add-on technique.

4. Combination of the foregoing criteria—Most testing projects utilize a combi-
nation of the foregoing exit criteria. It is recommended that all the tests be
executed, but any further ad hoc testing will be constrained by time.

Task 5: Establish Regression Test Strategy

Regression testing tests the application in light of changes made during a develop-
ment spiral, debugging, maintenance, or the development of a new release. This test
must be performed after functional improvements or repairs have been made to a
system to confirm that the changes have no unintended side effects. Correction of
errors relating to logic and control flow, computational errors, and interface errors
are examples of conditions that necessitate regression testing. Cosmetic errors gen-
erally do not affect other capabilities and do not require regression testing.

It would be ideal if all the tests in the test suite were rerun for each new spiral;
however, owing to time constraints, this is probably not realistic. A good regression
strategy during spiral development is for some regression testing to be performed
during each spiral to ensure that previously demonstrated capabilities are not
adversely affected by later development spirals or error corrections. During system
testing, after the system is stable and the functionality has been verified, regression
testing should consist of a subset of the system tests. Policies need to be created to
decide which tests to include. (See Appendix E21, “Test Strategy.”)

A retest matrix is an excellent tool that relates test cases to functions (or pro-
gram units), as shown in Table 14.1. A check entry in the matrix indicates that the
test case is to be retested when the function (or program unit) has been modified

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) m 173

Table 14.1 Retest Matrix

Test Case

1 2 3 4 5

Business function

Order processing

Create new order J J v v
Fulfill order
Edit order v v

Delete order

Customer processing

Create new customer

Edit customer

Delete customer v

Financial processing

Receive customer payment J J J

Deposit payment

Pay vendor
Write a check SV Y Y

Display register

Inventory processing

Acquire vendor products

Maintain stock

Handle back orders J J v J/ Vv

Audit inventory

Adjust product price

Reports

Create order report

Create account receivables report | / J v v J

Create account payables report

Create inventory report

© 2009 by Taylor & Francis Group, LLC

174

B Software Testing and Continuous Quality Improvement

due to enhancements or corrections. An empty cell means that the test does not
need to be retested. The retest matrix can be built before the first testing spiral, but

needs to be maintained during subsequent spirals. As functions (or program units)
are modified during a development spiral, existing or new test cases need to be cre-
ated and checked in the retest matrix in preparation for the next test spiral. Over
time, with subsequent spirals, some functions (or program units) may remain sta-
ble with no recent modifications. Consideration to selectively remove their check
entries should be undertaken between testing spirals. (Also see Appendix E14,
“Retest Matrix.”)
Other considerations of regression testing are as follows:

Regression tests are potential candidates for test automation when they are
repeated over and over in every testing spiral.

Regression testing needs to occur between releases after the initial release of
the system.

A test that uncovers an original defect should be rerun after the defect has
been corrected.

An in-depth effort should be made to ensure that the original defect was cor-
rected, and not just the symptoms.

Regression tests that repeat other tests should be removed.

Other test cases in the functional (or program unit) area where a defect is
uncovered should be included in the regression test suite.

Client-reported defects should have high priority and should be regression-
tested thoroughly.

Task 6: Define the Test Deliverables

Test deliverables result from test planning, test design, test development, and test
defect documentation. Some spiral test deliverables from which you can choose
include the following:

Test plan: Defines the objectives, scope, strategy, types of tests, test environment,
test procedures, exit criteria, and so on (see Appendix E4, “Sample Template”).
Test design: Tests for the application’s functionality, performance, and appro-
priateness for use. The tests demonstrate that the original test objectives are
satisfied.

Change request: A documented request to modify the current software sys-
tem, usually supplied by the user (see Appendix D, “Change Request Form,”
for more details). It is typically different from a defect report, which reports
an anomaly in the system.

Metrics: The measurable indication of some quantitative aspect of a system.
Examples include the number of severe defects, and the number of defects
discovered as a function of the number of testers.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) m 175

B Test case: A specific set of test data and associated procedures developed for a
particular objective. It provides a detailed blueprint for conducting individual
tests and includes specific input data values and the corresponding expected
results (see Appendix E8, “Test Case,” for more details).

B Test log summary report: Specifies the test cases from the tester’s individual
test logs that are in progress or completed for status reporting and metric col-
lection (see Appendix E10, “Test Log Summary Report”).

B Test case log: Specifies the test cases for a particular testing event to be exe-
cuted during testing. It is also used to record the results of the test performed,
to provide the detailed evidence for the summary of test results, and to pro-
vide a basis for reconstructing the testing event if necessary (see Appendix E9,
“Test Case Log”).

B Interim test report: A report published between testing spirals, indicating the
status of the testing effort (see Part 18, Step 3, Publish Interim Report).

B System summary report: A comprehensive test report after all spiral testing
has been completed (see Appendix E11, “System Summary Report”).

B Defect report: Documents defects discovered during spiral testing (see
Appendix E12, “Defect Report”).

Task 7: Organize the Test Team

The people component includes human resource allocations and the required skill
sets. The test team should comprise the highest-caliber personnel possible. They
are usually extremely busy and are in great demand because of their talents, and it
therefore is vital to build the best case possible for using these individuals for test
purposes. A test team leader and test team need to have the right skills and experi-
ence, and be motivated to work on the project. Ideally, they should be professional
quality assurance specialists, but can represent the executive sponsor, users, techni-
cal operations, database administration, computer center, independent parties, and
so on. In any event, they should not represent the development team, for they may
not be as unbiased as an outside party. This is not to say that developers should not
test; they should unit and function test their code extensively before handing it over
to the test team.

There are two areas of responsibility in testing: testing the application, which
is the responsibility of the test team, and the overall testing processes, which is
handled by the test manager. The test manager directs one or more testers, is the
interface between quality assurance and the development organization, and man-
ages the overall testing effort. Responsibilities include the following:

B Setting up the test objectives
B Defining test resources
B Creating test procedures

© 2009 by Taylor & Francis Group, LLC

176 ®m Software Testing and Continuous Quality Improvement

Developing and maintaining the test plan
Designing test cases

Designing and executing automated testing tool scripts
Test case development

Providing test status

Writing reports

Defining the roles of the team members
Managing the test resources

Defining standards and procedures
Ensuring quality of the test process
Training the team members

Maintaining test statistics and metrics

The test team must be a set of team players and have these responsibilities:

Executing test cases according to the plan

Evaluating the test results

Reporting errors

Designing and executing automated testing tool scripts
Recommending application improvements

Recording defects

The main function of a team member is to test the application and report defects
to the development team by documenting them in a defect-tracking system. Once
the development team corrects the defects, the test team reexecutes the tests that
discovered the original defects.

It should be pointed out that the roles of the test manager and team members
are not mutually exclusive. Some of the team leader’s responsibilities are shared
with the team members, and vice versa.

The basis for allocating dedicated testing resources is the scope of the function-
ality and the development time frame; for example, a medium development project
will require more testing resources than a small one. If project A of medium com-
plexity requires a testing team of five, project B with twice the scope would require
ten testers (given the same resources).

Another rule of thumb is that the testing costs approach 25 percent of the total
budget. Because the total project cost is known, the testing effort can be calculated
and translated to tester headcount.

The best estimate is a combination of the project scope, test team skill levels,
and project history. A good measure of required testing resources for a particular
project is the histories of multiple projects, that is, testing resource levels and per-
formance compared to similar projects.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) m 177

Task 8: Establish a Test Environment

The purpose of the test environment is to provide a physical framework necessary
for the testing activity. For this task, the test environment needs are established and
reviewed before implementation.

The main components of the test environment include the physical test facility,
technologies, and tools. The test facility component includes the physical setup.
The technologies component includes the hardware platforms, physical network
and all its components, operating system software, and other software such as util-
ity software. The tools component includes any specialized testing software such as
automated test tools, testing libraries, and support software.

The testing facility and workplace need to be established. This may range from
an individual workplace configuration to a formal testing laboratory. In any event,
it is important that the testers be together and in close proximity to the develop-
ment team. This facilitates communication and the sense of a common goal. The
testing tools that were acquired need to be installed.

The hardware and software technologies need to be set up. This includes the
installation of test hardware and software, and coordination with vendors, users,
and information technology personnel. It may be necessary to test the hardware
and coordinate with hardware vendors. Communication networks need to be
installed and tested.

Task 9: Define the Dependencies

A good source of information is previously produced test plans on other projects. If
available, the sequence of tasks in the project work plans can be analyzed for activ-
ity and task dependencies that apply to this project.

Examples of test dependencies include the following:

Code availability

Tester availability (in a timely fashion)
Test requirements (reasonably defined)
Test tools availability

Test group training

Technical support

Defects fixed in a timely manner
Adequate testing time

Computers and other hardware
Software and associated documentation
System documentation (if available)
Defined development methodology
Test laboratory space availability

Agreement with development (procedures and processes)

© 2009 by Taylor & Francis Group, LLC

178 m Software Testing and Continuous Quality Improvement

The support personnel need to be defined and committed to the project. This
includes members of the development group, technical support staff, network sup-
port staff, and database administrator support staff.

Task 10: Create a Test Schedule

A test schedule should be produced that includes the testing steps (and perhaps
tasks), target start and end dates, and responsibilities. It should also describe how it
will be reviewed, tracked, and approved. A simple test schedule format, as shown in
Table 14.2, follows the spiral methodology.

Also, a project management tool such as Microsoft Project can format a Gantt
chart to emphasize the tests and group them into test steps. A Gantt chart consists
of a table of task information and a bar chart that graphically displays the test
schedule. It also includes task time duration and links the task dependency rela-
tionships graphically. People resources can also be assigned to tasks for workload
balancing. See Appendix E13, “Test Schedule,” and template file Gantt spiral test-
ing methodology template.

Another way to schedule testing activities is with “relative scheduling,” in
which testing steps or tasks are defined by their sequence or precedence. It does
not state a specific start or end date but does have a duration, such as days. (Also
see Appendix E18, “Test Execution Plan,” which can be used to plan the activities
for the Execution phase, and Appendix E20, “PDCA Test Schedule,” which can be
used to plan and track the Plan-Do—Check—Act test phases.)

It is also important to define major external and internal milestones. External
milestones are events that are external to the project but may have a direct impact
on the project. Examples include project sponsorship approval, corporate funding,
and legal authorization. Internal milestones are derived for the schedule work plan
and typically correspond to key deliverables that need to be reviewed and approved.
Examples include test plan, design, and development completion approval by the proj-
ect sponsor and the final spiral test summary report. Milestones can be documented
in the test plan in table format as shown in Table 14.3. (Also see Appendix E19, “Test
Project Milestones,” which can be used to identify and track the key test milestones.)

Task 11: Select the Test Tools

Test tools range from relatively simple to sophisticated software. New tools are being
developed to help provide the high-quality software needed for today’s applications.

Because test tools are critical to effective testing, those responsible for testing
should be proficient in using them. The tools selected should be most effective for
the environment in which the tester operates and the specific types of software
being tested. The test plan needs to name specific test tools and their vendors. The
individual who selects the test tool should also conduct the test and be familiar
enough with the tool to use it effectively. The test team should review and approve

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) m 179

Table 14.2 Test Schedule

Responsible Staff
Test Step Begin Date | End Date Member
First Spiral
Information gathering
Prepare for interview 6/1/04 6/2/04 Smith, test manager
Conduct interview 6/3/04 6/3/04 Smith, test manager
Summarize findings 6/4/04 6/5/04 Smith, test manager
Test planning
Build test plan 6/8/04 6/12/04 | Smith, test manager
Define the metric objectives 6/15/04 6/17/04 | Smith, test manager
Review/approve plan 6/18/04 6/18/04 | Smith, test manager
Test case design
Design function tests 6/19/04 6/23/04 | Smith, test manager
Design GUI tests 6/24/04 6/26/04 | Smith, test manager
Define the system/acceptance
Tests 6/29/04 6/30/04 Smith, test manager
Review/approve design 713/04 7/3/04 Smith, test manager
Test development
Develop test scripts 7/6/04 7/16/04 Jones, Baker,
Brown, testers
Review/approve test 7117104 7/117/04 | Jones, Baker,
development Brown, testers
Test execution/evaluation
Setup and testing 7/20/04 7/24/04 Smith, Jones, Baker,
Brown, testers
Evaluation 7/127/04 7/29/04 Smith, Jones, Baker,
Brown, testers

Continued

© 2009 by Taylor & Francis Group, LLC

180 ®m Software Testing and Continuous Quality Improvement

Table 14.2 Test Schedule (Continued)

Responsible Staff
Test Step Begin Date | End Date Member
Prepare for the Next Spiral
Refine the tests 8/3/04 8/5/04 Smith, test manager
Reassess team, procedures, 8/6/04 8/7/04 Smith, test manager
and test environment
Publish interim report 8/10/04 8/11/04 | Smith, test manager
L]
Last Spiral...
Test execution/evaluation
Setup and testing 10/5/04 10/9/04 Jones, Baker,
Brown, testers
Evaluation 10/12/04 10/14/04 | Smith, test manager
L]
L]
L]
Conduct system testing
Complete system test plan 10/19/04 10/21/04 | Smith, test manager
Complete system test cases 10/22/04 10/23/04 | Smith, test manager
Review/approve system tests 10/26/04 10/30/04 | Jones, Baker,
Brown, testers
Execute the system tests 11/2/04 11/6/04 Jones, Baker,
Brown, testers
Conduct acceptance testing
Complete acceptance test 11/9/04 11/10/04 | Smith, test manager
plan
Complete acceptance test 11/11/04 11/12/04 | Smith, test manager

cases

> 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) m 181

Table 14.2 Test Schedule (Continued)

Responsible Staff
Test Step Begin Date | End Date Member
Review/approve acceptance
Test plan 11/13/04 11/16/04 | Jones, Baker,

Brown, testers

Execute the acceptance tests 11/17/04 11/20/04

Summarize/report spiral test results

Perform data reduction 11/23/04 11/26/04 | Smith, test manager

Prepare final test report 11/27/04 11/27/04 | Smith, test manager

Review/approve the final

Test report 11/28/04 11/29/04 | Smith, test manager
Baylor, sponsor

Table 14.3 Project Milestones

Project Milestone Due Date
Sponsorship approval 7/1/04
First prototype available 7/20/04
Project test plan 6/18/04
Test development complete 711704
Test execution begins 7/20/04
Final spiral test summary report published | 11/27/04
System ship date 12/1/04

© 2009 by Taylor & Francis Group, LLC

182 m Software Testing and Continuous Quality Improvement

the use of each test tool, because the tool selected must be consistent with the objec-
tives of the test plan.

The selection of testing tools may be based on intuition or judgment. However,
a more systematic approach should be taken. Section 6, “Modern Software Testing
Tools,” provides a comprehensive methodology for acquiring testing tools. It also
provides an overview of the types of modern testing tools available.

Task 12: Establish Defect Recording/Tracking Procedures

During the testing process, when a defect is discovered, it needs to be recorded. A
defect is related to individual tests that have been conducted, and the objective is
to produce a complete record of those defects. The overall motivation for record-
ing defects is to correct them and record metric information about the application.
Development should have access to the defects reports, which they can use to evalu-
ate whether there is a defect and how to reconcile it. The defect form can either be
manual or electronic, with the latter being preferred. Metric information such as
the number of defects by type or open time for defects can be very useful in under-
standing the status of the system.

Defect control procedures need to be established to control this process from
initial identification to reconciliation. Table 14.4 shows some possible defect states,
from open to closed with intermediate states. The testing department initially
opens a defect report and also closes it. A “Yes” in a cell indicates a possible transi-
tion from one state to another. For example, an “Open” state can change to “Under
Review,” “Returned by Development,” or “Deferred by Development.” The transi-
tions are initiated by either the testing department or by development.

A defect report form also needs to be designed. The major fields of a defect form
include (see Appendices E12 and E27, “Defect Report,” for more details) the following:

B Identification of the problem, for example, functional area, problem type,
and so on

Nature of the problem, for example, behavior

Circumstances that led to the problem, for example, inputs and steps
Environment in which the problem occurred, for example, platform, and so on
Diagnostic information, for example, error code, and so on

Effect of the problem, for example, consequence

It is quite possible that a defect report and a change request form are the same.
The advantage of this approach is that it is not always clear whether a change
request is a defect or an enhancement request. The differentiation can be made
with a form field that indicates whether it is a defect or enhancement request. On
the other hand, a separate defect report can be very useful during the maintenance
phase when the expected behavior of the software is well known and it is easier to
distinguish between a defect and an enhancement.

© 2009 by Taylor & Francis Group, LLC

Table 14.4 Defect States

Under | Returned by | Ready for | Returned | Deferred by

Open | Review | Development | Testing by QA | Development | Closed
Open — Yes Yes — — Yes —
Under review — — Yes Yes — Yes Yes
Returned by development — — — — Yes — Yes
Ready for testing — — — — Yes — Yes
Returned by QA — — Yes — — Yes Yes
Deferred by development — Yes Yes Yes — — Yes
Closed Yes — — — —

© 2009 by Taylor & Francis Group, LLC

€8l m (ueld) Suluueld 1s9]

184 m Software Testing and Continuous Quality Improvement

Task 13: Establish Change Request Procedures

If it were a perfect world, a system would be built and there would be no future
changes. Unfortunately, it is not a perfect world and after a system is deployed,
there are change requests.

Some of the reasons for change are the following:

The requirements change.

The design changes.

The specification is incomplete or ambiguous.

A defect is discovered that was not discovered during reviews.

The software environment changes, for example, platform, hardware, and so on.

Change control is the process by which a modification to a software component is
proposed, evaluated, approved or rejected, scheduled, and tracked. It is a decision
process used in controlling the changes made to software. Some proposed changes are
accepted and implemented during this process. Others are rejected or postponed, and
are not implemented. Change control also provides for impact analysis to determine
the dependencies (see Appendix D, “Change Request Form,” for more details).

Each software component has a life cycle. A life cycle consists of states and
allowable transitions between those states. Any time a software component is
changed, it should always be reviewed. During the review, it is frozen from fur-
ther modifications and the only way to change it is to create a new version. The
reviewing authority must approve the modified software component or reject it. A
software library should hold all components as soon as they are frozen and also act
as a repository for approved components.

The formal title of the organization that manages changes is a configuration
control board, or CCB. The CCB is responsible for the approval of changes and
for judging whether a proposed change is desirable. For a small project, the CCB
can consist of a single person, such as a project manager. For a more formal devel-
opment environment, it can consist of several members from development, users,
quality assurance, management, and the like.

All components controlled by software configuration management are stored
in a software configuration library, including work products such as business data
and process models, architecture groups, design units, tested application software,
reusable software, and special test software. When a component is to be modified,
it is checked out of the repository into a private workspace. It evolves through many
states that are temporarily outside the scope of configuration management control.

When a change is completed, the component is checked into the library and
becomes a new component version. The previous component version is also retained.

Change control is based on the following major functions of a development
process: requirements analysis, system design, program design, testing, and imple-
mentation. At least six control procedures are associated with these functions and

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ® 185

need to be established for a change control system (see Appendix B, “Software
Quality Assurance Plan,” for more details):

1. Initiation procedures—This includes procedures for initiating a change request
through a change request form, which serves as a communication vehicle.
The objective is to gain consistency in documenting the change request docu-
ment and routing it for approval.

2. Technical assessment procedures—This includes procedures for assessing the
technical feasibility and technical risks, and scheduling a technical evaluation
of a proposed change. The objectives are to ensure integration of the proposed
change, the testing requirements, and the ability to install the change request.

3. Business assessment procedures—This includes procedures for assessing the
business risk, effect, and installation requirements of the proposed change.
The objectives are to ensure that the timing of the proposed change is not
disruptive to the business goals.

4. Management review procedures—This includes procedures for evaluating the
technical and business assessments through management review meetings.
The objectives are to ensure that changes meet technical and business require-
ments and that adequate resources are allocated for testing and installation.

5. Test tracking procedures—This includes procedures for tracking and docu-
menting test progress and communication, including steps for scheduling
tests, documenting the test results, deferring change requests based on test
results, and updating test logs. The objectives are to ensure that testing stan-
dards are utilized to verify the change, including test plans and test design,
and that test results are communicated to all parties.

6. Installation tracking procedures—This includes procedures for tracking and
documenting the installation progress of changes. It ensures that proper
approvals have been completed, adequate time and skills have been allocated,
installation and backup instructions have been defined, and proper commu-
nication has occurred. The objectives are to ensure that all approved changes
have been made, including scheduled dates, test durations, and reports.

Task 14: Establish Version Control Procedures

A method for uniquely identifying each software component needs to be estab-
lished via a labeling scheme. Every software component must have a unique name.
Software components evolve through successive revisions, and each needs to be
distinguished. A simple way to distinguish component revisions is with a pair of
integers, 1.1, 1.2, ..., that define the release number and level number. When a
software component is first identified, it is revision 1 and subsequent major revi-
sions are 2, 3, and so on.

In a client/server environment, it is highly recommended that the development
environment be different from the test environment. This requires the application

© 2009 by Taylor & Francis Group, LLC

186 ®m Software Testing and Continuous Quality Improvement

software components to be transferred from the development environment to the
test environment. Procedures need to be set up.

Software needs to be placed under configuration control so that no changes are
being made to the software while testing is being conducted. This includes source
and executable components. Application software can be periodically migrated into
the test environment. This process must be controlled to ensure that the latest ver-
sion of software is tested. Versions will also help control the repetition of tests to
ensure that previously discovered defects have been resolved.

For each release or interim change between versions of a system configuration, a ver-
sion description document should be prepared to identify the software components.

Task 15: Define Configuration Build Procedures

Assembling a software system involves tools to transform the source components,
or source code, into executable programs. Examples of tools are compilers and link-
age editors.

Configuration build procedures need to be defined to identify the correct com-
ponent versions and execute the component build procedures. The configuration
build model addresses the crucial question of how to control the way components
are built.

A configuration typically consists of a set of derived software components. An
example of derived software components is executable object programs derived from
source programs. Derived components must be correctly associated with each source
component to obtain an accurate derivation. The configuration build model addresses
the crucial question of how to control the way derived components are built.

The inputs and outputs required for a configuration build model include pri-
mary inputs and primary outputs. The primary inputs are the source components,
which are the raw materials from which the configuration is built; the version selec-
tion procedures; and the system model, which describes the relationship between
the components. The primary outputs are the target configuration and derived soft-
ware components.

Different software configuration management environments use different
approaches for selecting versions. The simplest approach to version selection is to
maintain a list of component versions. Other automated approaches allow for the
most recently tested component versions to be selected, or those updated on a spe-
cific date. Operating system facilities can be used to define and build configura-
tions, including the directories and command files.

Task 16: Define Project Issue Resolution Procedures

Testing issues can arise at any point in the development process and must be
resolved successfully. The primary responsibility of issue resolution is with the proj-
ect manager, who should work with the project sponsor to resolve those issues.

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) m 187

Typically, the testing manager will document test issues that arise during the test-
ing process. The project manager or project sponsor should screen every issue that
arises. An issue can be rejected or deferred for further investigation, but should be
considered relative to its impact on the project. In any case, a form should be cre-
ated that contains the essential information. Examples of testing issues include lack
of testing tools, lack of adequate time to test, inadequate knowledge of the require-
ments, and so on.

Issue management procedures need to be defined before the project starts. The
procedures should address how to:

Submit an issue

Report an issue

Screen an issue (rejected, deferred, merged, or accepted)
Investigate an issue

Approve an issue

Postpone an issue

Reject an issue

Close an issue

Task 17: Establish Reporting Procedures

Test reporting procedures are critical to manage the testing progress and manage
the expectations of the project team members. This will keep the project manager
and sponsor informed of the testing project progress and minimize the chance
of unexpected surprises. The testing manager needs to define who needs the test
information, what information they need, and how often the information is to be
provided. The objectives of test status reporting are to report the progress of the
testing toward its objectives and report test issues, problems, and concerns.
Two key reports that need to be published are:

1. Interim Test Report—An interim test report is a report published between
testing spirals indicating the status of the testing effort.

2. System Summary Report—A test summary report is a comprehensive test
report after all spiral testing has been completed.

Task 18: Define Approval Procedures

Approval procedures are critical in a testing project. They help provide the nec-
essary agreement between members of the project team. The testing manager
should define who needs to approve a test deliverable, when it will be approved,
and what the backup plan is if an approval cannot be obtained. The approval pro-
cedure can vary from a formal sign-off of a test document to an informal review
with comments. Table 14.5 shows test deliverables for which approvals are required

© 2009 by Taylor & Francis Group, LLC

188 m Software Testing and Continuous Quality Improvement

Table 14.5 Deliverable Approvals

Test Deliverable Approval Status Suggested Approver

Test plan Required Project Manager, Development
Manager, Sponsor

Test design Required Development Manager
Change request Required Development Manager
Metrics Recommended | Development Manager
Test case Required Development Manager

Test log summary report | Recommended | Development Manager

Interim test report Required Project Manager, Development
Manager
System summary report | Required Project Manager, Development

Manager, Sponsor

Defect report Required Development Manager

or recommended, and by whom. (Also see Appendix E17, “Test Approvals,” for
a matrix that can be used to formally document management approvals for test
deliverables.)

Step 2: Define the Metric Objectives

“You can’t control what you can’t measure.” This is a quote from Tom DeMarco’s
book, Controlling Software Projecss, in which he describes how to organize and
control a software project so that it is measurable in the context of time and cost
projections. Control is the extent to which a manager can ensure minimum sur-
prises. Deviations from the plan should be signaled as early as possible for timely
corrective action. Another quote from DeMarco’s book, “The only unforgivable
failure is the failure to learn from past failure,” stresses the importance of estimat-
ing and measurement. Measurement is a recording of past effects to quantitatively
predict future effects.

Task 1: Define the Metrics

Software testing as a test development project has deliverables such as test plans, test
design, test development, and test execution. The objective of this task is to apply the
principles of metrics to control the testing process. A metric is a measurable indica-
tion of some quantitative aspect of a system and has the following characteristics:

© 2009 by Taylor & Francis Group, LLC

Test Planning (Plan) ® 189

B Measurability—A metric point must be measurable for it to be a metric, by
definition. If the phenomenon cannot be measured, there is no way to apply
management methods to control it.

B [ndependence—Metrics need to be independent of human influence. There
should be no way of changing the measurement other than by changing the
phenomenon that produced the metric.

B Accountability—Any analytical interpretation of the raw metric data rests on
the data itself and it is, therefore, necessary to save the raw data and the
methodical audit trail of the analyrtical process.

B Precision—DPrecision is a function of accuracy. The key to precision is, there-
fore, that a metric be explicitly documented as part of the data collection
process. If a metric varies, it can be measured as a range or tolerance.

A metric can be a “result” or a “predictor.” A result metric measures a completed
event or process. Examples include actual total elapsed time to process a business
transaction or total test costs of a project. A predictor metric is an early-warning
metric that has a strong correlation to some later result. An example is the predicted
response time through statistical regression analysis when more terminals are added
to a system when the number of terminals has not yet been measured. A result or
predictor metric can also be a derived metric. A derived metric is one that is derived
from a calculation or graphical technique involving one or more metrics.

The motivation for collecting test metrics is to make the testing process more
effective. This is achieved by carefully analyzing the metric data and taking the
appropriate action to correct problems. The starting point is to define the metric
objectives of interest. Some examples include the following:

B Defect analysis—Every defect must be analyzed to answer such questions as
the root causes, how it was detected, when it was detected, who detected it,
and so on.

Test effectiveness—How well is testing doing, for example, return on investment?
Development effectiveness—How well is development fixing defects?

Test automation—How much effort is expended on test automation?

Test cost—What are the resources and time spent on testing?

Test status—Another important metric is status tracking, or where are we in
the testing process?

User involvemenr—How much is the user involved in testing?

Task 2: Define the Metric Points

Table 14.6 lists some metric points associated with the general metrics selected in
the previous task and the corresponding actions to improve the testing process.
Also shown is the source, or derivation, of the metric point.

© 2009 by Taylor & Francis Group, LLC

190 ®m Software Testing and Continuous Quality Improvement

Table 14.6 Metric Points

Metric

Metric Point

Derivation

Defect analysis

Distribution of defect causes

Histogram, Pareto

Number of defects by cause
over time

Multiline graph

Number of defects by how
found over time

Multiline graph

Distribution of defects by
module

Histogram, Pareto

Distribution of defects by Histogram
priority (critical, high,
medium, low)

Distribution of defects by Histogram

functional area

Distribution of defects by
environment (platform)

Histogram, Pareto

Distribution of defects by type
(architecture, connectivity,
consistency, database
integrity, documentation, GUI,
installation, memory,
performance, security,
standards and conventions,
stress, usability, bad fixes)

Histogram, Pareto

Distribution of defects by who
detected (external customer,
internal customer,
development, QA, other)

Histogram, Pareto

Distribution by how detected
(technical review,
walkthroughs, JAD,
prototyping, inspection, test
execution)

Histogram, Pareto

Distribution of defects by
severity (high, medium, low
defects)

Histogram

© 2009 by Taylor & Francis Group,

LLC

Test Planning (Plan) ® 191

Table 14.6 Metric Points (Continued)

Metric

Metric Point

Derivation

Development
effectiveness

Average time for development
to repair defect

Total repair time +
number of repaired
defects

Test automation

Percentage of manual versus
automated testing

Cost of manual test
effort + total test cost

Test cost

Distribution of cost by cause

Histogram, Pareto

Distribution of cost by
application

Histogram, Pareto

Percentage of costs for testing

Test testing cost + total
system cost

Total costs of testing over time

Line graph

Average cost of locating a
defect

Total cost of testing +
number of defects
detected

Anticipated costs of testing
versus actual cost

Comparison

Average cost of locating a
requirements defect with
requirements reviews

Requirements review
costs + number of
defects uncovered
during requirement
reviews

Average cost of locating a
design defect with design
reviews

Design review costs +
number of defects
uncovered during
design reviews

Average cost of locating a code
defect with reviews

Code review costs +
number of defects
uncovered during
code reviews

Average cost of locating a
defect with test execution

Test execution costs +
number of defects
uncovered during test
execution

© 2009 by Taylor & Francis Group,

LLC

Continued

192 m Software Testing and Continuous Quality Improvement

Table 14.6 Metric Points (Continued)

Metric

Metric Point

Derivation

Number of testing resources
over time

Line plot

Test effectiveness

Percentage of defects
discovered during
maintenance

Number of defects
discovered during
maintenance -+ total
number of defects
uncovered

Percentage of defects
uncovered due to testing

Number of detected
errors through testing
+ total system defects

Average effectiveness of a test

Number of tests + total
system defects

Value returned while reviewing
requirements

Number of defects
uncovered during
requirements review +
requirements test
costs

Value returned while reviewing
design

Number of defects
uncovered during
design review +
design test costs

Value returned while reviewing
programs

Number of defects
uncovered during
program review +
program test costs

Value returned during test
execution

Number of defects
uncovered during
testing + test costs

Effect of testing changes

Number of tested
changes + problems
attributable to the
changes

People’s assessment of
effectiveness of testing

Subjective scaling
(1-10)

© 2009 by Taylor & Francis Group,

LLC

Test Planning (Plan) ® 193

Table 14.6 Metric Points (Continued)

Metric

Metric Point

Derivation

Average time for QA to verify
fix

Total QA verification
time + total number of
defects to verify

Number of defects over time

Line graph

Cumulative number of defects
over time

Line graph

Number of application defects
over time

Multiline graph

Test extent

Percentage of statements
executed

Number of statements
executed + total
statements

Percentage of logical paths
executed

Number of logical
paths + total number
of paths

Percentage of acceptance
criteria tested

Acceptance criteria
tested =+ total
acceptance criteria

Number of requirements Line plot
tested over time

Number of statements Line plot
executed over time

Number of data elements Line plot
exercised over time

Number of decision statements | Line plot
executed over time

Test status Number of tests ready to run Line plot

over time

Number of tests run over time Line plot

Number of tests run without Line plot
defects uncovered

Number of defects corrected Line plot

over time

User involvement

Percentage of user testing

User testing time + total
test time

© 2009 by Taylor & Francis Group,

LLC

194 m Software Testing and Continuous Quality Improvement

Step 3: Review/Approve the Plan
Task 1: Schedule/Conduct the Review

The test plan review should be scheduled well in advance of the actual review, and
the participants should have the latest copy of the test plan.

As with any interview or review, it should contain certain elements. The first is
defining what will be discussed, or “talking about what we are going to talk about.”
The second is discussing the details, or “talking about it.” The third is summariza-
tion, or “talking about what we talked about.” The final element is timeliness. The
reviewer should state up front the estimated duration of the review and set the
ground rule that if time expires before completing all items on the agenda, a follow-
on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the test plan. If there are any suggested changes to the test plan during the
review, they should be incorporated into the test plan.

Task 2: Obtain Approvals

Approval is critical in a testing effort, for it helps provide the necessary agreements
between testing, development, and the sponsor. The best approach is with a formal
sign-off procedure of a test plan. If this is the case, use the management approval
sign-off forms. However, if a formal agreement procedure is not in place, send a
memo to each key participant, including at least the project manager, development
manager, and sponsor. In the document, attach the latest test plan and point out
that all their feedback comments have been incorporated and that if you do not
hear from them, it is assumed that they agree with the plan. Finally, indicate that
in a spiral development environment, the test plan will evolve with each iteration
but that you will include them in any modification.

© 2009 by Taylor & Francis Group, LLC

Chapter 15

Test Case Design (Do)

You will recall that in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model is applied to the software testing process. We are now in
the Do part of the spiral model (see Figure 15.1).

Figure 15.2 outlines the steps and tasks associated with the Do part of spiral test-
ing. Each step and task are described, and valuable tips and techniques are provided.

Step 1: Design Function Tests

Task 1: Refine the Functional Test Requirements

At this point, the functional specification should have been completed. It consists
of the hierarchical functional decomposition, the functional window structure, the
window standards, and the minimum system requiremencts of the system to be devel-
oped. An example of windows standards is the Windows 2000 GUI Standards. A
minimum system requirement could be the following: Windows 2000, a Pentium
IV microprocessor, 1 GB RAM, 40 GB disk space, and a 56 kbps modem.

A functional breakdown consists of a list of business functions, hierarchical
listing, group of activities, or set of user profiles defining the basic functions of the
system and how the user will use it. A business function is a discrete controllable
aspect of the business and the smallest component of a system. Each should be
named and described with a verb—object paradigm. The criteria used to determine
the successful execution of each function should be stated. The functional hierar-
chy serves as the basis for function testing, in which there will be at least one test

195

© 2009 by Taylor & Francis Group, LLC

196 m Software Testing and Continuous Quality Improvement

Figure 15.1 Spiral testing and continuous improvement.

case for each lowest-level function. Examples of functions include the following:
approve customer credit, handle order, create invoice, order components, receive
revenue, pay bill, purchase items, and so on. Taken together, the business functions
constitute the total application including any interfaces. A good source of these
functions (in addition to the interview itself) is a process decomposition or data
flow diagram, or CRUD matrix, which should be requested during the informa-
tion-gathering interview.

The requirements serve as the basis for creating test cases. The following qual-
ity assurance test checklists can be used to ensure that the requirements are clear
and comprehensive:

B Appendix E22: Clarification Request, which can be used to document ques-
tions that may arise while the tester analyzes the requirements.

B Appendix F25: Ambiguity Review Checklist, which can be used to assist in
the review of a functional specification of structural ambiguity (not to be
confused with content reviews).

B Appendix F26: Architecture Review Checklist, which can be used to review
the architecture for completeness and clarity.

B Appendix F27: Data Design Review Checklist, which can be used to review
the logical and physical design for clarity and completeness.

B Appendix F28: Functional Specification Review Checklist, which can be
used in functional specification for content completeness and clarity (not to
be confused with ambiguity reviews).

B Appendix F29: Prototype Review Checklist, which can be used to review a
prototype for content completeness and clarity.

B Appendix F30: Requirements Review Checklist, which can be used to verify
that the testing project requirements are comprehensive and complete.

B Appendix F31: Technical Design Review Checklist, which can be used to
review the technical design for clarity and completeness.

A functional breakdown is used to illustrate the processes in a hierarchical struc-
ture showing successive levels of detail. It is built iteratively as processes and non-
elementary processes are decomposed (see Figure 15.3).

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) m 197

(STEPS) (TASKS)

Identify
Participants

Prepare
for _—]
Interview

Define
Agenda

Understand
Project

I

Understand
Project
Objectives

I

Understand
Project
Status

!}

Understand
Project
Plans

!

Understand Project
Development
Methodology

Y
Identify High-
Level Business
Requirements

¥

Perform
Risk
Analysis

Conduct
Interview

Summarize
Interview

Summarize | |
Findings ¥
Confirm
Interview
Findings

Figure 15.2 Test design (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

198 m Software Testing and Continuous Quality Improvement

Functional Breakdown

Functional Test Requirements (Breakdown)

Order Processing
Create new order
Fulfill order

Edit order

Delete order

Customer Processing
Create new customer
Edit customer

Delete customer

Financial Processing
Receive customer payment
Deposit payment

Pay vendor

Write a check

Display register

Inventory Processing
Acquire vendor products
Maintain stock

Handle back orders
Audit inventory

Adjust product price

Reports

Create order report

Create account receivable report
Create account payable report
Create inventory report

Figure 15.3 Functional breakdown.

A data flow diagram shows processes and the flow of data among these processes.
It is used to define the overall data flow through a system and consists of external
agents that interface with the system, processes, data flow, and stores depicting where
the data is stored or retrieved. A data flow diagram should be reviewed, and each
major and leveled function should be listed and organized into a hierarchical list.

A CRUD matrix, or association matrix, links data and process models. It iden-
tifies and resolves matrix omissions and conflicts and helps refine the data and
process models, as necessary.

A functional window structure describes how the functions will be implemented
in the windows environment. Figure 15.4 shows a sample functional window struc-

ture for order processing.

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) ®m 199

Functional Window Structure

The Main Window

a. The top line of the main window has the standard title bar with Min/Max controls.

b. The next line contains the standard Windows menu bar.

c. The next line contains the standard Windows tool bar.

d. The rest of the Main-Application Window is filled with the Customer-Order
Window.

The Customer-Order Window
a. This window shows a summary of each previously entered order.
b. Several orders will be shown at one time (sorted by order number and customer
name). For each customer order, this window will show:
1. Order Number
2. Customer Name
3. Customer Number
4. Date
5. Invoice Number
6. Model Number
7. Product Number
8. Quantity Shipped
9. Price
c. The scroll bar will be used to select which orders are to be viewed.
d. This window is read-only for viewing.
e. Double-clicking an order will display the Edit-Order Dialog where the order can be
modified.

The Edit-Order Window

a. This dialog is used to create new orders or for making changes to previously
created orders.

b. This dialog will be centered over the Customer-Order Window. The layout of this
dialog will show the following:

1. Order Number (automatically filled in)

2. Edit field for: Customer Name

3. Edit field for: Customer Number

4. Date (initialized)

5. Edit field for: Invoice Number

6. Edit field for: Model Number

7. Edit field for: Product Number

8. Edit field for: Quantity Shipped

9. Price (automatically filled in)
10. Push buttons for: OK and Cancel

The Menu Bar Will Include the Following Menus:
File:
New:
Used to create a new order file
Open:
Used to open the order file

Figure 15.4 Functional window structure.

© 2009 by Taylor & Francis Group, LLC

200 m Software Testing and Continuous Quality Improvement

Task 2: Build a Function/Test Matrix

The function/test matrix cross-references the tests to the functions. This matrix pro-
vides proof of the completeness of the test strategies, illustrating in graphic format
which tests exercise which functions. (See Table 15.1 and Appendix E5, “Function/
Test Matrix,” for more details.)

The matrix is used as a control sheet during testing and can also be used during
maintenance. For example, if a function is to be changed, the maintenance team can
refer to the function/test matrix to determine which tests need to be run or changed.
The business functions are listed vertically, and the test cases are listed horizontally. The
test case name is recorded on the matrix along with the number. (Also see Appendix
E24, “Test Condition versus Test Case,” Matrix I, which can be used to associate a
requirement with each condition that is mapped to one or more test cases.)

It is also important to differentiate those test cases that are manual from those
that are automated. One way to accomplish this is to come up with a naming stan-
dard that will highlight an automated test case; for example, the first character of
the name is “A.”

Table 15.1 shows an example of a function/test matrix.

Step 2: Design GUI Tests

The goal of a good graphical user interface (GUI) design should be consistency in
“look and feel” for the users of the application. Good GUI design has two key com-
ponents: interaction and appearance. Interaction relates to how the user interacts
with the application. Appearance relates to how the interface looks to the user.

GUI testing involves confirming that the navigation is correct; for example,
when an icon, menu choice, or radio button is clicked, the desired response occurs.
The following are some good GUI design principles the tester should look for while
testing the application.

Ten Guidelines for Good GUI Design

. Involve users.

. Understand the user’s culture and experience.

. Prototype continuously to validate the requirements.

. Let the user’s business workflow drive the design.

Do not overuse or underuse GUI features.

. Create the GUI, help files, and training concurrently.

. Do not expect users to remember secret commands or functions.

. Anticipate mistakes, and do not penalize the user for making them.
. Continually remind the user of the application status.

. Keep it simple.

SO ® g W N

[u—

© 2009 by Taylor & Francis Group, LLC

Table 15.1 Functional/Test Matrix

Test Case Design (Do)

m 201

Test Case
Business Function 1 2 3 4 5
Order processing
Create new order CNOO01 | CNOO02
Fulfill order AOO01
Edit order EOO01 EO02 EO03 EO04
Delete order DOO01 DO02 DO03 DO04 | DO05
Customer processing
Create new customer ANCO1 | ANC02 | ANCO03
Edit customer ECO1 EC02 ECO03 EC04 ECO05
Delete customer DCo1 DCo02
Financial processing
Receive customer payment RCPO1 RCP0O2 RCP03 | RCP0O4
Deposit payment APO1 AP02
Pay vendor PVO1 PV02 PV03 PV04 PV05
Write a check WCO01 WC02
Display register DRO1 DRo02
Inventory processing
Acquire vendor products APO1 AP02 APO3
Maintain stock MS01 MS02 MS03 MS04 | MSO05
Handle back orders HBO1 HB02 HBO03
Audit inventory AlOl Al02 Al03 Al04
Adjust product price AcCol AC02 ACO03
Reports
Create order report cool CO02 CO03 CO04 | CO05
Create account receivables CAO0I CA02 CA03
report
Create account payables AYOI AY02 AY03
Create inventory report Clol Cl02 Clo3 Clo4

© 2009 by Taylor & Francis Group, LLC

202 m Software Testing and Continuous Quality Improvement

Task 1: Identify the Application GUI Components

GUI provides multiple channels of communication using words, pictures, anima-
tion, sound, and video. Five key foundation components of the user interface are
windows, menus, forms, icons, and controls.

1. Windows—1In a windowed environment, all user interaction with the appli-
cation occurs through the windows. These include a primary window, along
with any number of secondary windows generated from the primary one.

2. Menus—Menus come in a variety of styles and forms. Examples include
action menus (push button, radio button), pull-down menus, pop-up menus,
option menus, and cascading menus.

. Forms—Forms are windows or screens into which the user can add information.

4. Icons—Icons, or “visual push buttons,” are valuable for instant recognition,

[SM)

ease of learning, and ease of navigation through the application.

5. Controls—A control component appears on a screen that allows the user to inter-
act with the application, and is indicated by its corresponding action. Controls
include menu bars, pull-down menus, cascading menus, pop-up menus, push
buttons, check boxes, radio buttons, list boxes, and drop-down list boxes.

A design approach to GUI test design is to first define and name each GUI com-
ponent by name within the application, as shown in Table 15.2. In the next step, a
GUI component checklist is developed that can be used to verify each component
in this table. (Also see Appendix E6, “GUI Component Test Matrix.”)

Task 2: Define the GUI Tests

In the previous task, the application GUI components were defined, named, and
categorized in the GUI component test matrix. In the present task, a checklist is
developed against which each GUI component is verified. The list should cover
all possible interactions and may or may not apply to a particular component.
Table 15.3 is a partial list of the items to check. (See Appendix E23, “Screen Data
Mapping,” which can be used to document the properties of the screen data, and
Appendix F32, “Test Case Preparation Review Checklist,” which can be used to
ensure that test cases have been prepared as per specifications.)

In addition to the GUI component checks, if there is a GUI design standard,
it should be verified as well. GUI standards are essential to ensure that the internal
rules of construction are followed to achieve the desired level of consistency. Some
of the typical GUI standards that should be verified include the following:

B Forms “enterable” and display-only formats
B Wording of prompts, error messages, and help features
B Use of color, highlight, and cursors

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) m 203

Table 15.2 GUI Component Test Matrix

GUI Type
Name Window | Menu | Form | ICON | Control | P/F | Date | Tester
Main J
window
Customer- J
order
window
Edit-order J
window
Menu bar J/
Tool bar v
B Screen layouts
B Function and shortcut keys, or “hot keys”
B Consistently locating screen elements on the screen
B Logical sequence of objects
B Consistent font usage
B Consistent color usage

It is also important to differentiate manual from automated GUI test cases. One
way to accomplish this is to use an additional column in the GUI component
matrix that indicates if the GUI test is manual or automated.

Step 3: Define the System/Acceptance Tests
Task 1: Identify Potential System Tests

System testing is the highest level of testing and evaluates the functionality as a
total system, its performance, and overall fitness of use. This test is usually per-
formed by the internal organization and is oriented to systems’ technical issues
rather than acceptance, which is a more user-oriented test.

Systems testing consists of one or more tests that are based on the original
objectives of the system that were defined during the project interview. The purpose
of this task is to select the system tests that will be performed, not how to imple-
ment the tests. Some common system test types include the following:

B Performance testing—Verifies and validates that the performance require-
ments have been met; measures response times, transaction rates, and other
time-sensitive requirements.

© 2009 by Taylor & Francis Group, LLC

204 m Software Testing and Continuous Quality Improvement

Table 15.3 GUI Component Checklist

Access via Double-Click

Multiple Windows
Open

Tabbing Sequence

Access via menu

Ctrl menu (move)

Push buttons

Access via toolbar

Ctrl + function keys

Pull-down menu and

submenus options

Right-mouse options Color Dialog controls
Help links Accelerators and hot Labels
keys

Context-sensitive help Cancel Chevrons
Button bars Close Ellipses
Open by double-click Apply Gray-out unavailability
Screen images and Exit Check boxes

graphics
Open by menu OK Filters
Open by toolbar Tile horizontal/vertical Spin boxes
Icon access Arrange icons Sliders
Access to DOS Toggling Fonts
Access via single-click Expand/contract tree Drag/drop

Resize window panels

Function keys

Horizontal/vertical
scrolling

Fields accept allowable
values

Minimize the window
Maximize the window

Cascade Window open

Fields handle invalid
values

Tabbing sequence

B Security testing—Evaluates the presence and appropriate functioning of the secu-
rity of the application to ensure the integrity and confidentiality of the data.

B Volume testing—Subjects the application to heavy volumes of data to deter-
mine if it can handle the volume of data.

B Seress testing—Investigates the behavior of the system under conditions that
overload its resources. Of particular interest is the impact that this has on
system processing time.

© 2009 by Taylor & Francis Group, LLC

Test Case Design (Do) m 205

B Compatibility testing—Tests the compatibility of the application with other
applications or systems.

B Conversion testing—Verifies the conversion of existing data and loads a
new database.

B Usability resting—Determines how well the user will be able to use and under-
stand the application.

B Documentation testing—Verifies that the user documentation is accurate and
ensures that the manual procedures work correctly.

B Backup testing—Verifies the ability of the system to back up its data in the
event of a software or hardware failure.

B Recovery testing—Verifies the system’s ability to recover from a software or
hardware failure.

B [nstallation resting—Verifies the ability to install the system successfully.

Task 2: Design System Fragment Tests

System fragment tests are sample subsets of full system tests that can be performed
during each spiral loop. The objective of doing a fragment test is to provide early
warning of pending problems that would arise in the full system test. Candidate
fragment system tests include function, performance, security, usability, documen-
tation, and procedure. Some of these fragment tests should have formal tests per-
formed during each spiral, whereas others should be part of the overall testing
strategy. Nonfragment system tests include installation, recovery, conversion, and
the like, which are probably going to be performed until the formal system test.

Function testing on a system level occurs during each spiral as the system is
integrated. As new functionality is added, test cases need to be designed, imple-
mented, and tested during each spiral.

Typically, security mechanisms are introduced fairly early in the development.
Therefore, a set of security tests should be designed, implemented, and tested dur-
ing each spiral as more features are added.

Usability is an ongoing informal test during each spiral and should always be
part of the test strategy. When a usability issue arises, the tester should document it
in the defect-tracking system. A formal type of usability test is the end user’s review
of the prototype, which should occur during each spiral.

Documentation (such as online help) and procedures are also ongoing informal
tests. These should be developed in parallel with formal system development during
each spiral and not be put off until a formal system test. This will avoid lastminute
surprises. As new features are added, documentation and procedure tests should be
designed, implemented, and tested during each spiral.

Some performance testing should occur during each spiral at a noncontended
unit level, that is, one user. Baseline measurements should be performed on all key
functions as they are added to the system. A baseline measurement is a measure-
ment taken for the specific purpose of determining the initial value of the state

© 2009 by Taylor & Francis Group, LLC

206 m Software Testing and Continuous Quality Improvement

or performance measurement. During subsequent spirals, the performance mea-
surements can be repeated and compared to the baseline. Table 15.4 provides an
example of baseline performance measurements.

Task 3: Identify Potential Acceptance Tests

Acceptance testing is an optional user-run test that demonstrates the ability of
the application to meet the user’s requirements. The motivation for this test is to
demonstrate rather than be destructive, that is, to show that the system works.
Less emphasis is placed on technical issues, and more is placed on the question of
whether the system is a good business fit for the end user. The test is usually per-
formed by users, if performed at all. Typically, 20 percent of the time, this test is
rolled into the system test. If performed, acceptance tests typically are a subset of
the system tests. However, the users sometimes define “special tests,” such as inten-
sive stress or volume tests, to stretch the limits of the system even beyond what was
tested during the system test.

Step 4: Review/Approve Design
Task 1: Schedule/Prepare for Review

The test design review should be scheduled well in advance of the actual review, and
the participants should have the latest copy of the test design.

As with any interview or review, it should contain certain elements. The first is
defining what will be discussed, or “talking about what we are going to talk about.”
The second is discussing the details, or “talking about it.” The third is summariza-
tion, or “talking about what we talked about.” The final element is timeliness. The
reviewer should state up front the estimated duration of the review and set the
ground rule that if time expires before completing all items on the agenda, a follow-
on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the test design. If there are any suggested changes to the test design during
the review, they should be incorporated into the design.

Task 2: Obtain Approvals

Approval is critical in a testing effort, because it helps provide the necessary agree-
ments among testing, development, and the sponsor. The best approach is with a
formal sign-off procedure of a test design. If this is the case, use the management
approval sign-off forms. However, if a formal agreement procedure is not in place,
send a memo to each key participant, including at least the project manager, devel-
opment manager, and sponsor. In the document, attach the latest test design and

© 2009 by Taylor & Francis Group, LLC

Table 15.4 Baseline Performance Measurements

Measure and

Measure and

Measure and

Measure and

Baseline Delta Delta Delta Delta
Business Seconds—Rel Seconds—Rel Seconds—Rel Seconds—Rel Seconds—Rel Seconds—Rel
Function 1.0 (1/1/2004) 1.1 (2/1/2004) 1.2 (2/15/2004) 1.3 (3/1/2004) 1.4 (3/15/2004) 1.5 (4/1/2004)
Order processing
Create new order 1.0 1.5 1.3 1.0 9 75
(+50%) (-13%) (-23%) (-10%) (=17%)
Fulfill order 2.5 2.0 15 1.0 1.0 1.0
(-20%) (-25%) (=33%) (0%) (0%)
Edit order 1.76 2.0 2.5 1.7 1.5 1.2
(+14%) (+25%) (=32%) (-12%) (=20%)
Delete order 1.1 1.1 1.4 1.0 .8 75
(0%) (+27%) (-=29%) (-20%) (-6%)

© 2009 by Taylor & Francis Group, LLC

L0T w (0oQ) uSisaq aseD 159

208 m Software Testing and Continuous Quality Improvement

point out that all their feedback comments have been incorporated and that if you
do not hear from them, it is assumed that they agree with the design. Finally, indi-
cate that in a spiral development environment, the test design will evolve with each
iteration but that you will include them in any modification.

© 2009 by Taylor & Francis Group, LLC

Chapter 16

Test Development (Do)

Figure 16.1 outlines the steps and tasks associated with the Do part of spiral testing.
Each step and task is described, and valuable tips and techniques are provided.

Step 1: Develop Test Scripts
Task 1: Script the Manual/Automated GUI/Function Tests

In Chapter 15, a GUI/Function Test Matrix was built that cross-references the tests
to the functions. The business functions are listed vertically, and the test cases are
listed horizontally. The test case name is recorded on the matrix along with the
number.

In the current task, the functional test cases are documented and transformed
into reusable test scripts with test data created. To aid in the development of the
script of the test cases, the GUI-based Function Test Matrix template in Table 16.1
can be used to document function test cases that are GUI-based (see Appendix E7,
“GUI-Based Functional Test Matrix,” for more details).

Consider the script in Table 16.1, which uses the template to create a new cus-
tomer order. The use of this template shows the function, the case number within
the test case (a variation of a specific test), the requirement identification cross-ref-
erence, the test objective, the case steps, the expected results, the pass/fail status, the
tester name, and the date the test was performed. Within a function, the current
GUI component is also documented. In Table 16.1, a new customer order is created
by first invoking the menu bar to select the function, followed by the Edit-Order
Window to enter the order number, customer number, model number, product
number, and quantity.

209

© 2009 by Taylor & Francis Group, LLC

210 ®m Software Testing and Continuous Quality Improvement

(STEPS) (TASKS)
Script
GUI/Function
Develop Tests
Test — !
Scripts Script
System
Fragment Tests

Schedule/
Prepare
Review/ For Review
Approve Test *
Development
Obtain
Approvals

Figure 16.1 Test development (steps/tasks).

Task 2: Script the Manual/Automated System Fragment Tests

In a previous task, the system fragment tests (Chapter 15) were designed. They are
sample subsets of full system tests, which can be performed during each spiral loop.

In this task, the system fragment tests can be scripted using the GUI-based
Function Test Matrix discussed in the previous task. The test objective description
is probably more broad than the Function/GUI tests, as they involve more global
testing issues such as performance, security, usability, documentation, procedure,
and so on.

Step 2: Review/Approve Test Development
Task 1: Schedule/Prepare for Review

The test development review should be scheduled well in advance of the actual
review and the participants should have the latest copy of the test design.

As with any interview or review, it should contain certain elements. The first is
defining what will be discussed, or “talking about what we are going to talk about.”
The second is discussing the details, or “talking about it.” The third is summariza-
tion, or “talking about what we talked about.” The final element is timeliness. The
reviewer should state up front the estimated duration of the review and set the
ground rule that if time expires before completing all items on the agenda, a follow-
on review will be scheduled.

© 2009 by Taylor & Francis Group, LLC

Table 16.1

Function/GUI Test Script

Function (Create a New Customer Order)

Case | Req.
No. | No. Test Objective Case Steps Expected Results (P/F) Tester Date
Menu Bar
15 67 | Create avalid new | Select File/Create Order Edit-Order Window appears | Passed | Jones | 7/21/2004
customer order from the menu bar
Edit-Order Window
1. Enter order number Order validated Passed | Jones | 7/21/2004
2. Enter customer number | Customer validated Passed | Jones | 7/21/2004
3. Enter model number Model validated Passed | Jones | 7/21/2004
4. Enter product number Product validated Passed | Jones | 7/21/2004
5. Enter quantity Quantity validated date, Passed | Jones | 7/21/2004
invoice number, and total
price generated
6. Select OK Customer is created Passed | Jones | 7/21/2004

successfully

© 2009 by Taylor & Francis Group, LLC

LLZ m (0oQ) wuswdojora(1sa]

212 m Software Testing and Continuous Quality Improvement

The purpose of this task is for development and the project sponsor to agree and
accept the test development. If there are any suggested changes to the test develop-
ment during the review, they should be incorporated into the test development.

Task 2: Obtain Approvals

Approval is critical in a testing effort, because it helps provide the necessary agree-
ments among the testing, development, and the sponsor. The best approach is with a
formal sign-off procedure of a test development. If this is the case, use the manage-
ment approval sign-off forms. However, if a formal agreement procedure is not in
place, send a memo to each key participant, including at least the project manager,
development manager, and sponsor. In the document, attach the latest test develop-
ment, and point out that all their feedback comments have been incorporated and
that if you do not hear from them, it is assumed that they agree with the development.
Finally, indicate that in a spiral development environment, the test development will
evolve with each iteration but that you will include them in any modification.

© 2009 by Taylor & Francis Group, LLC

Chapter 17

Test Coverage through
Traceability

Most businesses will tolerate a certain number of defects until the software has sta-
bilized. However, the system cannot go live with critical defects unresolved. Many
of the companies have started stating their acceptance criteria in the test strategy
document. It may range from nonexistence of critical and medium defects to busi-
ness flow acceptance by the end users. The ultimate aim of final testing is to prove
that the software delivers what the client requires. A trace between the different test
deliverables should ensure that the test covers the requirements comprehensively so
that all requirements are tested without any omission.

The business requirement document (BRD), functional specification documents
(ES), test conditions/cases, test data, and defects identified during testing are some key
components of the traceability matrix. The following discussion illustrates how these
components are integrated through the traceability matrix, as shown in Figure 17.1.

The requirements specified by the users in the business requirement document
may not be exactly translated into a functional specification document. Therefore, a
trace on specifications between functional specification and business requirements is
done on a one-to-one basis. This helps in identifying the gaps between the documents.
These gaps are then closed by the author of the functional specifications, or deferred
to the next release after discussion. The final FS may vary from the original, as defer-
ring or taking in a gap may have a ripple effect on the application. Sometimes, these
ripple effects may not be properly documented. This is the first-level traceability.

The functional specification documents are divided into smaller modules, func-
tions, and test conditions to percolate down to the test case where various data values
are input to the test conditions for validating them. A test condition is an abstract

213

© 2009 by Taylor & Francis Group, LLC

214 m Software Testing and Continuous Quality Improvement

— Requirements

-

Specifications

-

Test Conditions

-

- Test Cases

U

- Defects

Figure 17.1 Traceability tree diagram.

extraction of the testable requirements from the functional specification documents.
The test conditions may be explicitly or implicitly in the requirement documents.
A test condition has one or more associated test cases. Each of the test conditions is
traced back to its originating requirements. The second level of trace is thus between
the functional specification documents and the test condition documents.

A test case is a set of test inputs, execution conditions, and expected results devel-
oped for a particular objective, to validate a specific functionality in the application
under test. The number of test cases for each test condition may vary from multiple to
one. Each of these test cases can be traced back to its test conditions and through test
conditions to their originating requirements. The third level of traceability is between
the test cases and test conditions and, ultimately, to the baseline requirements.

The final phase of traceability is with the defects identified in the test execu-
tion phase. Tracing the defect to the test condition and the specification will lead
us to introspection on the reason why the requirements or the test condition has
failed. If the requirements have not been stated clearly or the test conditions have
not been extracted propetly from the requirements, they can be corrected in future
assignments. Table 17.1 illustrates how the foregoing deliverables are traced using
a traceability matrix.

Use Cases and Traceability

A use case is a scenario that describes the use of a system by an actor to accomplish
a specific goal. An actor is a user playing a role with respect to the system. Actors
are generally people, although other computer systems may be actors. A scenario is

© 2009 by Taylor & Francis Group, LLC

Test Coverage through Traceability m 215

Table 17.1 Traceability Matrix

Ref. No.

BRD | FS | Application/ Test
Item | Ref. | Ref. Module Test Test | Script | Defect
No. | No. | No. Name Condition | Cases ID ID

© 2009 by Taylor & Francis Group, LLC

216 ®m Software Testing and Continuous Quality Improvement

Included
Use Case

<<include>>

Actor

Figure 17.2 Use case diagram.

a sequence of steps that describe the interactions between an actor and the system.
Figure 17.2 shows a use case diagram that consists of the collection of all actors and
all use cases. Use cases:

B Capture the system’s functional requirements from the users’ perspective
B Actively involve users in the requirements-gathering process

B Provide the basis for identifying major classes and their relationships

B Serve as the foundation for developing system test cases

The use cases should be traced back to the functional specification document and
traced forward to the test conditions and test cases documents. The following have
to be considered while deriving traceability:

B Whether the use cases unfold from highest to lowest levels
B Whether all the system’s functional requirements are reflected in the use cases
B Whether we can trace each use case back to its requirements

Summary

As the project progresses, new requirements are brought in owing to the client’s
additional requirements or as a result of the review process. These additional
requirements should be appropriately traced to the test conditions and cases.

Similarly, a change request raised during the course of testing the application
should be handled in the traceability matrix. Requirements present in the traceabil-
ity matrix document should not be deleted at any time even when the requirement
is moved for the next release. All the requirements present in the traceability matrix
should be covered with at least one test case.

Thus, traceability serves as an effective tool to ensure that the testware is com-
prehensive. This instills confidence in the client that the test team has tested all the
requirements. Various modern testing tools such as Test Director from Mercury
Interactive can create traceability documents.

© 2009 by Taylor & Francis Group, LLC

Chapter 18

Test Execution/Evaluation
(Do/Check)

You will recall that in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model was applied to the software testing process. We are now in
the Do/Check part of the spiral model (see Figure 18.1).

Figure 18.2 outlines the steps and tasks associated with the Do/Check part of
spiral testing. Each step and task are described along, and valuable tips and tech-
niques are provided.

Step 1: Setup and Testing
Task 1: Regression Test the Manual/Automated Spiral Fixes

The purpose of this task is to retest the tests that discovered defects in the previous
spiral. The technique used is regression testing. Regression testing is a technique
that detects spurious errors caused by software modifications or corrections. (See
Appendix G27, “Regression Testing,” for more details.)

A set of test cases must be maintained and made available throughout the entire
life of the software. The test cases should be complete enough so that all the soft-
ware’s functional capabilities are thoroughly tested. The question arises as to how
the test cases to test defects discovered during the previous test spiral can be located.
An excellent mechanism is the retest matrix.

217

© 2009 by Taylor & Francis Group, LLC

218 m Software Testing and Continuous Quality Improvement

k Do

Figure 18.1 Spiral testing and continuous improvement.

(STEPS) (TASKS)

Regression Test
Spiral Fixes

Setup
and Execute New

Testing Spiral Tests

Document Spiral
Defects

Analyze
Metrics

Refine

Evaluation . Test Schedule

Identify Requirement
Changes

Figure 18.2 Test execution/evaluation (steps/tasks).

As described earlier, a retest matrix relates test cases to functions (or program
units). A check entry in the matrix indicates that the test case is to be retested
when the function (or program unit) has been modified due to enhancements or
corrections. No entry means that the test case does not need to be retested. The
retest matrix can be built before the first testing spiral, but needs to be maintained
during subsequent spirals. As functions (or program units) are modified during a
development spiral, existing or new test cases need to be created and checked in
the retest matrix in preparation for the next test spiral. Over time with subsequent
spirals, some functions (or program units) may be stable with no recent modifica-
tions. Consideration to selectively remove their check entries should be undertaken
between testing spirals.

© 2009 by Taylor & Francis Group, LLC

Test Execution/Evaluation (Do/Check) m 219

If a regression test passes, the status of the defect report should be changed
to “closed.”

Task 2: Execute the Manual/Automated New Spiral Tests

The purpose of this task is to execute new tests that were created at the end of the
previous testing spiral. In the previous spiral, the testing team updated the test
plan, GUI-based function test matrix, scripts, the GUI, the system fragment tests,
and acceptance tests in preparation for the current testing spiral. During this task
those tests are executed.

Task 3: Document the Spiral Test Defects

During spiral test execution, the results of the testing must be reported in the defect-
tracking database. These defects are typically related to individual tests that have
been conducted. However, variations to the formal test cases often uncover other
defects. The objective of this task is to produce a complete record of the defects.
If the execution step has been recorded propetly, the defects have already been
recorded on the defect-tracking database. If the defects are already recorded, the
objective of this step becomes to collect and consolidate the defect information.

Tools can be used to consolidate and record defects depending on the test exe-
cution methods. If the defects are recorded on paper, the consolidation involves
collecting and organizing the papers. If the defects are recorded electronically,
search features can easily locate duplicate defects. A sample defect report is given
in Appendix E27, “Defect Report,” which can be used to report the details of a
specific defect.

Step 2: Evaluation
Task 1: Analyze the Metrics

Metrics are used so that we can help make decisions more effectively and support
the development process. The objective of this task is to apply the principles of met-
rics to control the testing process.

In a previous task, the metrics and metric points were defined for each spiral to
be measured. During the present task, the metrics that were measured are analyzed.
This involves quantifying the metrics and putting them into a graphical format.

The following is the key information a test manager needs to know at the end
of a spiral:

W Test case execution status—How many test cases were executed, how many were
not executed, and how many discovered defects? This provides an indication

© 2009 by Taylor & Francis Group, LLC

220 m Software Testing and Continuous Quality Improvement

of the tester’s productivity. If the test cases are not being executed in a timely
manner, more personnel may need to be assigned to the project.

B Defect gap analysis—What is the gap between the number of defects that have
been uncovered and the number that have been corrected? This provides an
indication of development’s ability to correct defects in a timely manner. If
there is a relatively large gap, perhaps more developers need to be assigned to
the project.

B Defect severity status—The distribution of the defect severity (e.g., critical,
major, and minor) provides an indication of the quality of the system. If there
is a large percentage of defects in the critical category, there probably exist a
considerable number of design and architecture issues.

B Test burnout tracking—Shows the cumulative and periodic number of defects
being discovered. The cumulative number, for example, the running total
number of defects, and defects by time period help predict when fewer and
fewer defects are being discovered. This is indicated when the cumulative
curve “bends” and the defects by time period approach zero. If the cumu-
lative curve shows no indication of bending, the implication is that defect
discovery is still very robust and that many more still exist to be discovered
in other spirals.

Graphical examples of the foregoing metrics can be seen in Chapter 19, “Prepare for
the Next Spiral (or Agile Iteration).”

Step 3: Publish Interim Report

See Appendix E25, “Project Status Report,” which can be used to report the status
of the testing project for all key process areas; Appendix E26, “Test Defect Details
Report,” which can be used to report the detailed defect status of the testing project
for all key process areas; and Appendix E28, “Test Execution Tracking Manager,”
which is an Excel spreadsheet that provides a comprehensive and test cycle view of the
number of test cases that passed/failed, the number of defects discovered by applica-
tion area, the status of the defects, percentage completed, and the defect severities by
defect type. The template is located on the CD at the back of the book.

Task 1: Refine the Test Schedule

In a previous task, a test schedule was produced that includes the testing steps (and
perhaps tasks), target start dates and end dates, and responsibilities. During the
course of development, the testing schedule needs to be continually monitored. The
objective of the current task is to update the test schedule to reflect the latest status.
It is the responsibility of the test manager to:

© 2009 by Taylor & Francis Group, LLC

Test Execution/Evaluation (Do/Check) m 221

B Compare the actual progress to the planned progress.
B Evaluate the results to determine the testing status.
B Take appropriate action based on the evaluation.

If the testing progress is behind schedule, the test manager needs to determine the
factors causing the slip. A typical cause is an underestimation of the test effort.
Another factor could be that an inordinate number of defects are being discovered,
causing a lot of the testing effort to be devoted to retesting old corrected defects. In
either case, more testers may be needed or over time may be required to compensate
for the slippage.

Task 2: Identify Requirement Changes

In a previous task, the functional requirements were initially analyzed by testing
function, which consisted of hierarchical functional decomposition, functional
window structure, window standards, and minimum system requirements.

Between spirals, new requirements may be introduced into the development
process. They can consist of the following:

New GUI interfaces or components

New functions

Modified functions

Eliminated functions

New system requirements, for example, hardware
Additional system requirements

Additional acceptance requirements

Each new requirement needs to be identified, recorded, analyzed, and updated in
the test plan, test design, and test scripts.

© 2009 by Taylor & Francis Group, LLC

Chapter 19

Prepare for the
Next Spiral (Act)

You will recall that in the spiral development environment, software testing is
described as a continuous improvement process that must be integrated into a rapid
application development methodology. Deming’s continuous improvement process
using the PDCA model is applied to the software testing process. We are now in the
Act part of the spiral model (see Figure 19.1), which prepares for the next spiral.

Figure 19.2 outlines the steps and tasks associated with the Act part of spiral
testing. Each step and task are described, and valuable tips and techniques are
provided.

Step 1: Refine the Tests

See Appendix F21, “Impact Analysis Checklist,” which can be used to help analyze
the impacts of changes to the system.

Task 1: Update the Function/GUI Tests

The objective of this task is to update the test design to reflect the new functional
requirements. The Test Change Function Test Matrix, which cross-references the
tests to the functions, needs to be updated. The new functions are added in the
vertical list, and the respective test cases are added to the horizontal list. The test
case name is recorded on the matrix along with the number. (See Appendix E5,
<« . . »

Function/Test Matrix.”)

223

© 2009 by Taylor & Francis Group, LLC

224 m Software Testing and Continuous Quality Improvement

ol

Figure 19.1 Spiral testing and continuous improvement.

(STEPS) (TASKS)

Update Function/GUI Tests

Refine Update System Fragment
Tests Tests

v

Update Acceptance Tests

Evaluate Test Team

Reassess

Team, Procedures, Review Test
Test Environment Control Procedures
Update Test
Environment
Publish Interim Publish Metric
Test Report Graphics

Figure 19.2 Prepare for the next spiral (steps/tasks).

Next, any new GUI/function test cases in the matrix need to be documented
or scripted. The conceptual test cases are then transformed into reusable test scripts
with test data created. Also, any new GUI requirements are added to the GUI tests.
(See Appendix E7, “GUI-Based Functional Test Matrix.”)

Finally, the tests that can be automated with a testing tool need to be updated.
Automated tests provide three benefits: repeatability, leverage, and increased

© 2009 by Taylor & Francis Group, LLC

Prepare for the Next Spiral (Act) ®m 225

functionality. Repeatability enables automated tests to be executed more than once,
consistently. Leverage comes from repeatability from tests previously captured and
tests that can be programmed with the tool, which might not have been possible
without automation. As applications evolve, more and more functionality is added.
With automation, the functional coverage is maintained with the test library.

Task 2: Update the System Fragment Tests

In a prior task, the system fragment tests were defined. System fragment tests are
sample subsets of full system tests that can be performed during each spiral loop.
The objective of performing a fragment test is to provide early warning of pending
problems that would arise in the full system test.

Candidate fragment system tests include function, performance, security,
usability, documentation, and procedure. Some of these fragment tests should have
formal tests performed during each spiral, whereas others should be part of the
overall testing strategy. The objective of the present task is to update the system
fragment tests defined earlier based on new requirements. New baseline measure-
ments are defined.

Finally, the fragment system tests that can be automated with a testing tool
need to be updated.

Task 3: Update the Acceptance Tests

In Chapter 15, the initial list of acceptance tests was defined. Acceptance testing
is an optional user-run test that demonstrates the ability of the application to meet
the user’s requirements. The motivation for this test is to demonstrate rather than
be destructive, that is, to show that the system works. If performed, acceptance tests
typically are a subset of the system tests. However, the users sometimes define “spe-
cial tests,” such as intensive stress or volume tests, to stretch the limits of the system
even beyond what was tested during the system test. The objective of the present task
is to update the acceptance tests defined earlier on the basis of new requirements.
Finally, the acceptance tests that can be automated with a testing tool need to

be updated.

Step 2: Reassess the Team, Procedures,
and Test Environment

Task 1: Evaluate the Test Team

Between each spiral, the performance of the test team needs to be evaluated in terms
of its quality and productivity. The test team leader directs one or more testers to
ensure that the right skill level is on the project. He or she makes sure that the test

© 2009 by Taylor & Francis Group, LLC

226 m Software Testing and Continuous Quality Improvement

cases are being executed according to the plan, the defects are being reported and
retested, and the test automation is successful. The basis for allocating dedicated
testing resources is the scope of the functionality and the development time frame.
If the testing is not being completed satisfactorily, the team leader needs to counsel
one or more team members or request additional testers. On the other hand, if the
test is coming to a conclusion, the testing manager needs to start thinking about
reassigning testers to other projects.

Task 2: Review the Test Control Procedures

In Chapter 14, the test control procedures were set up before the first spiral. The
objective of this task is to review those procedures and make appropriate modifica-
tions. The predefined procedures include the following:

Defect recording/tracking procedures
Change request procedures

Version control procedures
Configuration build procedures
Project issue resolution procedures
Reporting procedures

The purpose of defect recording/tracking procedures is to record and correct defects
and record metric information about the application. As the project progresses,
these procedures may need tuning, Examples include new status codes or new fields
in the defect-tracking form, an expanded defect distribution list, and the addition
of more verification checks.

The purpose of change request procedures is to allow new change requests to
be communicated to the development and testing team. Examples include a new
change control review board process, a new sponsor who has ideas of how the
change request process should be implemented, a new change request database, and
a new software configuration management tool.

The purpose of version control procedures is to uniquely identify each soft-
ware component via a labeling scheme and allow for successive revisions. Examples
include a new software configuration management tool with a new versioning
scheme or new labeling standards.

The purpose of configuration build procedures is to provide an effective means
of assembling a software system from the software source components into execut-
able components. Examples include the addition of a new 4GL language, a new
software configuration management tool, or a new delta build approach.

The purpose of project issue resolution procedures is to record and process testing
issues that arise during the testing process. Examples include a new project manager
who requests a Lotus Notes approach, a newly formed issue review committee, an
updated issue priority categorization scheme, and a new issue submission process.

© 2009 by Taylor & Francis Group, LLC

Prepare for the Next Spiral (Act) m 227

The purpose of reporting procedures is to facilitate the communication process and
reporting. Examples include a new project manager who requires weekly testing status
reports, a new interim test report structure, or an expanded reporting distribution.

Task 3: Update the Test Environment

In Chapter 15, the test environment was defined. A test environment provides a
physical framework for testing necessary for the testing activity. During the present
task, the test environment needs are reviewed and updated. (See Appendix F22,
“Environment Readiness Checklist,” which can be used to verify the readiness of
the environment for testing before starting test execution.)

The main components of the test environment include the physical test facility,
technologies, and tools. The test facility component includes the physical setup.
The technologies component includes hardware platforms, the physical network
and all its components, operating system software, and other software, such as util-
ity software. The tools component includes any specialized testing software, such as
automated test tools, testing libraries, and support software. Examples of changes
to the test environment include the following:

Expanded test laboratory

New testing tools required

Additional test hardware required
Additional network facilities
Additional test database space required
New Lotus Notes log-ons

Additional software to support testing

Step 3: Publish Interim Test Report
Task 1: Publish the Metric Graphics

Each spiral should produce an interim report to describe the status of the testing.
These tests are geared to the testing team, the test manager, and the development
manager, and will help them make adjustments for the next spiral. The following
minimal graphical reports are recommended between each spiral test.

Test Case Execution Status

Figure 19.3 shows the status of testing and predicts when the testing and develop-
ment group will be ready for production. Test cases run with errors have not yet
been corrected.

If there are a relatively large number of test cases that have not been run, the
testing group needs to increase its productivity or resources. If there are a large

© 2009 by Taylor & Francis Group, LLC

228 m Software Testing and Continuous Quality Improvement

50
|:| Test Cases Completed
Test Cases Run with Errors
40+
Test Cases Not Run
30+
=
5
3
¥
20
10+
0 | |

Figure 19.3 Test execution status.

number of test cases run with errors that have not been corrected, the development
team also needs to be more productive.

Defect Gap Analysis

Figure 19.4 shows the gap between the number of defects that has been uncovered
compared to the number that has been corrected. A large gap indicates that devel-
opment needs to increase effort and resources to correct defects more quickly.

Defect Severity Status

Figure 19.5 shows the distribution of the three severity categories: critical, major,
and minor. A large percentage of defects in the critical category indicates that a
problem with the design or architecture of the application may exist.

Test Burnout Tracking

Figure 19.6 indicates the rate of uncovering defects. The cumulative, for example,
running total number of defects and defects by time period help predict when fewer
defects are being discovered. This is indicated when the cumulative curve “bends,”
and the defects by time period approach zero.

© 2009 by Taylor & Francis Group, LLC

Prepare for the Next Spiral (Act) m 229

50 -
[] Uncovered
Il Corrected

40 -
% \
4
2 30 Gap
=]
S
[
'Q \
5]
5
Z
[l
2
= 20
=]
£
=]
O

10

0 | | | | | | | J

Figure 19.4 Defect gap analysis.

© 2009 by Taylor & Francis Group, LLC

230 m Software Testing and Continuous Quality Improvement

Percent

Severity

Figure 19.5 Defect severity status.

© 2009 by Taylor & Francis Group, LLC

Prepare for the Next Spiral (Act) m 231

300
0000
o
250 O
[m}
200
0 Cumulative
8
4
] 150}
[_4
100 -
o
By Time Period
50 2 / Burnout
0

Time Periods ——»

Figure 19.6 Test burnout tracking.

© 2009 by Taylor & Francis Group, LLC

Chapter 20

Conduct the System
Test (Act)

System testing evaluates the functionality and performance of the whole application
and consists of a variety of tests including the following: performance, usability,
stress, documentation, security, volume, recovery, and so on. Figure 20.1 describes
how to extend fragment system testing. It includes discussions of how to prepare
for the system tests, design and script them, execute them, and report anomalies
discovered during the test.

Step 1: Complete System Test Plan
Task 1: Finalize the System Test Types

In a previous task, a set of system fragment tests was selected and executed during
each spiral. The purpose of the current task is to finalize the system test types that
will be performed during system testing.

You will recall that systems testing consists of one or more tests that are based
on the original objectives of the system, which were defined during the project
interview. The purpose of this task is to select the system tests to be performed, not
to implement the tests. Our initial list consisted of the following system test types:

B Performance
B Security
B Volume

233

© 2009 by Taylor & Francis Group, LLC

234 m Software Testing and Continuous Quality Improvement

(STEPS) (TASKS)
Finalize System Test Types
Finalize System Test Schedule
Complete
System Organize System Test Team
Test Plan
EstsblishvSystem
Test Environment
‘4 Install System Test Tools ‘
4‘ Design/Script Performance Tests ‘
—{ Design/Script Security Tests ‘
—{ Design/Script Volume Tests ‘
2 4 “ Design/Script Stress Tests ‘
Complete ‘ V
System ‘ Design/Script Compatibility Tests ‘
Test Cases W
—{ Design/Script Conversion Tests ‘
—1 Design/Script Usability Tests ‘
—{ Design/Script Documentation Tests
—{ Design/Script Backup Tests ‘
41 Design/Script Recovery Tests ‘
—{ Design/Script Installation Tests ‘
v
Design/Script Other Types ‘
of System Tests
L
Review/Approve Schedule/Conduct Review ‘
System
Tests Obtain Approvals ‘
¢ Regression Test System Fixes ‘
Execute
System Execute New System Tests ‘
Tests

Document System Defects ‘

Figure 20.1 Conduct system test (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ® 235

Stress
Compatibility
Conversion
Usability
Documentation
Backup
Recovery
Installation

The sequence of system test-type execution should also be defined in this task. For
example, related tests such as performance, stress, and volume might be clustered
together and performed early during system testing. Security, backup, and recovery
are also logical groupings, and so on.

Finally, the system tests that can be automated with a testing tool need to
be finalized. Automated tests provide three benefits: repeatability, leverage, and
increased functionality. Repeatability enables automated tests to be executed more
than once, consistently. Leverage comes from repeatability, from tests previously
captured and tests that can be programmed with the tool, which might not have
been possible without automation. As applications evolve, more and more func-
tionality is added. With automation, the functional coverage is maintained with
the test library.

Task 2: Finalize System Test Schedule

In this task, the system test schedule should be finalized; this includes the testing
steps (and perhaps tasks), target start and target end dates, and responsibilities. It
should also describe how it will be reviewed, tracked, and approved. A sample sys-
tem test schedule is shown in Table 20.1.

Task 3: Organize the System Test Team

With all testing types, the system test team needs to be organized. The system test team
is responsible for designing and executing the tests, evaluating the results and repore-
ing any defects to development, and using the defect-tracking system. When develop-
ment corrects defects, the test team retests the defects to verify the correction.

The system test team is led by a test manager whose responsibilities include
the following:

B Organizing the test team

B Establishing the test environment

B Organizing the testing policies, procedures, and standards
B Assurance test readiness

© 2009 by Taylor & Francis Group, LLC

236 m Software Testing and Continuous Quality Improvement

Table 20.1 Final System Test Schedule

Begin End Responsible Staff
Test Step Date Date Member
General Setup
Organize the system test 12/1/2004 | 12/7/2004 | Smith, test manager
team
Establish the system test 12/1/2004 | 12/7/2004 | Smith, test manager
environment
Establish the system test tools | 12/1/2004 | 12/10/2004 | Jones, tester
Performance Testing
Design/script the tests 12/11/2004 | 12/15/2004 | Jones, tester
Test review 12/16/2004 | 12/16/2004 | Smith, test manager
Execute the tests 12/17/2004 | 12/22/2004 | Jones, tester
Retest system defects 12/23/2004 | 12/25/2004 | Jones, tester
Stress Testing
Design/script the tests 12/26/2004 | 12/30/2004 | Jones, tester
Test review 12/31/2004 | 12/31/2004 | Smith, test manager
Execute the tests 1/1/2004 1/6/2004 Jones, tester
Retest system defects 1/7/2004 1/9/2004 Jones, tester
Volume Testing
Design/script the tests 1/10/2004 1/14/2004 | Jones, tester
Test review 1/15/2004 1/15/2004 | Smith, test manager
Execute the tests 1/16/2004 1/21/2004 | Jones, tester
Retest system defects 1/22/2004 1/24/2004 | Jones, tester
Security Testing
Design/script the tests 1/25/2004 1/29/2004 | Jones, tester
Test review 1/30/2004 | 1/31/2004 | Smith, test manager
Execute the tests 2/1/2004 2/6/2004 Jones, tester

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) m 237

Table 20.1 Final System Test Schedule (Continued)
Begin End Responsible Staff
Test Step Date Date Member
Retest system defects 2/7/2004 | 2/9/202004 | Jones, tester
Backup Testing
Design/script the tests 2/10/2004 | 2/14/2004 | Jones, tester
Test review 2/15/2004 | 2/15/2004 | Smith, test manager
Execute the tests 2/16/2004 1/21/2004 | Jones, tester
Retest system defects 2/22/2004 2/24/2004 | Jones, tester
Recovery Testing
Design/script the tests 2/25/2004 | 2/29/2004 | Jones, tester
Test review 2/30/2004 | 2/31/2004 | Smith, test manager
Execute the tests 3/1/2004 3/6/2004 Jones, tester
Retest system defects 3/7/2004 3/9/2004 | Jones, tester
Compatibility Testing
Design/script the tests 3/10/2004 | 3/14/2004 | Jones, tester
Test review 3/15/2004 | 3/15/2004 | Smith, test manager
Execute the tests 3/16/2004 3/21/2004 | Jones, tester
Retest system defects 3/22/2004 3/24/2004 | Jones, tester
Conversion Testing
Design/script the tests 4/10/2004 4/14/2004 | Jones, tester
Test review 4/15/2004 4/15/2004 | Smith, test manager
Execute the tests 4/16/2004 4/21/2004 Jones, tester
Retest system defects 4/22/2004 | 4/24/2004 | Jones, tester
Usability Testing
Design/script the tests 5/10/2004 | 5/14/2004 | Jones, tester
Test review 5/15/2004 | 5/15/2004 | Smith, test manager

© 2009 by Taylor & Francis Group, LLC

Continued

238 m Software Testing and Continuous Quality Improvement

Table 20.1 Final System Test Schedule (Continued)

Begin End Responsible Staff

Test Step Date Date Member
Execute the tests 5/16/2004 5/21/2004 | Jones, tester
Retest system defects 5/22/2004 5/24/2004 | Jones, tester
Documentation Testing
Design/script the tests 6/10/2004 6/14/2004 | Jones, tester
Test review 6/15/2004 6/15/2004 | Smith, test manager
Execute the tests 6/16/2004 6/21/2004 Jones, tester
Retest system defects 6/22/2004 | 6/24/2004 | Jones, tester
Installation Testing
Design/script the tests 7/10/2004 7/14/2004 | Jones, tester
Test review 7/15/2004 7/15/2004 | Smith, test manager
Execute the tests 7/16/2004 7/21/2004 | Jones, tester
Retest system defects 7/22/2004 7/24/2004 | Jones, tester

B Working the test plan and controlling the project

B Tracking test costs

B Ensuring test documentation is accurate and timely
B Managing the team members

Task 4: Establish the System Test Environment

During this task, the system test environment is also finalized. The purpose of the
test environment is to provide a physical framework for the testing activity. The test
environment needs are established and reviewed before implementation.

The main components of the test environment include the physical test facility,
technologies, and tools. The test facility component includes the physical setup.
The technologies component includes the hardware platforms, physical network
and all its components, operating system software, and other software. The tools
component includes any specialized testing software, such as automated test tools,
testing libraries, and support software.

The testing facility and workplace need to be established. These may range from
an individual workplace configuration to a formal testing laboratory. In any event,
it is important that the testers be together and near the development team. This

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ® 239

facilitates communication and the sense of a common goal. The system testing tools
need to be installed.

The hardware and software technologies need to be set up. This includes the
installation of test hardware and software and coordination with vendors, users,
and information technology personnel. It may be necessary to test the hardware
and coordinate with hardware vendors. Communication networks need to be
installed and tested.

Task 5: Install the System Test Tools

During this task, the system test tools are installed and verified for readiness. A trial
run of tool test cases and scripts should be performed to verify that the test tools
are ready for the actual acceptance test. Some other tool readiness considerations
include the following:

Test team tool training

Tool compatibility with operating environment
Ample disk space for the tools

Maximizing the tool potentials

Vendor tool help hotline

Test procedures modified to accommodate tools
Installing the latest tool changes

Verifying the vendor contractual provisions

Step 2: Complete System Test Cases

During this step, the system test cases are designed and scripted. The conceptual
system test cases are transformed into reusable test scripts with test data created.

To aid in developing the script test cases, the GUI-based Function Test Matrix
template in Appendix E7 can be used to document system-level test cases, with the
“function” heading replaced with the system test name.

Task 1: Design/Script the Performance Tests

The objective of performance testing is to measure the system against predefined
objectives. The required performance levels are compared against the actual perfor-
mance levels and discrepancies are documented.

Performance testing is a combination of black-box and white-box testing. From
a black-box point of view, the performance analyst does not have to know the inter-
nal workings of the system. Real workloads or benchmarks are used to compare one
system version with another for performance improvements or degradation. From
a white-box point of view, the performance analyst needs to know the internal

© 2009 by Taylor & Francis Group, LLC

240 m Software Testing and Continuous Quality Improvement

workings of the system and define specific system resources to investigate, such as
instructions, modules, and tasks.
Some of the performance information of interest includes the following:

CPU utilization

IO utilization

Number of IOs per instruction

Channel utilization

Main storage memory utilization

Secondary storage memory utilization

Percentage of execution time per module

Percentage of time a module is waiting for IO completion
Percentage of time module spent in main storage

Instruction trace paths over time

Number of times control is passed from one module to another
Number of waits encountered for each group of instructions
Number of pages-in and pages-out for each group of instructions
System response time, for example, last key until first key time
System throughput, that is, number of transactions per time unit
Unit performance timings for all major functions

Baseline performance measurements should first be taken on all major functions
in a noncontention mode, for example, unit measurements of functions when a
single task is in operation. This can be easily done with a simple stopwatch, as
was done ecatlier for each spiral. The next set of measurements should be made
in a system-contended mode in which multiple tasks are operating, and queuing
results in demands on common resources such as CPU, memory, storage, channel,
network, and so on. Contended system execution time and resource utilization
performance measurements are performed by monitoring the system to identify
potential areas of inefficiency.

There are two approaches to gathering system execution time and resource uti-
lization. With the first approach, samples are taken while the system is executing
in its typical environment with the use of external probes, performance monitors,
or a stopwatch. With the other approach, probes are inserted into the system code,
for example, calls to a performance monitor program that gathers the performance
information. The following is a discussion of each approach, followed by a discus-
sion of test drivers, which are support techniques used to generate data for the
performance study.

Monitoring Approach

This approach involves monitoring a system by determining its status at periodic
time intervals, and is controlled by an elapsed time facility in the testing tool or

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) m 241

operating system. Samples taken during each time interval indicate the status of the
performance criteria during the interval. The smaller the time interval, the more
precise the sampling accuracy.

Statistics gathered by the monitoring are collected and summarized in
performance.

Probe Approach

This approach involves inserting probes or program instructions into the system
programs at various locations. To determine, for example, the CPU time neces-
sary to execute a sequence of statements, a problem execution results in a call to
the data collection routine that records the CPU clock at that instant. A second
probe execution results in a second call to the data collection routine. Subtracting
the first CPU time from the second yields the net CPU time used. Reports can be
produced showing execution time breakdowns by statement, module, and state-
ment type.

The value of these approaches is their use as performance requirements valida-
tion tools. However, formally defined performance requirements must be stated,
and the system should be designed so that the performance requirements can be
traced to specific system modules.

Test Drivers

In many cases test drivers and test harnesses are required to make system perfor-
mance measurements. A test driver provides the facilities needed to execute a system,
for example, inputs. The input data files for the system are loaded with data values
representing the test situation to yield recorded data to evaluate against the expected
results. Data are generated in an external form and presented to the system.

Performance test cases need to be defined, using one or more of the test tem-
plates located in the appendices, and test scripts need to be built. Before any perfor-
mance test is conducted, however, the performance analyst must make sure that the
target system is relatively bug-free. Otherwise, a lot of time will be spent document-
ing and fixing defects rather than analyzing the performance.

The following are the five recommended steps for any performance study:

1. Document the performance objectives; for example, exactly what the measur-

able performance criteria are must be verified.

2. Define the test driver or source of inputs to drive the system.

. Define the performance methods or tools that will be used.

. Define how the performance study will be conducted; for example, what is
the baseline, what are the variations, how can it be verified as repeatable, and
how does one know when the study is complete?

5. Define the reporting process, for example, techniques and tools.

S

© 2009 by Taylor & Francis Group, LLC

242 m Software Testing and Continuous Quality Improvement

Task 2: Design/Script the Security Tests

The objective of security testing is to evaluate the presence and appropriate function-
ing of the security of the application to ensure the integrity and confidentiality of the
data. Security tests should be designed to demonstrate how resources are protected.

A Security Design Strategy

A security strategy for designing security test cases is to focus on the following four
security components: the assets, threats, exposures, and controls. In this manner,
matrices and checklists will suggest ideas for security test cases.

Assets are the tangible and intangible resources of an entity. The evaluation
approach is to list what should be protected. It is also useful to examine the attri-
butes of assets, such as amount, value, use, and characteristics. Two useful analysis
techniques are asset value and exploitation analysis. Asset value analysis determines
how the value differs among users and potential attackers. Asset exploitation analy-
sis examines different ways to use an asset for illicit gain.

Threats are events with the potential to cause loss or harm. The evaluation
approach is to list the sources of potential threats. It is important to distinguish
among accidental, intentional, and natural threats, and threat frequencies.

Exposures are forms of possible loss or harm. The evaluation approach is to list
what might happen to assets if a threat is realized. Exposures include disclosure
violations, erroneous decision, and fraud. Exposure analysis focuses on identifying
areas in which exposure is the greatest.

Security functions or controls are measures that protect against loss or harm.
The evaluation approach is to list the security functions and tasks, and focus on
controls embodied in specific system functions or procedures. Security functions
assess the protection against human errors and casual attempts to misuse the sys-
tem. Some functional security questions include the following:

Do the control features work properly?

Are invalid and improbable parameters detected and properly handled?
Are invalid or out-of-sequence commands detected and properly handled?
Are errors and file accesses properly recorded?

Do procedures for changing security tables work?

Is it possible to log in without a password?

Are valid passwords accepted and invalid passwords rejected?

Does the system respond properly to multiple invalid passwords?

Does the system-initialed authentication function properly?

Are there security features for remote access?

It is important to assess the performance of the security mechanisms as well as the
functions themselves. Some questions and issues concerning security performance
include the following:

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ® 243

B Availability—What portion of time is the application or control available to
perform critical security functions? Security controls usually require higher
availability than other portions of the system.

B Survivability—How well does the system withstand major failures or natural
disasters? Thisincludes the support of emergency operations during failure, backup
operations afterward, and recovery actions to return to regular operation.

B Accuracy—How accurate is the security control? Accuracy encompasses the
number, frequency, and significance of errors.

B Response time—Are response times acceptable? Slow response times can tempt
users to bypass security controls. Response time can also be critical for con-
trol management, for example, the dynamic modification of security tables.

B 7hroughpur—Does the security control support required use capacities?
Capacity includes the peak and average loading of users and service requests.

A useful performance test is stress testing, which involves large numbers of users
and requests to attain operational stress conditions. Stress testing is used to attempt
to exhaust limits for such resources as buffers, queues, tables, and ports. This form
of testing is useful in evaluating protection against service denial threats.

Task 3: Design/Script the Volume Tests

The objective of volume testing is to subject the system to heavy volumes of data to

find out if it can handle the volume. This test is often confused with stress testing.

Stress testing subjects the system to heavy loads or stresses in terms of rates, such as

throughputs over a short time period. Volume testing is data oriented, and its purpose

is to show that the system can handle the volume of data specified in its objectives.
Some examples of volume testing are as follows:

Relative data comparison is made when processing date-sensitive transactions.
A compiler is fed an extremely large source program to compile.

A linkage editor is fed a program containing thousands of modules.

An electronic-circuit simulator is given a circuit containing thousands of
components.

An operation system’s job queue is filled to maximum capacity.
Enough data is created to cause a system to span files.

A test-formatting system is fed a massive document format.
The Internet is flooded with huge e-mail messages and files.

Task 4: Design/Script the Stress Tests

The objective of stress testing is to investigate the behavior of the system under
conditions that overload its resources. Of particular interest is the impact that this
has on the system processing time. Stress testing is boundary testing. For example,

© 2009 by Taylor & Francis Group, LLC

244 m Software Testing and Continuous Quality Improvement

test with the maximum number of terminals active and then add more terminals
than specified in the requirements under different limit combinations. Some of the
resources subjected to heavy loads by stress testing include the following:

Buffers

Controllers
Display terminals
Interrupt handlers
Memory

Networks

Printers

Spoolers

Storage devices
Transaction queues
Transaction schedulers
User of the system

Stress testing studies the system’s response to peak bursts of activity in short periods of
time and attempts to find defects in a system. It is often confused with volume testing,
in which the system’s capability of handling large amounts of data is the objective.

Stress testing should be performed early in development because it often uncov-
ers major design flaws that can have an impact on many areas. If stress testing is
not performed early, subtle defects, which might have been more apparent earlier
in development, may be difficult to uncover.

The following are the suggested steps for stress testing:

1. Perform simple multitask tests.
2. After the simple stress defects are corrected, stress the system to breaking point.

3. Perform the stress tests repeatedly for every spiral.

Some stress-testing examples include the following:

Word-processing response time for a fixed entry rate, such as 120 words
per minute

Introducing a heavy volume of data in a very short period of time

Varying loads for interactive, real-time process control

Simultaneous introduction of a large number of transactions

Thousands of users signing on to the Internet within a minute

Task 5: Design/Script the Compatibility Tests

The objective of compatibility testing (sometimes called cobabitation testing) is to
test the compatibility of the application with other applications or systems. This is

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ® 245

a test that is often overlooked until the system is put into production. Defects are
often subtle and difficult to uncover in this test. An example is when the system
works perfectly in the testing laboratory in a controlled environment, but does
not work when it coexists with other applications. An example of compatibility is
when two systems share the same data or data files or reside in the same memory at
the same time. The system may satisfy the system requirements, but not work in a
shared environment; it may also interfere with other systems.
The following is a compatibility (cohabitation) testing strategy:

1. Update the compatibility objectives to note how the application has actu-
ally been developed and the actual environments in which it is to perform.
Modify the objectives for any changes in the cohabiting systems or the con-
figuration resources.

2. Update the compatibility test cases to make sure they are comprehensive.
Make sure that the test cases in the other systems that can affect the target
system are comprehensive. And ensure maximum coverage of instances in
which one system could affect another.

3. Perform the compatibility tests and carefully monitor the results to ensure
the expected results. Use a baseline approach, which is the system’s operating
characteristics before the incorporation of the target system into the shared
environment. The baseline needs to be accurate and incorporate not only
the functioning but also the operational performance to ensure that it is not
degraded in a cohabitation setting.

4. Document the results of the compatibility tests and note any deviations in
the target system or the other cohabitation systems.

5. Regression test the compatibility tests after the defects have been resolved,
and record the tests in the retest matrix.

Task 6: Design/Script the Conversion Tests

The objective of conversion testing is to verify the conversion of existing data and
load a new database. The most common conversion problem is between two ver-
sions of the same system. A new version may have a different data format, but must
include the data from the old system. Ample time needs to be set aside to carefully
think of all the conversion issues that may arise.

Some key factors that need to be considered when designing conversion tests
include the following:

B Auditability—There needs to be a plan to perform before-and-after compari-
sons and analysis of the converted data to ensure it was converted successfully.
Techniques to ensure auditability include file reports, comparison programs, and
regression testing. Regression testing checks to verify that the converted data does
not change the business requirements or cause the system to behave differently.

© 2009 by Taylor & Francis Group, LLC

246 m Software Testing and Continuous Quality Improvement

B Database verification—DPrior to conversion, the new database needs to be
reviewed to verify that it is designed properly, satisfies the business needs,
and that the support center and database administrators are trained to sup-
port it.

B Data cleanup—Before the data is converted to the new system, the old data
needs to be examined to verify that inaccuracies or discrepancies in the data
are removed.

B Recovery plan—Roll-back procedures need to be in place before any conversion is
attempted to restore the system to its previous state and undo the conversions.

B Synchronization—It must be verified that the conversion process does not
interfere with normal operations. Sensitive data, such as customer data, may
be changing dynamically during conversions. One way to achieve this is to
perform conversions during nonoperational hours.

Task 7: Design/Script the Usability Tests

The objective of usability testing is to determine how well the user will be able to
use and understand the application. This includes the system functions, publica-
tions, help text, and procedures to ensure that the user comfortably interacts with
the system. Usability testing should be performed as early as possible during devel-
opment and should be designed into the system. Late usability testing might be
impossible, because it is locked in and often requires a major redesign of the system
to correct serious usability problems. This may make it economically infeasible.
Some of the usability problems the tester should look for include the following:

Opverly complex functions or instructions

Difficult installation procedures

Poor error messages, for example, “syntax error”
Syntax difficult to understand and use
Nonstandardized GUI interfaces

User forced to remember too much information
Difficult log-in procedures

Help text not context sensitive or not detailed enough
Poor linkage to other systems

Unclear defaults

Interface too simple or too complex

Inconsistency of syntax, format, and definitions

User not provided with clear acknowledgment of all inputs

Task 8: Design/Script the Documentation Tests

The objective of documentation testing is to verify that the user documentation is
accurate and ensure that the manual procedures work correctly. Documentation

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) m 247

testing has several advantages, including improving the usability of the system, reli-
ability, maintainability, and installability. In these cases, testing the document will
help uncover deficiencies in the system or make the system more usable.

Documentation testing also reduces customer support costs; when customers
can figure out answers to their questions by reading the documentation, they are
not forced to call the help desk.

The tester verifies the technical accuracy of the documentation to ensure that
it agrees with and describes the system accurately. He or she needs to assume the
user’s point of view and carry out the steps described in the documentation.

Some tips and suggestions for the documentation tester include the following:

Use documentation as a source of many test cases.

Use the system exactly as the documentation describes it should be used.
Test every hint or suggestion.

Incorporate defects into the defect-tracking database.

Test every online help hypertext link.

Test every statement of fact, and do not take anything for granted.
Work like a technical editor rather than a passive reviewer.

Perform a general review of the whole document first and then a detailed review.
Check all the error messages.

Test every example provided in the document.

Make sure all index entries have documentation text.

Make sure documentation covers all key user functions.

Make sure the reading style is not too technical.

Look for areas that are weaker than others and need more explanation.

Task 9: Design/Script the Backup Tests

The objective of backup testing is to verify the ability of the system to back up its
data in the event of a software or hardware failure. This test is complementary to
recovery testing and should be part of recovery test planning,

Some backup testing considerations include the following:

Backing up files and comparing the backup with the original
Archiving files and data

Complete system backup procedures

Checkpoint backups

Backup performance system degradation

Effect of backup on manual processes

Detection of “triggers” to backup system

Security procedures during backup

Maintaining transaction logs during backup procedures

© 2009 by Taylor & Francis Group, LLC

248 m Software Testing and Continuous Quality Improvement

Task 10: Design/Script the Recovery Tests

The objective of recovery testing is to verify the system’s ability to recover from a
software or hardware failure. This test verifies the contingency features of the sys-
tem for handling interruptions and returning to specific points in the application’s
processing cycle. The key questions for designing recovery tests are as follows:

B Have the potentials for disasters and system failures, and their respective
damages, been identified? Fire-drill brainstorming sessions can be an effec-
tive method of defining disaster scenarios.

B Do the prevention and recovery procedures provide for adequate responses
to failures? The plan procedures should be tested with technical reviews by
subject matter experts and the system users.

B Wil the recovery procedures work properly when really needed? Simulated
disasters need to be created with the actual system verifying the recovery
procedures. This should involve the system users, the support organization,
vendors, and so on.

Some recovery testing examples include the following:

B Complete restoration of files that were backed up either during routine main-
tenance or error recovery

Partial restoration of file backup to the last checkpoint

Execution of recovery programs

Archive retrieval of selected files and data

Restoration when power supply is the problem

Verification of manual recovery procedures

Recovery by switching to parallel systems

Restoration performance system degradation

Security procedures during recovery

Ability to recover transaction logs

Task 11: Design/Script the Installation Tests

The objective of installation testing is to verify the ability to install the system
successfully. Customers have to install the product on their systems. Installation
is often the developers’ last activity and often receives the least amount of atten-
tion during development. Yet, it is the first activity that the customer performs
when using the new system. Therefore, clear and concise installation procedures are
among the most important parts of the system documentation.

Reinstallation procedures need to be included to be able to reverse the installa-
tion process and validate the previous environmental condition. Also, the installa-

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ® 249

tion procedures need to document how the user can tune the system options and
upgrade from a previous version.

Some key installation questions the tester needs to consider include the following:

Who is the user installer? For example, what technical capabilities are assumed?
Is the installation process documented thoroughly with specific and concise
installation steps?

For which environments are the installation procedures supposed to work, for
example, platforms, software, hardware, networks, or versions?

Will the installation change the user’s current environmental setup, for exam-
ple, config.sys, and so on?

How does the installer know the system has been installed correctly? For
example, is there an installation test procedure in place?

Task 12: Design/Script Other System Test Types

In addition to the foregoing system tests, the following system tests may also

be required:

B AP testing—Verify the system uses APIs correctly, for example, operating

system calls.

Communication testing—Verify the system’s communications and networks.
Configuration testing—Verify that the system works correctly in different sys-
tem configurations, for example, software, hardware, and networks.
Database testing—Verify the database integrity, business rules, access, and
refresh capabilities.

Degraded system resting—Verify that the system performs properly under less
than optimum conditions, for example, line connections down, and the like.
Disaster recovery testing—Verify that the system recovery processes work
correctly.

Embedded system test—Verify systems that operate on low-level devices, such
as video chips.

Facility testing—Verify that each stated requirement facility is met.

Field testing—Verify that the system works correctly in the real environment.
Middleware resting—Verify that the middleware software works correctly, for
example, the common interfaces and accessibility among clients and servers.
Multimedia testing—Verify the multimedia system features, which use video,
graphics, and sound.

Online belp testing—Verify that the system’s online help features work properly.
Operability resting—Verify system will work correctly in the actual busi-
ness environment.

Package resting—Verify that the installed software package works correctly.

© 2009 by Taylor & Francis Group, LLC

250 m Software Testing and Continuous Quality Improvement

B Parallel testing—Verify that the system behaves the same in the old and
new versions.

B Port testing—Verify that the system works correctly on different operating
systems and computers.

B Procedure testing—Verify that nonautomated procedures work properly, for
example, operation, DBA, and the like.

B Production testing—Verify that the system will work correctly during actual
ongoing production and not just in the test laboratory environment.

B Real-time testing—Verify systems in which time issues are critical and there
are response time requirements.

B Reliability resting—Verify that the system works correctly within predefined
expected failure duration, for example, mean time to failure (MTF).

B Serviceability resting—Verify that service facilities of the system work prop-
etly, for example, mean time to debug a defect and maintenance procedures.

B SQL testing—Verify the queries, data retrievals, and updates.

B Storage testing—Verify that the system storage requirements are met, for
example, sizes of spill files and amount of main or secondary storage used.

Step 3: Review/Approve System Tests
Task 1: Schedule/Conduct the Review

The system test plan review should be scheduled well in advance of the actual
review, and the participants should have the latest copy of the test plan.

As with any interview or review, certain elements must be present. The first is
defining what will be discussed; the second is discussing the details; and the third is
summarization. The final element is timeliness. The reviewer should state up front
the estimated duration of the review and set the ground rule that if time expires
before completing all items on the agenda, a follow-on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the system test plan. If there are any suggested changes to the test plan dur-
ing the review, they should be incorporated into the test plan.

Task 2: Obtain Approvals

Approval is critical in a testing effort because it helps testing, development, and the
sponsor agree. The best approach is with a formal sign-off procedure of a system test
plan. If this is the case, use the management approval sign-off forms. However, if
a formal agreement procedure is not in place, send a memo to each key participant
including at least the project manager, development manager, and sponsor. In the
document, attach the latest test plan and point out that all their feedback com-
ments have been incorporated and that if you do not hear from them, it is assumed

© 2009 by Taylor & Francis Group, LLC

Conduct the System Test (Act) ® 251

that they agree with the plan. Finally, indicate that in a spiral development environ-
ment, the system test plan will evolve with each iteration but that you will include
them in any modification.

Step 4: Execute the System Tests

Task 1: Regression Test the System Fixes

The purpose of this task is to retest the system tests that discovered defects in the
previous system test cycle for this build. The technique used is regression testing.
Regression testing is a technique that detects spurious errors caused by software
modifications or corrections.

A set of test cases must be maintained and available throughout the entire life
of the software. The test cases should be complete enough so that all the software’s
functional capabilities are thoroughly tested. The question arises as to how to locate
those test cases to test defects discovered during the previous test spiral. An excel-
lent mechanism is the retest matrix.

As described eatlier, a retest matrix relates test cases to functions (or program
units). A check entry in the matrix indicates that the test case is to be retested
when the function (or program unit) has been modified due to enhancements or
corrections. The absence of an entry indicates that the test does not need to be
retested. The retest matrix can be built before the first testing spiral, but needs
to be maintained during subsequent spirals. As functions (or program units) are
modified during a development spiral, existing or new test cases need to be created
and checked in the retest matrix in preparation for the next test spiral. Over time
with subsequent spirals, some functions (or program units) may be stable, with no
recent modifications. Selective removal of check entries should be considered, and
undertaken between testing spirals.

Task 2: Execute the New System Tests

The purpose of this task is to execute new system tests that were created at the end
of the previous system test cycle. In the previous spiral, the testing team updated
the function/GUI, system fragment, and acceptance tests in preparation for the
current testing spiral. During this task, those tests are executed.

Task 3: Document the System Defects

During system test execution, the results of the testing must be reported in the
defect-tracking database. These defects are typically related to individual tests that
have been conducted. However, variations to the formal test cases often uncover
other defects. The objective of this task is to produce a complete record of the defects.

© 2009 by Taylor & Francis Group, LLC

252 m Software Testing and Continuous Quality Improvement

If the execution step has been recorded properly, the defects have already been
recorded on the defect-tracking database. If the defects are already recorded, the
objective of this step becomes to collect and consolidate the defect information.

Tools can be used to consolidate and record defects depending on the test exe-
cution methods. If the defects are recorded on paper, the consolidation involves col-
lecting and organizing the papers. If the defects are recorded electronically, search
features can easily locate duplicate defects.

© 2009 by Taylor & Francis Group, LLC

Chapter 21

Conduct Acceptance
Testing

Acceprance testing is a user-run test that demonstrates the application’s ability to
meet the original business objectives and system requirements, and usually con-
sists of a subset of system tests (see Figure 21.1). It includes discussions on how to
prepare for the acceptance tests, design and script them, execute them, and report
anomalies discovered during the test.

Step 1: Complete Acceptance Test Planning
Task 1: Finalize the Acceptance Test Types

In chis task, the initial acceptance testing type list is refined, and the actual tests to
be performed are selected.

Acceptance testing is an optional user-run test that demonstrates the ability of
the application to meet the user’s requirements. The motivation for this test is to
demonstrate rather than be destructive, that is, to show that the system works. Less
emphasis is placed on the technical issues and more on the question of whether
the system is a good business fit for the end user. Users usually perform the test.
However, the users sometimes define “special tests,” such as intensive stress or vol-
ume tests, to stretch the limits of the system even beyond what was tested during
the system test.

253

© 2009 by Taylor & Francis Group, LLC

254 m Software Testing and Continuous Quality Improvement

(STEPS) (TASKS)

Finalize Acceptance
Test Types

v

Finalize Acceptance

Test Schedule
Complete) *
Acceptance Organize Acceptance
Test Planning Test Team
Establish Acceptance

Test Environment

Install Acceptance
Test Tools

A A Subset System-Level
Complete Test Cases
Acceptance T
Test Cases Design/Script Additional
Acceptance
Schedule/Conduct
Review/Approve Review
Acceptance | "2
Test Plan Obtain
Approvals
Regression Test
Acceptance Fixes
Execute
Acceptance Execute New
Tests Acceptance Tests

v

Document Acceptance
Test Defects

Figure 21.1 Conduct acceptance testing (steps/tasks).

© 2009 by Taylor & Francis Group, LLC

Conduct Acceptance Testing ® 255

Table 21.1 Acceptance Test Schedule

Responsible Staff
Test Step Begin Date | End Date Member
General Setup
Organize the acceptance 8/1/2004 8/7/2004 | Smith, test manager

test team

Establish the acceptance test 8/8/2004 8/9/2004 | Smith, test manager
environment

Establish the acceptance test 8/10/2004 8/10/2004 | Jones, tester
tools

Acceptance Testing

Design/script the tests 12/11/2004 | 12/15/2004 | Jones, Baker (user),
testers

Test review 12/16/2004 | 12/16/2004 | Smith, test manager

Execute the tests 12/17/2004 | 12/22/2004 | Jones, Baker (user),
tester

Retest acceptance defects 12/23/2004 | 12/25/2004 | Jones, Baker (user),
tester

Task 2: Finalize the Acceptance Test Schedule

In this task, the acceptance test schedule should be finalized. It includes the testing
steps (and perhaps tasks), target begin dates and target end dates, and responsi-
bilities. It should also describe how it will be reviewed, tracked, and approved. For
acceptance testing, the test team usually consists of user representatives. However,
the team test environment and test tool are probably the same as those used during
system testing. A sample acceptance test schedule is shown in Table 21.1.

Task 3: Organize the Acceptance Test Team

The acceptance test team is responsible for designing and executing the tests,
evaluating the test results, and reporting any defects to development, using the
defect-tracking system. When development corrects defects, the test team retests
the defects to validate the correction. The acceptance test team typically has repre-
sentation from the user community, because this is their final opportunity to accept
the system.

The acceptance test team is led by a test manager whose responsibilities include
the following:

© 2009 by Taylor & Francis Group, LLC

256 m Software Testing and Continuous Quality Improvement

Organizing the test team

Establishing the test environment

Organizing the testing policies, procedures, and standards
Ensuring test readiness

Working the test plan and controlling the project
Tracking test costs

Ensuring test documentation is accurate and timely

Managing the team members

Task 4: Establish the Acceptance Test Environment

During this task, the acceptance test environment is finalized. Typically, the test
environment for acceptance testing is the same as that for system testing. The pur-
pose of the test environment is to provide the physical framework necessary for
the testing activity. For this task, the test environment needs are established and
reviewed before implementation.

The Business usually performs the user acceptance tests. Thus, it is important
that the details of the acceptance test environment be communicated to them.

Task 5: Install Acceptance Test Tools

During this task, the acceptance test tools are installed and verified for readiness. A
trial run of sample tool test cases and scripts should be performed to verify that the
test tools are ready for the actual acceptance test. Typically, the acceptance testing
tools are the same as the system level testing tools, but this needs to be confirmed
between the Business and the QA department. Some other tool readiness consider-
ations include the following:

Test team tool training

Tool compatibility with operating environment
Ample disk space for the tools

Maximizing the tool potentials

Vendor tool help hotline

Test procedures modified to accommodate tools
Installing the latest tool changes

Verifying the vendor contractual provisions

Step 2: Complete Acceptance Test Cases

During this step, the acceptance test cases are designed and scripted. The conceptual
acceptance test cases are transformed into reusable test scripts with test data cre-
ated. To aid in the development of scripting the test cases, the GUI-based Function

© 2009 by Taylor & Francis Group, LLC

Conduct Acceptance Testing ® 257

Test Matrix template in Appendix E7 can be used to document acceptance-level
test cases, with the “function” heading replaced with the acceptance test name.

Task 1: Identify the System-Level Test Cases

Acceptance test cases are typically (but not always) developed by the end user and
are not normally considered the responsibility of the development organization,
because acceptance testing compares the system to its original requirements and
the needs of the users. It is the final test for the end users to accept or reject the
system. The end users supply the test resources and perform their own tests. They
may or may not use the same test environment that was used during system testing.
This depends on whether the test will be performed in the end user’s environment.
The latter is the recommended approach.

Typically, the acceptance test consists of a subset of system tests that have
already been designed during system testing. Therefore, the current task consists of
identifying those system-level tests that will be used during acceptance testing.

Task 2: Design/Script Additional Acceptance Tests

In addition to the system-level tests to be rerun during acceptance testing, they
may be “tweaked” with special conditions to maximize the acceptability of the
system. For example, the acceptance test might require that a certain throughput
be sustained for a period of time with acceptable response time tolerance limits; for
example, 10,000 transactions per hour are processed with a mean response time of
3 seconds, with 90 percent less than or equal to 2 seconds. Another example might
be that an independent user “off the street” sits down with the system and the docu-
ment to verify that he can use the system effectively.

The user might also envision other tests not designed during system testing. These
may become more apparent to the user than they would have been to the developer
because the user knows the business requirements and is intimately familiar with
the business operations. He or she might uncover defects that only a user would see.
This also helps the user to get ready for the real installation and production.

The acceptance test design might even include the use of live data, because the
acceptance of test results will probably occur more readily if it looks real to the user.
There are also unusual conditions that might not be detected unless live data is used.

Step 3: Review/Approve Acceptance Test Plan
Task 1: Schedule/Conduct the Review

The acceptance test plan review should be scheduled well in advance of the actual
review, and the participants should have the latest copy of the test plan.

© 2009 by Taylor & Francis Group, LLC

258 m Software Testing and Continuous Quality Improvement

As with any interview or review, it should contain certain elements. The first
defines what will be discussed; the second discusses the details; the third summa-
rizes; and the final element is timeliness. The reviewer should state up front the esti-
mated duration of the review and set the ground rule that if the allotted time expires
before completing all items on the agenda, a follow-on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the system test plan. If there are any suggested changes to the test plan dur-
ing the review, they should be incorporated into the test plan.

Task 2: Obtain Approvals

Approval is critical in a testing effort because it helps provide the necessary agree-
ments among testing, development, and the sponsor. The best approach is with
a formal sign-off procedure of an acceptance test plan. If this is the case, use the
management approval sign-off forms. However, if a formal agreement procedure
is not in place, send a memo to each key participant, including at least the project
manager, development manager, and sponsor. Attach to the document the latest
test plan, and point out that all feedback comments have been incorporated and
that if you do not hear from them, it is assumed they agree with the plan. Finally,
indicate that in a spiral development environment, the system test plan will evolve
with each iteration but that you will include them in any modification.

Step 4: Execute the Acceptance Tests

Task 1: Regression Test the Acceptance Fixes

The purpose of this task is to retest the tests that discovered defects in the previous
acceptance test cycle for this build. The technique used is regression testing. Regression
testing detects spurious errors caused by software modifications or corrections.

A set of test cases must be maintained and made available throughout the entire
life of the software. The test cases should be complete enough so that all the soft-
ware’s functional capabilities are thoroughly tested. The question arises as to how to
locate those test cases to test defects discovered during the previous test spiral. An
excellent mechanism is the retest matrix.

As described earlier, a retest matrix relates test cases to functions (or program
units). A check entry in the matrix indicates that the test case is to be retested
when the function (or program unit) has been modified due to enhancements or
corrections. The absence of an entry indicates that the test does not need to be
retested. The retest matrix can be built before the first testing spiral, but needs to be
maintained during subsequent spirals. As functions (or program units) are modi-
fied during a development spiral, existing or new test cases need to be created and
checked in the retest matrix in preparation for the next test spiral. Over time with

© 2009 by Taylor & Francis Group, LLC

Conduct Acceptance Testing ®m 259

subsequent spirals, some functions (or program units) may be stable with no recent
modifications. Selective removal of their check entries should be considered, and
undertaken between testing spirals.

Task 2: Execute the New Acceptance Tests

The purpose of this task is to execute new tests that were created at the end of the
previous acceptance test cycle. In the previous spiral, the testing team updated the
function/GUI, system fragment, and acceptance tests in preparation for the current
testing spiral. During this task, those tests are executed.

Task 3: Document the Acceptance Defects

During acceptance test execution, the results of the testing must be reported in the
defect-tracking database. These defects are typically related to individual tests that
have been conducted. However, variations to the formal test cases often uncover
other defects. The objective of this task is to produce a complete record of the defects.
If the execution step has been recorded properly, the defects have already been
recorded on the defect-tracking database. If the defects are already recorded, the
objective of this step becomes to collect and consolidate the defect information.

Tools can be used to consolidate and record defects, depending on the test exe-
cution methods. If the defects are recorded on paper, the consolidation involves col-
lecting and organizing the papers. If the defects are recorded electronically, search
features can easily locate duplicate defects.

© 2009 by Taylor & Francis Group, LLC

Chapter 22

Summarize/Report
Test Results

Appendix F23, “Project Completion Checklist,” can be used to confirm that all the
key activities have been completed for the project.

Step 1: Perform Data Reduction
Task 1: Ensure All Tests Were Executed/Resolved

During this task, the test plans and logs are examined by the test team to verify that
all tests were executed (see Figure 22.1). The team can usually do this by ensuring that
all the tests are recorded on the activity log and examining the log to confirm that the
tests have been completed. When there are defects that are still open and not resolved,
they need to be prioritized and deployment workarounds need to be established.

Task 2: Consolidate Test Defects by Test Number

During this task, the team examines the recorded test defects. If the tests have been
propetly performed, it is logical to assume that, unless a defect test document was
reported, the correct or expected result was received. If that defect were not cor-
rected, it would have been posted to the test defect log. The team can assume that
all items are working except those recorded on the test log as having no corrective

261

© 2009 by Taylor & Francis Group, LLC

262 m Software Testing and Continuous Quality Improvement

(STEPS) (TASKS)
Ensure All Tests Were
Executed/Resolved
Consolidate Test Defects

Perform By Test Number
Data ¢
1 v

Reduction Post Remaining

Defects to a Matrix

Prepare Project
Overview

¥

v
Summarize
Prepare Final Test Activities

Test Report 1l

v
Analyze/Create
Metric Graphics

Develop Findings/
Recommendations

Schedule/Conduct
Revie
v l hd
v
Review/Approval Obtain
Final Test Report Approvals

Publish Final
Test Report

Figure 22.1 Summarize/report spiral test results.

action or unsatisfactory corrective action. The test number should consolidate these
defects so that they can be posted to the appropriate matrix.

Task 3: Post Remaining Defects to a Matrix

During this task, the uncorrected or unsatisfactorily corrected defects should be
posted to a special function test matrix. The matrix indicates which test-by-test
number tested which function. The defect is recorded in the intersection between
the test and the functions for which that test occurred. All uncorrected defects
should be posted to the function/test matrix intersection.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ® 263

Step 2: Prepare Final Test Report

The objective of the final spiral test report is to describe the results of the testing,
including not only what works and what does not, from above, but the test team’s eval-
uation regarding performance of the application when it is placed into production.

For some projects, informal reports are the practice, whereas in others, very for-
mal reports are required. The following is a compromise between the two extremes
to provide essential information not requiring an inordinate amount of prepara-
tion (see Appendix E15, “Spiral Testing Summary Report™; also see Appendix E29,
“Final Test Summary Report,” which can be used as a final report of the test project
with key findings).

Task 1: Prepare the Project Overview

An objective of this task is to document an overview of the project in paragraph
format. Some pertinent information contained in the introduction includes the
project name, project objectives, the type of system, the target audience, the orga-
nizational units that participated in the project, why the system was developed,
what subsystems are involved, the major and subfunctions of the system, and what
functions are out of scope and will not be implemented.

Task 2: Summarize the Test Activities

The objective of this task is to describe the test activities for the project including
such information as the following:

B 7est ream—The composition of the test team, for example, test manager, test
leader, and testers, and the contribution of each, such as test planning, test
design, test development, and test execution.

B Jest environment—DPhysical test facility, technology, testing tools, software,
hardware, networks, testing libraries, and support software.

B Tjpes of tests—Spiral (how many spirals), system testing (types of tests and
how many), and acceptance testing (types of tests and how many).

W Test schedule (major milestones)—External and internal. External milestones
are those events external to the project but that may have a direct impact on
it. Internal milestones are the events within the project that can be controlled
to some extent.

B 7est tools—The testing tools used and their purpose, for example, path analy-
sis, regression testing, load testing, and so on.

Task 3: Analyze/Create Metric Graphics

During this task, the defect and test management metrics measured during the
project are gathered and analyzed. Defect tracking should be automated for greater

© 2009 by Taylor & Francis Group, LLC

264 m Software Testing and Continuous Quality Improvement

productivity. Reports are run, and metric totals and trends are analyzed. This anal-
ysis will be instrumental in determining the quality of the system and its accept-
ability for use, and also will be useful for future testing endeavors. The final test
report should include a series of metric graphics. The suggested graphics follow.

Defects by Function

Table 22.1 shows the number and percentage of defects discovered for each function
or group. This analysis will flag the functions that have the most defects. Typically,
such functions had poor requirements or design. In the following example, the
reports had 43 percent of the total defects, which suggests an area that should be
examined for maintainability after it is released for production.

Defects by Tester

Table 22.2 shows the number and percentage of defects discovered for each tester
during the project. This analysis flags those testers who documented fewer than the
expected number of defects. These statistics, however, should be used with care. A
tester may have recorded fewer defects because the functional area tested may have
relatively fewer defects, for example, tester Baker in Table 22.2. On the other hand,
a tester who records a higher percentage of defects could be more productive, for
example, tester Brown.

Defect Gap Analysis

Figure 22.2 shows the gap between the number of defects that has been uncovered
and the number that has been corrected during the entire project. At project com-
pletion, these curves should coincide, indicating that the majority of the defects
uncovered have been corrected and the system is ready for production.

Defect Severity Status

Figure 22.3 shows the distribution of the three severity categories for the entire
project, for example, critical, major, and minor. A large percentage of defects in
the critical category indicates that a problem existed with the design or archi-
tecture of the application that should be examined for maintainability after it is
released for production.

Test Burnout Tracking

Figure 22.4 indicates the rate of uncovering defects for the entire project and is a
valuable test completion indicator. The cumulative (e.g., running total) number of

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ® 265

Table 22.1 Defects Documented by Function

Function Number of Defects | Percentage of Total

Order Processing

Create new order il 6
Fulfill order 5 3
Edit order 15 8
Delete order 9 5
Subtotal 40 22

Customer Processing

Create new customer 6 3
Edit customer 0 0
Delete customer 10 6
Subtotal 16 9

Financial Processing

Receive customer payment 0 0
Deposit payment 5 3
Pay vendor 9 5
Write a check 4 2
Display register 6 3
Subtotal 24 13
Inventory Processing

Acquire vendor products 3 2
Maintain stock 7 4
Handle back orders 9 5
Audit inventory 0 0
Adjust product price 6 3
Subtotal 25 14

Continued

© 2009 by Taylor & Francis Group, LLC

266 m Software Testing and Continuous Quality Improvement

Table 22.1 Defects Documented by Function (Continued)

Function Number of Defects | Percentage of Total
Reports
Create order report 23 13
Create account receivable report 19 11
Create account payable report 35 19
Subtotal 77 43
Grand totals 182 100

Table 22.2 Defects Documented by Tester

Tester Number of Defects | Percent of Total
Jones 51 28
Baker 19 11
Brown 112 61
Grand totals 182 100

defects and defects by time period help predict when fewer and fewer defects are
being discovered. This is indicated when the cumulative curve “bends” and the
defects by time period approach zero.

Root Cause Analysis

Figure 22.5 shows the source of the defects, for example, architectural, functional,
usability, and so on. If the majority of the defects are architectural, the entire sys-
tem will be affected, and a great deal of redesign and rework will be required.
High-percentage categories should be examined for maintainability after they are
released for production.

Defects by How Found

Figure 22.6 shows how the defects were discovered, for example, by external cus-
tomers, manual testing, and the like. If a very low percentage of defects were dis-
covered through inspections, walkthroughs, or JADs, this would indicate that
there may be too much emphasis on testing and too little on the review process.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ® 267

50
[Uncovered
Il Corrected

40 -
‘8 \
¥
Q 301 Gap
fom
5]
b \
2
£
=1
Z
(5]
2
B 20}
E|
£
=]
O]

10 -

0 | | | | | | | |

Figure 22.2 Defect gap analysis.

The percentage differences between manual and automated testing also illustrate
the contribution of automated testing to the process.

Defects by Who Found

Figure 22.7 shows who discovered the defects, for example, external customers,
development, quality assurance testing, and so on. For most projects, quality assur-
ance testing will discover most of the defects. However, if external or internal
customers discovered the majority of the defects, this would indicate that quality
assurance testing was lacking.

Functions Tested and Not Tested

Figure 22.8 shows the final status of testing and verifies that all or most defects have
been corrected and the system is ready for production. At the end of the project,

© 2009 by Taylor & Francis Group, LLC

268 m Software Testing and Continuous Quality Improvement

60

sor B ciitical
D Major
D Minor

Percent
w
S
T

20

10

Severity

Figure 22.3 Defect severity status.

all test cases should have been completed and the percentage of test cases run with
errors and not run should be zero. Exceptions should be evaluated by management
and documented.

System Testing Defect Types

Systems testing consists of one or more tests that are based on the original objectives
of the system. Figure 22.9 shows a distribution of defects by system testing type. In
the example, performance testing had the most defects, followed by compatibility
and usability. An unusually high percentage of performance tests indicates a poorly
designed system.

Acceptance Testing Defect Types

Acceptance testing is an optional user-run test that demonstrates the ability of the
application to meet the user’s requirements. The motivation for this test is to posi-
tive rather than negative, for example, to show that the system works. Less empha-
sis is placed on the technical issues, and more is placed on the question of whether
the system is a good business fit for the end user.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ® 269

300
0Oooao
o
250 | m]
m}
200 |
0o Cumulative
8
g
A 150 -
= o
2
100 L
m]
By Time Period
50 | /
2 Burnout

Time Periods —

Figure 22.4 Test burnout tracking.

There should not be many defects discovered during acceptance testing, as most
of them should have been corrected during system testing. In Figure 22.10, perfor-
mance testing still had the most defects, followed by stress and volume testing,

Task 4: Develop Findings/Recommendations

A finding is a discrepancy between what is and what should be. A recommenda-
tion is a suggestion on how to correct a problem or improve a system. Findings and
recommendations from the test team constitute most of the test report.

The objective of this task is to develop the findings and recommendations from
the testing process and document “lessons learned.” Previously, data reduction has
identified the findings, but they must be put in a format suitable for use by the
project team and management.

The test team should make the recommendations to correct a situation. The proj-
ect team should also confirm that the findings are correct and the recommendations

© 2009 by Taylor & Francis Group, LLC

270 m Software Testing and Continuous Quality Improvement

. Architectural

. Connectivity

. Consistency

. Database Integrity
. Documentation
. Functionality

. GUI

. Installation

9. Memory

10. Performance
11. Security

- — 12. Standards

13. Stress

14. Usability

0NN W

Root Cause (%)

1234567 8 91011121314

Figure 22.5 Root cause analysis.

60

50 F 1. Inspection
2. Walkthrough

40 F 3.JAD

4. Manual Testing

30 5. Automated Testing

Percent

20

10

Figure 22.6 Defects by how found.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ®m 271

80

60 -

50 - 1. External Customer

2. Internal Customer

3. Development

Percent (%)
=
o
T

30} 4 Quality Assurance

20

10

Figure 22.7 Defects by who found.

501 [] Test Cases Completed
Test Cases Run with Errors
40 r
Test Cases Not Run
30
2
3]
3
~
20
101
0

Figure 22.8 Functions tested/not tested.

© 2009 by Taylor & Francis Group, LLC

272 m Software Testing and Continuous Quality Improvement

25

. Performance

. Security
Volume

Stress
Compatibility
Conversion
Usability
Documentation
. Backup

. Recovery

20

H
SOPNAUIE W

Percent (%)

1 23 456 7 8 91011

Figure 22.9 System testing by root cause.

reasonable. Each finding and recommendation can be documented in the Finding/
Recommendation matrix depicted in Table 22.3.

Step 3: Review/Approve the Final Test Report
Task 1: Schedule/Conduct the Review

The test summary report review should be scheduled well in advance of the actual
review, and the participants should have the latest copy of the test plan.

As with any interview or review, there are certain common elements. The first
is defining what will be discussed; the second is discussing the details; the third is
summarization; and the final element is timeliness. The reviewer should state up
front the estimated duration of the review and set the ground rule that if time expires
before completing all items on the agenda, a follow-on review will be scheduled.

The purpose of this task is for development and the project sponsor to agree and
accept the test report. If there are any suggested changes to the report during the
review, they should be incorporated.

© 2009 by Taylor & Francis Group, LLC

Summarize/Report Test Results ®m 273

60
50
1. Performance
2. Security
3. Volume
4. Stress
40 5. Compatibility
6. Conversion
7. Usability
= 8. Documentation
% 9. Backup
£ 30 10. Recovery
o 11. Installation
&
20
10
| | I Y |

1 23 456 7 8 91011

Figure 22.10 Acceptance testing by root cause.

Task 2: Obtain Approvals

Approval is critical in a testing effort, because it helps provide the necessary agree-
ment among testing, development, and the sponsor. The best approach is with a
formal sign-off procedure of a test plan. If this is the case, use the management
approval sign-off forms. However, if a formal agreement procedure is not in place,
send a memo to each key participant, including at least the project manager, devel-
opment manager, and sponsor. In the document, attach the latest test plan and
point out that all their feedback comments have been incorporated and that if you
do not hear from them, it is assumed that they agree with the plan. Finally, indicate
that in a spiral development environment, the test plan will evolve with each itera-
tion but that you will include them in any modification.

Task 3: Publish the Final Test Report

The test report is finalized with the suggestions from the review and distributed to
the appropriate parties. The purpose has short- and long-term objectives.

© 2009 by Taylor & Francis Group, LLC

Table 22.3 Finding/Recommendations Matrix

Finding Description?

Business Function®

Impact¢

Impact on Other
Systems?

Costs to Correct®

Recommendation’

Not enough testers
were initially
assigned to the
project

N/A

Caused the testing
process to lag
behind the original
schedule

N/A

Contracted five
additional testers
from a contract
agency

Perform more resource
planning in future
projects

Defect tracking was
not monitored
adequately by
development

N/A

Number of
outstanding defects
grew significantly

N/A

Authorized overtime
for development

QA needs to stress the
importance of defect
tracking on a daily

basis in future projects

Automated testing
tools did contribute
significantly to
regression testing

N/A

Increased testing
productivity

N/A

N/A

Utilize testing tools as
much as possible

Excessive number of
defects in one
functional area

Reports

Caused a lot of
developer rework
time

N/A

Excessive developer
overtime

Perform more technical

design reviews early in

the project

Functional area not
compatible with
other systems

Order Processing

Rework costs

Had to redesign
the database

Contracted an
Oracle database
DBA

Perform more database

design reviews early in

the project

30 percent of defects
had critical severity

N/A

Significantly
impacted the
development and
testing effort

N/A

Hired additional
development
programmers

Perform more technical
reviews early in the
project and tighten up
on the sign-off
procedures

© 2009 by Taylor & Francis Group, LLC

juawarosdwy Ayjen) snonuiuoy) pue uisa] aiemijos m /LT

not be completed
because
performance load
test tool did not
work properly

order entry with
1000 terminals

system will perform
adequately under
extreme load
conditions

delivery until new
testing tool
acquired (2 months
delay at $85,000 loss
in revenue, $10,000
for tool)

Function/GUI had the | N/A Required a lot of N/A Testers authorized Perform more technical
most defects rework overtime reviews early in the
project and tighten up
on the sign-off
procedures
Two test cases could Stress testing Cannot guarantee N/A Delay system Loss of revenue

overshadows risk. Ship
system but acquire
performance test tool
and complete stress
test

o

team, test procedures, or test environment findings and recommendations.

o

I}

Describes the business function that was involved and affected.
Describes the effect the finding will have on the operational system. The impact should be described only as major (the defect would cause the

application system to produce incorrect results) or minor (the system is incorrect, but the results will be correct).

a

L

corrected.

-

© 2009 by Taylor & Francis Group, LLC

Describes the recommendation from the test team on what action to take.

This includes a description of the problem found from the defect information recorded in the defect-tracking database. It could also include test

Describes where the finding will affect application systems other than the one being tested. If the finding affects other development teams, they
should be involved in the decision on whether to correct the problem.
Management must know both the costs and the benefits before it can make a decision on whether to install the system without the problem being

G/T W Synsay 1sa] poday/ozuewWNG

276 m Software Testing and Continuous Quality Improvement

The short-term objective is to provide information to the software user to determine if
the system is ready for production. Italso provides information about outstanding issues,
including testing not completed or outstanding problems, and recommendations.

The long-term objectives are to provide information to the project regarding
how it was managed and developed from a quality point of view. The project can
use the report to trace problems if the system malfunctions in production, for
example, defect-prone functions that had the most errors and the ones that were
not corrected. The project and organization also have the opportunity to learn from
the current project. A determination of which development, project management,
and testing procedures worked, and which did not work or need improvement, can
be invaluable for future projects.

© 2009 by Taylor & Francis Group, LLC

PROJECT
MANAGEMENT
METHODOLOGY

Project management, according to the American Society for Quality (ASQ), is the
application of knowledge, skills, tools, and techniques to meet the requirements of
a project. The following chapters apply the Project Quality Management practices
and methods to software testing by describing basic test management processes and
organizational approaches that achieve project quality.

The objectives of this section are to:

B Define the Project Framework.

B Develop the dependencies between product quality and project quality.

B Characterize the phases of the Project Framework.

B Describe the important relationship between project scope and product quality.

B Define the roles of the project manager and test manager in quality
management.

B Describe the steps of the quality planning process that support Project
Quality Management.

B Emphasize the factors that influence project estimation.

B [llustrate the defect management activities that support Quality Control.

B Demonstrate how defect-tracking techniques influence project quality.

B Present the benefits of integrating test and development methodologies into
a unified set of processes.

B Reveal the steps to build an integrated methodology.

© 2009 by Taylor & Francis Group, LLC

278 ®m Project Management Methodology

B Explain why organizational structures influence how project managers and
y org g

test managers accomplish their tasks.
B Establish the approaches to organizational challenges.
B Describe alternative quality metrics that measure project progress and com-

pliance to requirements.

© 2009 by Taylor & Francis Group, LLC

Chapter 23

The Project Management
Framework

The Project Framework

The Project Framework is a simple and useful way to unite quality processes with
project phases, and synchronize project quality management with the system, or
software, development approach.

The Project Framework, described in the following sections, uses the Project
Management Institute’s Process Groups to:

B Embed the quality processes into the project phases.
B Align quality planning, assurance, and control activities with the output of a
system or software (or system) development life cycle (SDLC).

The phases of the Project Framework require the project manager and the test man-
ager to cooperate so that the end result of the project is a quality product.

For more information on the Project Management Institute (PMI), go to www.
PMI.org.

Product Quality and Project Quality

Project managers are ultimately responsible for product quality and project quality.
The difference between product quality and project quality, drawn from The Project

279

© 2009 by Taylor & Francis Group, LLC

http://www.PMI.org
http://www.PMI.org

280 m Software Testing and Continuous Quality Improvement

Proiect Monitoring
) Initiation Planning Executing and Closing
Phases ;
Controlling
sprc | Fvaluation | g tion | Detailed | Buildand | CATand
and . . Go-live Implement
Phases . Analysis Design Test .
Preparation Preparation

Figure 23.1 Project Framework.

Management Institute’s Projecc Management Body of Knowledge' (PMBOK), is
abbreviated here:

B Product quality is meeting explicit criteria for conformance to requirements
and fitness for use.

B Project quality is delivering the required product, or service, within the agreed
project scope and meeting the approved schedule without exceeding the proj-
ect budget.

Together, product quality and project quality comprise project quality management.

Components of the Project Framework

The Project Framework, illustrated in Figure 23.1, treats the Project Management
Institute’s five Project Management Process Groups as overarching project phases.
The resulting alignment implies flexibility and assumes that overlapping activities
will take place across the SDLC phases.

The Project Framework and Continuous
Quality Improvement

The project manager and the test manager share responsibility for continuous qual-
ity improvement. They use the Project Framework to infuse continuous quality
improvement into each SDLC phase.

The Project Framework works well with Deming’s modified Plan—-Do—Check-
Act cycle shown in Figure 23.2.

Examples of using the PDCA cycle are nearly unlimited. Here are several
examples:

Plan: Clearly define the project and product scope; understand the conditions,
policies, and methods required to achieve the project objectives.

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework m 281

Plan Do

Act Check

Figure 23.2 The Plan-Do-Check-Act cycle.

Do: Create the conditions and procedures to complete the work according to the
approved project scope.

Impart training as needed so that the required skills are available when needed.

Ensure that project team members understand both the project objectives and
their project work.

Check: Determine if the project deliverables are completed according to plan
and whether the results are as expected.

Act: Respond to variances by adjusting the quality processes to prevent variance
from project and product quality. Actions include the following:

Validating changes to requirements and scope.

Determining if project deliverables meet quality assurance measurements.
Ensuring that project documents (such as the project schedule and bud-
get) are updated.

Assessing the impact of changes in conditions to detect and correct vari-
ances from project quality standards.

Performing root cause analysis for any major variance and adjusting the
process to prevent recurrence.

The Project Framework Phases

Initiation Phase

Project initiation signals the sponsor’s commitment to fund the project. Initiation

activities include producing a project charter that summarizes the high-level scope of
the product and the project, as well as authorizing the project manager to assume proj-
ect leadership. Early requirements definitions, project team mobilization, and stake-

holder analysis are initiation activities that set the foundation for the planning phase.
The quality definition for the project begins in the Initiation phase, using pro-
gressive elaboration to develop the detailed expectations for product acceptance

by the customer. Writing a preliminary quality statement, or initial quality policy,

© 2009 by Taylor & Francis Group, LLC

282 m Software Testing and Continuous Quality Improvement

during the initiation phase helps jump-start the test planning by establishing a
context for customer acceptance.

Planning Phase

Planning the quality management approach for the project is accomplished in parallel
with developing the scope and requirements for the product and the project. The proj-
ect assumptions, dependencies, and risks are inputs to the test strategy. Other inputs
include application and architecture models as well as integration requirements.

Development activities during the planning phase, such as conducting a proof
of concept or demonstrating a prototype, provide opportunities to assess whether
the project requires changes and additions to existing quality policies, test environ-
ments, test tools, and test methodologies.

The fundamental quality outputs from the planning phase are the final qual-
ity policy (quality standards) for the project and the test strategy derived from the
functional and nonfunctional requirements.

Planning for quality assurance and quality control is incomplete until resources
are assigned to the quality tasks in the work breakdown structure (project sched-
ule). Planning the QA tests and user acceptance tests should be coordinated to
avoid unnecessary duplication of effort.

Executing, Monitoring, and Controlling Phases

This phase incorporates the project execution activities with the monitoring and
controlling activities because the processes are mutually dependent. Project work is
inspected to detect variance from, or confirm compliance to, project requirements.
Project scope is validated, too, during this phase, because a well-scoped test plan
detects unauthorized work.

The multitiered testing activities in this phase are distributed across SDLC
phases. The work is done by the application development organization, the infra-
structure organization, and the test organization if one exists. An example of the
work allocation is as follows:

Detailed Design:

— Validating that the functional and nonfunctional requirements are
complete.

— Validating the test approach against the final designs for application and
system interfaces.

— Validating the test approach against specifications for system performance.

— Validating that the customer, the application developers, and the infra-
structure team accept the quality standards.

— Validating that the development and testing environments meet specifi-
cations prior to the build and test activities.

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework ®m 283

Build and Test:
— Conducting code and unit testing for interfaces (and test data conver-
sions if applicable).
— Finalizing the test approach for application reports, integration, and
performance.
— Finalizing the test approach for hardware integration and performance.
— Creating the Test Plan for the functional and nonfunctional requirements.
— Creating and validating the test cases against functional and nonfunc-
tional requirements.
— Creating the User Acceptance Test Plan and test cases.
Customer Acceptance Test and Go-Live Preparation:
— DPerforming application reports, integration, and performance testing as
required to meet the quality standards.
— Performing hardware integration and performance testing as required to
meet the design standards.
— DPerforming user acceptance testing as required to meet the definition of
fitness for use.
- Testing reports completed and signed off.

Implement Phase

The last phase in the Project Framework is characterized by user acceptance sign-off
and the cutover to production (successful go-live).

The project manager has many administrative tasks to accomplish before sig-
naling that the project is officially closed. A prerequisite to project closure is ensur-
ing that all defects are resolved per the predetermined project quality thresholds,
and that the defect log is closed. Even then, the project is not complete until all of
the test artifacts (including scripts) are archived for reference by other projects.

Scoping the Project to Ensure Product Quality

The PMI states that project scope verification is concerned with the acceptance of the
work results, whereas quality control is concerned with the correctness of the work results.
Because scope verification begins in the earliest stage of project definition, project man-
agers who exploit the interdependencies between quality control and scope verification
in the initiation phase avoid project overhead in subsequent project phases.

Product Scope and Project Scope

Defining product scope is the precursor to defining the project scope. The asso-
ciation is straightforward: The product scope describes the characteristics of the

© 2009 by Taylor & Francis Group, LLC

284 m Software Testing and Continuous Quality Improvement

product (or service to be delivered); the project scope specifies the work that must
be done to deliver the product.

As the product’s features and functionality take the form of requirements, the
project team estimates the work (tasks) that is necessary to meet each requirement.

Taking the proactive approach to quality management, the project manager
extends the work estimate to include the probable resources and projected time to
validate the requirements.

The benefit of estimating the validation activities in the initiation phase is that
the customer, the project manager, and the test manager negotiate the acceptable
level of project quality that the project must deliver. During the negotiation, the
project manager and the test manager learn the general acceptance criteria for
the products’ features and functionality, and formulate the boundaries of project
quality. The formal endorsement of the project scope usually takes the form of a
Project Charter. The detailed description of the project scope is developed in the
Scope Statement.

The Project Charter

The Project Charter is a living business document that officially recognizes the
funding of a project. The charter presents the project sponsor and the customer
with a brief summary of the product scope and the project scope, and authorizes
the project manager to mobilize the project team. The charter is updated when the
project scope changes.

The charter categorizes the project resources and assigns high-level roles and
responsibilities to the resources. The charter also provides the project stakeholders
with an aggregate list of future deliverables that includes the test plan, test specifica-
tion, and test results.

The Project Charter should be simple and nontechnical. Project charters usually
include these sections:

B Scope

— Product scope
— Project scope
Stakeholders
Project resources
Business impact
Business objectives
Project justification
Project benefits
High-level deliverables
Project approach

© 2009 by Taylor & Francis Group, LLC

The Project Management framework ®m 285

The Scope Statement

The Scope Statement is a living project document that the project manager
updates as the project team develops detailed requirements. In the initiation
phase, the Scope Statement contains early estimates of the project resources
and costs.

Even in its eatliest stage, the Scope Statement is vital to project quality man-
agement because it limits the project scope to the work that must be done to
deliver the product. The work to deliver the product encompasses quality assur-
ance and quality control.

Scope Statement formats differ among organizations and departments, but
scope statements usually contain the following sections:

Executive summary
Background
Business objectives
Project costs

Scope
— Product scope
— Project scope
— Out of scope
Success criteria
Dependencies
Assumptions
Constraints
Known risks
Estimated time frame, including the initial work breakdown structure

Scope management approach

The Role of the Project Manager
in Quality Management

Project managers are responsible for coordinating and communicating the impact
of authorized scope changes across the spectrum of project stakeholders. Project
managers use the Scope Statement to detect deviation from the project scope.
Scope deviations are not negative if authorized, but the impact of any unauthorized
change must be analyzed and the root cause examined.

Project scope definition and quality management are intertwined such that
any change in product scope affects the project scope. Changes to product scope
directly influence the allocation of project resources to quality assurance and qual-
ity control because the project scope includes testing the product.

© 2009 by Taylor & Francis Group, LLC

286 m Software Testing and Continuous Quality Improvement

The earlier project managers define product scope and how to manage product
scope change, the more effective they will be at managing the resources, sequence,
cost, and project duration.

In summary, by defining and managing the project scope, the project manager
is instrumental in helping the test manager verify that the requirements are defined
and testable; that scope changes are communicated; and ultimately, that the prod-
uct is fit for use.

The Role of the Test Manager in Quality Management

The test manager is responsible for ensuring that a product meets an acceptable
level of compliance with functional and nonfunctional requirements. The project
quality management that is required to ensure the level of compliance with require-
ments is rarely done without organizing the QA and QC activities into a series of
phases that either blends with, or complements, the software (system) development
life cycle.

The following task descriptions are not necessarily sequential and will overlap.
In some cases, the work is accomplished in parallel activities.

Analyze the Requirements

Early in the Initiation phase of the Project Framework, the business users begin for-
mulating their requirements by describing how they want their business processes
to work in the future compared to the current processes.

Many organizations rely on business analysts to turn the business users’ descrip-
tions into business requirements that summarize the users’ expectations regarding
new features and functionality. Experienced business users are prone to making
assumptions about system conditions because they typically focus on the business
processes and not on the system behavior. For this reason, business analysts may
not detect that some expectations of business users are based on assumptions about
system conditions. If an implicit condition is not tested, then the testing is not
complete and will not satisfy the end-user requirements.

The test manager should review the business requirements with the business users
to identify the implied system conditions. The reviews are best done while writing
and reviewing the test strategy and the test scenarios during the Planning phase.

Perform a Gap Analysis

The test manager should begin a preliminary gap analysis eatly in the Planning phase

to identify the disparities between the requirement and specification documents.
If possible, a comprehensive gap analysis spans the Planning and Executing

phases. The analysis includes baseline documents such as use cases and system

© 2009 by Taylor & Francis Group, LLC

The Project Management Fframework ®m 287

design documents. Identifying and solving the gaps are essential in giving the busi-
ness confidence in their final requirements.

The gaps between the requirement documents and the functional or design
specifications become obvious after the product is released into the production
environment (post go-live) and a business scenario does not produce the expected
result. The gap analysis reduces the rework required to fix problems traced to con-
flicts between requirement and technical documents.

Avoid Duplication and Repetition

During the Planning phase, the proactive test manager ensures that the test cases
are comprehensive, and at the same time, that the test cases avoid repetitive cover-
age. Unless addressed during planning, there is a risk that executing the same class
of test cases for different conditions will increase the duration of test cycles by slow-
ing the testers’ advance to untested functionality.

Equivalence class partitioning, described in Appendix G, is a valuable tech-
nique for avoiding repetitive test case coverage. The technique classifies business
functions on the basis of input conditions that cause the same kind of processing
and output. The result of equivalence class partitioning is a concise set of test cases
that increase the testers’ ability to locate defects.

Please note that redundant testing caused by poor test planning and test case
design is not the same as repeating test cases for the purpose of verifying the resolu-
tion of anomalies concentrated in a specific area of code.

Define the Test Data

Defining the test data is a vital part of the test planning activity in the Planning
phase. The test manager is responsible for ensuring that the data required for exe-
cuting the test cases is available in the test environment and that all of the test cases
are executed with the correct data sets.

The data guidelines should be defined during test planning with the help of the
business analyst and developers. The location of data sets for the test cycle should
be determined in the test plan, as well as the method and time required to refresh
or restore the data sets.

Validate the Test Environment

The test manager defines the test environment in the test strategy document. The
definition must be complete and identify all of the interfaces that are required to
execute the test cases. In addition, the test manager must write a statement that
summarizes the risks to the test effort when the interfaces that affect test execution
are outside the control of the test engineers.

© 2009 by Taylor & Francis Group, LLC

288 m Software Testing and Continuous Quality Improvement

After defining the test environment, the test manager prepares a checklist to
verify that the test environments are functioning as expected. The checklists are
also useful for restoring test environments at the end of each test cycle. Normally,
the initial test environment is validated during the detailed design phase of the
SDLC.

Analyze the Test Results

During test execution, the test manager is responsible for analyzing the test results to
identify the test scenarios that require correction or clarification.

For example, a specification document defines the ranges for start dates, dura-
tions, and end dates. An analysis of test results shows that the results of range test-
ing are correct; did testing the date ranges validate that the start date cannot be
greater than the end date?

Deliver the Quality

The primary responsibility of the test manager is to deliver a product to the business
with so few variances from requirements that it meets the business user’s needs. The
test effort was adequate if the customer accepted the product. The test effort was
successful if the customer accepted the product and testing concluded on time and
within budget.

Advice for the Test Manager
Request Help from Others

During test case development, the test manager and test team should take the ini-
tiative to ask the business users and developers to help validate the team’s expected
test results. The benefits of collaboration are multiple: The developers understand
the tester’s verification methods, the testers understand the end-user definition of
functionality, and the test manager understands the business view of the develop-
ment process.

Communicate Issues as They Arise

Test management requires effective communication between test managers, testers,
developers, and the project stakeholders. Issues that surface during test execution
must be conveyed to the stakeholders as soon as possible. Keeping stakeholders
informed regarding status and progress helps focus decision makers on issues that
impact quality.

© 2009 by Taylor & Francis Group, LLC

The Project Management Framework ®m 289

Effective communications require the test manager to understand the unique
need of the stakeholders and the types of information that they need to make well-
informed decisions. For example, the percentage of complete test cases will mean
different things to different stakeholders. The test manager is responsible for learn-
ing which type of stakeholder will use that statistic for decision making and which
stakeholder will ignore it because is has no value to him or her.

Always Update Your Business Knowledge

Software development supports the business enterprise. To develop deeper testing
capabilities, test managers and their teams must extend their business knowledge. If
they do not, then they will not be able to convince either the developers or the business
owners about the importance of the system defects that the testing effort uncovered.

Learn the New Testing Technologies and Tools

The software industry is a fast-changing industry. Test managers’ skills will be out-
dated very quickly unless they learn how to apply next-generation software testing
technology, tools, and methodologies. A result of outdated skills is the inability to
take advantage of the cost savings from high-efficiency tools and methods. Test
managers who are resistant to change will not be in a position to support the busi-
ness as expectations for quality increase but budgets and schedules decrease.

Improve the Process

The test manager should take responsibility for continuous process improvement.
One way to do this is by taking advantage of the lessons-learned activity for the
overall project. New concepts for enhancing testing efficiency and product quality
are discovered as the project team reviews the results of the end-to-end processes
used to deliver the product.

Reviewing production support issues will give the test manager a great deal of
useful information. Issues that are discovered after the product is released into the
production environment are indications that test methodology and planning might

have gaps that should be addressed.

Create a Knowledge Base

The expertise gathered in various projects should be documented so that the
knowledge is reused in other projects. The test manager should document the
positive and negative factors that were encountered in each test project execution
and organize the information so that members of other project teams can reuse
the information.

© 2009 by Taylor & Francis Group, LLC

290 m Software Testing and Continuous Quality Improvement

The Benefits of the Quality Project
Management and the Project Framework

The benefits of integrating the Quality Project Management processes with the
Project Framework processes are:

Initiation phase

B Project scope validation begins and is input for the test plan.

B The context for customer acceptance is established.

B The project manager and the test manager negotiate the acceptable level of
project quality.

Planning phase

B The product requirements for the product are developed in parallel with the
quality management approach.

B The project assumptions, dependencies, and risks are input into the test
strategy.

B Preliminary resources are assigned to quality tasks (in project schedule).

B QA tests and user acceptance tests are planned to avoid unnecessary duplica-
tion of effort.

B Project scope is validated using the test plan to detect any unneeded work.

Executing, Monitoring, and Controlling phases

B Unauthorized scope changes are detected and the root cause examined.

B The development and testing environments meet specifications prior to the
build and test activities.

B Test approaches are finalized for software and hardware.

B Muldi-tiered testing activities are distributed across SDLC phases.

B Emphasis on continual improvement enhances product and project
performance.

Closing phase

B Quality defects are resolved.

B The customer accepts that the product is fit for use.

B All testing artifacts are archived for future reference and reuse.

In order to realize the benefits of integrating the Quality Project Management pro-
cesses with the Project Framework, the test manager and project manager should
integrate their respective roles and responsibilities as well as their methodologies.
If they do, then they will greatly increase the probably of meeting the customer’s
expectation for product quality and the business goal of project quality.

© 2009 by Taylor & Francis Group, LLC

Chapter 24

Project Quality
Management

Project Quality Management Processes

Project Quality Management encompasses all of the work that is required to deliver the
project’s product at the customer’s required level of quality. The PMI divides Project
Quality Management into three major processes commonly shown as follows:

B Quality Planning: Planning the quality approach.

B Quality Assurance: Defining the level of compliance with requirements and
incorporating continuous quality improvement into the test processes.

B Quality Control: Executing the testing and measuring results compared to
the quality thresholds defined in the Quality Assurance processes.

These Project Quality Management processes are integrated into the phases of the
Project Framework described in the previous section. This section describes the
planning activities in the Quality Planning phase.

291

© 2009 by Taylor & Francis Group, LLC

292 m Software Testing and Continuous Quality Improvement

Quality Planning

An experienced test manager systematically plans the test strategy, selects the test exe-
cution methodologies, and specifies the testware if needed. Working with the project
manager, the test project manager addresses the following planning objectives:

B Defining the strategy to accomplish the types of required testing.

B Implementing traceability between requirements and test cases to ensure
good test coverage.

Preparing the test cases and scripts.

Reviewing all the test documents.

Planning the data requirements and availability.

Scheduling the execution.

When testing activities, cost, and schedule are planned without the benefit of the
test manager’s input, the overall project schedule rarely includes a realistic timeline
for the testing efforts.

Frequently, the test manager is not brought into a project until the project has
already begun. Once a project is under way, the project manager is unable to make
a retrospective test estimation effort and readjust the schedule. In this situation, the
test manager must adapt to the predefined testing schedule.

Identifying the High-Level Project Activities

When the project scope is reasonably clear and documented, the project team iden-
tifies all of the major high-level activities that need to be accomplished to deliver
the project. Members of the project team decompose the individual high-level
activities into work. The decomposition of work is sufficient when the following
requirements are met:

1. Can be completed in a short duration without further information inputs
2. Produces a deliverable (deliverables must have conclusions)

3. Can be estimated on the basis of realistic measurements

4. Cannot be broken down into further activities performed by one person

Estimating the Test Work Effort

Estimating the test work effort takes into consideration the types and costs of the
resources that are required to complete the planned test. To estimate the cost of soft-
ware testing, the test manager and project manager must consider the following:

© 2009 by Taylor & Francis Group, LLC

Project Quality Management ®m 293

B The number of testers and their rates

B The level of the testers’ experience and their productivity

B The cost of the hardware and software required to support the work effort
B The administrative overhead that the company assigns to project budgets

The test manager and project manager evaluate factors that influence the size of the
test effort such as the following:

The number of test cycles planned for the test execution phase
The number of interfaces that require testing

The number of test batch runs

The complexity level of the test conditions and cases

The defect fix turnaround time agreed upon in the strategy
The availability of the required test data

The defect management and resolution process

The change management process

Test Planning

Although the percentage varies according to the project, on average, the test team
spends 15 percent of its total work effort on the critical tasks of defining the test
conditions and preparing the traceability matrix, test cases, test scripts, test data,
and execution plans.

Normally, the test conditions are prepared first and mapped with the business
requirement documents to ensure that the test coverage is complete. The test condi-
tions become test cases by establishing the data values required to extensively test
the conditions.

It is recommended practice to decompose the entire application into its mod-
ules and subapplications to identify the conditions, cases, and scripts that make up
the core of the test plan.

The test conditions and test cases are refined and categorized as complex,
medium, and simple conditions/cases. The number of test conditions/cases, and the
time to prepare the scripts constitute the major part of the test-planning activity.
Deciding on the appropriate level of condition/case complexity requires the techni-
cal and functional expertise of the entire project team.

The work effort to execute the scope of testing—the time required to prepare
the test plan, publish the test strategy, and review the deliverables—adds to the
test-planning effort.

The project manager and test manager should also factor the daily defect meet-
ing, conference calls, and other meetings into the planning and execution stages of
the projects.

© 2009 by Taylor & Francis Group, LLC

294 m Software Testing and Continuous Quality Improvement

The sample project plan shown in Figures 24.1 and 24.2 defines the typical
tasks that are performed in a testing project.

Of the various activities in the project plan, planning and execution are the key
activities that determine the cost of resources and schedules required for the test-
ing projects. During these two crucial phases of testing, various key deliverables
are estimated. This will ensure the test team will have a focused approach and the
delivery of the deliverables will bring each task to a logical conclusion so that the
project can advance to the next task in the plan. However, it is not always neces-
sary that a particular task be completed before beginning the next task. The project
manager should analyze the task dependencies. A task dependency is the relation-
ship between two tasks in which one task depends on the start or finish of another
task to begin or end. The task that depends on the other task is the successor, and
the task it depends on is the predecessor.

The following text describes some typical test dependencies and why they are
important to test management:

Finish-to-Start (FS): Task B cannot start until task A finishes. For example,
if you have two tasks, “Test Script Writing” and “Test Execution,” “Test
Execution” cannot start until “Test Script Writing” completes. This is the
most common type of dependency.

Start-to-Start (SS): Task B cannot start until task A starts. For example, if we
have two tasks “Test Script Writing” and “Run Plan Preparation,” “Run Plan
Preparation” cannot begin until “Test Script Writing” starts.

Finish-to-Finish (FF): Task B cannot finish until task A finishes. For example, if you
have two tasks, “Test Execution Complete” and “Test Closure Report,” “Test
Closure Report” cannot finish until “Test Execution Complete” finishes.

Stare-to-Finish (SF): Task B cannot finish until task A starts. This dependency
type can be used for “just-in-time scheduling” up to a milestone or the project
finish date to minimize the risk of a task finishing late, if its dependent task
slips. This dependency type applies when a related task needs to finish before
a milestone or project finish date. However, it does not matter exactly when,
and one does not want a late finish to affect the just-in-time task. You can
create an SF dependency between the task you want scheduled just in time
(the predecessor) and its related task (the successor). Then, if you update the
progress on the successor task, it will not affect the scheduled dates of the
predecessor task.

Effort Estimation: Model Project

The following describes how to effectively use an estimation template.
The critical activities for effort estimation involving functional testing are
defined in the model. The time for each of these activities is arrived on the basis

© 2009 by Taylor & Francis Group, LLC

Project Quality Management ® 295

Microsoft Project - Model Project.mpp.
@) Fle Edk View Inset Fomat Tools Project Colaborste Window Help Type a
NBHERY R 9|8 e B | NoGow RAFTIO Bie 9 = sons |
H -Resouw;-mxk-kepa(vl

© |TaskName ‘ Duration Start ‘ Finish Predecessors
= Model Project 197 days? Mon 322104 Tue 122104
= Project Intiation 6 days Mon 322103 Mon 32904
= Project Kick-Off meeting 1 day Mon 3722004 Mon 312204
£ Understand the Business Requirement 5 days Tue 32304 Mon 329,04
Appication| Sdays Tue 3123104 Mon 329104 3
= Appication 2 Sdays. Tue 3723104 Mon 372904
= Application 3 Sdays. Tue 3723104 Mon 3729/04
= Appication 4 5days Tue 323004 Mon 3129/04
= Appication § 5days Tue 3723104 Mon 3123104
= Applcation 6 Sdays Tue 3723104 Mon 3129104
= Test Planning 185 days? Tue 33004 Mon 121304
E Training 10 days Mon 411204
Training on Business Functionaity 7 days ‘Wed 477104 10
Training on Tools 3doys Mon 4112104 13
E Gap Analysis between BRD and FSR 3days Tue 41304 Thu 41504
Appiication | 3days Tue 4713104 Thu 411504 14
Applcation 2 3days Tue 411304 Thu 41504 14
Appiication 3 3days Tue 413004 Thu 411504 14
Appication 4 3days Tue 4113104 Thu 41504 14
Applcation S 3days Tue 413104 Thu 4115104 14
Application 6 3days| Tue 413004 Thu 411504 14
E Effort Estimation 10days| Tue 41304 Mon 42604
= Estimate the Resource required to execu. 10days ” Tue 413004 Mon 4726104
[Cost Estimation 3 days? Tue 42704 Thu 429904
Identity and selection of Resource 3days Tue 4727104 Thu 4123104 23
Identify Onste-Offshore Component 3days| Tue 4227004 Tha 428004 23
Connectiviy 1day? Tue 4727104 Tue 42714 23
& Environment Definition Sdays Mon 426104 Fri 43004
ez} Test Environment Sdays” Mon 4726104 Fri 473004 =
2 o | KT | 7
IT T Icaws Tnow [5cal (o7

Figure 24.1 Sample project plan.

B Microsoft Project - Model Project.mpp
‘@) Fle Edt Vew Insent Fomat Toos Project Colsborate Window Help Type a que
NEH SR Y6 R9|8 5|8 | Ncon QAT @ Bie s - sons | 0
| Resources v | Track ~ | Report vl 2

) |'rasmms I Duration | Start Finish 1P'ma 03 Oct12,03 Oct 19,103
T SIM[TWITIFIS|STMITW]
£ Test Planning T4 days Fri 43004 Wed 81104
Prepare Test Condtions 20 days Fri 4130104 Thu 5127104 25
= Finalize Defect Management Approach 3deys” MonSN4 Wed 5/504
Prepare Test Cases 20 days| Fri S/28/04 Thu 6124104 31
Prepare Test Scripts 20 days Fri 654 Thu 7122104 33
Review of Test Condtions, cases and St 10 days Fri 7123104 Thu 8/5/04 34
Prepare Traceabiity document 3days Fri 86104 Tue 810/D4 35
Prepare execuion Plan Sdays| Fri 7723004 Thu 7128104 34
Review of Traceabity and Execution Plc 1 day Wed 8111104 Wed 8111104 36
E Automation 46 days| Mon 101104 Mon 1243104
= GUIBt Map Capturing 20days” Mon 1011104 Fri11/504
Script Capturing 10days| Mon 11804 Fri1118/04 40
Vaidstion of Scrivts Sdays| Mon 11722004 Fri 1172814 41
Data Table Creation Sdays| Mon 11729104 Fri12304 42
Batching the Scripts 3days. Mon 12/6/04 Wed 12/8/04 43 B
Dry Run 3days Thu 12/9/04 Mon 12/13/04 44
£l Test Execution and Control | 93days? WedsAtod Fri 124704
E Test Execution 90days? Mon 8604 Fri 124704
= Execution of Manual Scripts -Cycle | 40days” Mon 8/16/04 Fri10/8/04
Automation Scripts - Cycle Il 40 days Mon 10/11.04 Fri12/3/04 48
Regression Cycle Il 10 days?| Mon 12/6104 Fri 12174 43
El Test Control Wdays| Wed /1104 Tue 124404
Defect Reporting and Tracking 90 days Wed 8111104 Tue 1214104 36
Other Issues escalation 90 days Wed 811104 Tue 1214/04 36
Status and Progress Reporting 90 days Wed 8/1104 Tue 1214/04 36
st Closure | days? Wed 12504 Tue 122104
Final Summary Report 2days| Wed 1211504 Thu 1216104 54
Guideines for Automation Pack 2days| Wed 1215104 Thu 1216104 54
Knowledge Management System 3 days Fri1217:04 Tue 1272104 57 2
27
o

K]
IT |zl =l (e

Figure 24.2 Sample project plan (continued).

© 2009 by Taylor & Francis Group, LLC

296 m Software Testing and Continuous Quality Improvement

of the parameters defined and the experiences from the project team. Table 24.1
shows the tasks with which the project manager, test lead, and test engineer are
typically associated.

Test cases are classified as simple, medium, and complex on the basis of the time
preparation and execution times for these scripts. The baseline times required by
project management activities and other project-related activities are estimated and
entered into Table 24.2.

Table 24.3 shows the total effort for test planning, test execution, and test closure
activities separately for test engineers and test project managers. The total person-
days are calculated for each of these effort parameters, and total person-months are
calculated. Normally, 22 working days are taken for a month to arrive at a person-
month. The table also shows that the total number of individuals required can be
calculated from the person-months. If the test execution schedule is already defined
in the overall milestone project plan, one can estimate the number of resources
required to complete the project within the given time.

The project team should establish the baseline for how many test conditions, test
cases, and test scripts can be prepared and executed by the individual tester per day. This
is critical to this estimate and will differ from project to project. Similarly, review activi-
ties should be calculated as a percentage of the activity for each of those activities.

Quality Standards

Planning the quality management approach for every project includes establishing
quality standards. The standards are based on the level of quality that the customer
will accept. Many companies require a quality statement that defines the measurable
goals for product and project quality. The measurements are audited for traceability
back to the testing that produced the test metrics. The planning techniques and pro-
cesses described in this section will help the test team meet the quality standards.

© 2009 by Taylor & Francis Group, LLC

Project Quality Management m 297

Table 24.1 Activities for Estimating Effort

Test Initiation and Planning Resources
Understanding the application PMa2
TLb

Training the rest of the team members/ambiguity review | TE¢ | TL

Project plan/test strategy PM
Test conditions/scenarios TE

Review of test conditions PM
Test cases TE

Test scripts TE

Internal review of test scripts PM
Preparation of coverage/trace matrix TE TL
Data requirements/guidelines TE TL
Preparation of run plan TL
Internal review of run plan PM

Sign-off by business

Test Execution

Day 0 verification — environment check PM
Validation of test scripts with application TE TL
Iteration 1 (100 percent) (execution & defect review) TE TL
Iteration 2 (50 percent) (execution & defect review) TE TL
Iteration 3 (50 percent) (automation) TE PM

Test Closure

Final report preparation PM

Business review and sign-off

(Y

PM—Project Manager
TL—Test Lead
TE—Test Engineer

=2

o)

© 2009 by Taylor & Francis Group, LLC

298 m Software Testing and Continuous Quality Improvement

Table 24.2 Baseline Effort Estimation

Planning Execution?

Condition to Case

Simple 1
Medium 3
Complex 5
Buffer 20%

Case to Script

10 1

No. of Test Cases per Day

30 15

No. of Test Scripts per Day

2 1
Timelines

Day-Hr 8
Week-Day 5
Month-Day 22

Project Schedule

35 25

Note: Project baselines—Values can be
changed depending on the project
requirements.

2 Including bug/defect regression.

© 2009 by Taylor & Francis Group, LLC

Project Quality Management ® 299
Table 24.3 Total Effort and Number of Individuals Required
Test Planning/ Test Test
Scripting Execution | Closure | Total
No. Resource (All Effort in Person-Days)
1 Test engineers
2 Project manager/test
lead
Total person-days
Total person-months 60.0 30.0 10.0 100.0
Ratio 60.0% 30.0% 10.0% 100.0%
Person-months (only TE 0 0 0 0
effort)
Team size 4 3 0 7

© 2009 by Taylor & Francis Group, LLC

Chapter 25

The Defect
Management Process

Quality Control and Defect Management

The Quality Control process is the third phase of Project Quality Management.
A key element in managing quality, defect management establishes the method of
recording and organizing the defects that are discovered during test execution. The
output of the process gives the project stakeholders a way to judge the progress that
the test team makes as it executes the test plan. The same output gives the end user
visibility regarding how well the product conforms to his requirements.

This section breaks the defect management process into the following essential
functions:

B Defect discovery and classification
B Defect tracking
B Defect reporting

Defect Discovery and Classification

A defect is a deviation from either business or technical requirements. Testers gen-
erally find and log the defects as they execute test cases. Even though testing finds
defects, end users find defects, too, as they use the business application or system.

301

© 2009 by Taylor & Francis Group, LLC

302 m Software Testing and Continuous Quality Improvement

Closed

Duplicate

Authorized Reraised

WAI (works
as needed)

Figure 25.1 Defect life cycle.

Defects are classified into categories to facilitate change management and to
help plan and prioritize the rework that is required to fix the defect. Classifications
vary from organization to organization. The following are sample classifications:

B Showstopper (X): The impact of the defect is severe, and the system cannot be
tested without resolving the defect because an interim solution (work-around)
is not available.

B Critical (C): The impact of the defect is severe; however, an interim solution is
available. The defect should not hinder the test process in any way.

B Noncritical (N): All defects that are not in the X or C category are in the N
category. These are the defects that could potentially be resolved via docu-
mentation and user training. These can be GUI defects or some minor field-
level observations. Figure 25.1 depicts the life-cycle flow of the defects. A
defect has the initial state of “New” and eventually has a “Closed” state.

Defect Priority

During the test activities, testers assign a priority to each defect as they log the
defects into the defect-tracking system. The priority assigned to a defect might
change as a result of discussions in the defect meetings because the priority assigned
to the defects will affect the order in which the development team will fix the

© 2009 by Taylor & Francis Group, LLC

The Defect Management Process ® 303

defects. The number and sequence of the fixes have a direct impact on the develop-

ment schedules and test schedules.

These are examples of common priority designations:

High: Further development and testing cannot occur until the defect has
been repaired. The software system cannot be used until the repair is done.

B Medium: The defect must be resolved as soon as possible because it is hinder-

ing development and testing activities. Software system use will be severely
affected until the defect is fixed.

Low: The defect is an irritant that should be repaired, but which can be
repaired after a more serious defect has been fixed.

Defect Category

Defects are categorized into different categories per the testing strategy. The follow-
ing are the major categories of defects normally identified in a testing project:

Works as Intended (WAI): Test cases to be modified. This may arise when the
tester’s understanding may be incorrect.

Discussion Items: Arises when there is a difference of opinion between the test
and the development team. This is marked to the domain consultant for the
final verdict.

Code Change: Arises when the development team has to fix the bug.

Data Related: Arises when the defect is due to data and not coding.

User Training: Arises when the defect is not severe or technically infeasible to fix;
it is decided to train the user on the defect. This should ideally not be critical.
New Requirement: Inclusion of functionality after discussion.

User Maintenance: Master and parameter maintenance by the user causing
the defect.

Observation: Any other observation not classified in the foregoing categories,
such as a user-perspective GUT defect.

Defect Tracking

The test strategy document (see Appendix E21, “Test Strategy”) specifies the defect
management process for the project (see Figure 25.2). It spells out the test engineer’s
actions when a defect is found that needs to be reported to the developers and the

owners of the system.
Test engineers who enter their defect in the defect log (see Appendix E9,
“Test Care Log”) note when they discovered the defect. The defect log can also

© 2009 by Taylor & Francis Group, LLC

304 m Software Testing and Continuous Quality Improvement

Estimate of Total Errors to be Found

Predicted
Error Rate

Total Errors Found

f

Errors Found
Thus Far or
Errors
Corrected
Thus Far

Testing Effort (Time)

Figure 25.2 Defect tracking.

be a database that includes the results of the test along with descriptions of the
discrepancies between the expected and actual results.

Numerous defect management tools are available for logging in and monitoring
defects. Some of the popular defect management tools are described in Section 6,
“Modern Software Testing Tools.”

Defect Reporting

Testers use the defect report (also called a problem report) to capture the detail of
a problem so it can be evaluated and prioritized into a list of product defects. The
report is important to the project management team as well as to the developers
who are assigned to recreate and fix the defect, and the testers, who verify that the
defect was fixed. The defect report does not include detailed descriptions of the
expected and actual test results, but it does require a detailed problem description.
Defects are reported using a standard formar that collects the information shown
in Appendix E12, “Defect Report.”

Defect Summary

Trend curves are based on the collective information from the defect reports and
are published to graphically illustrate these types of trends:

© 2009 by Taylor & Francis Group, LLC

The Defect Management Process ® 305

Total errors found over time.

Errors by cause. Example: Operator versus program error.

Errors by how found. Example: Errors discovered by the user.

Errors by system. Example: Errors found in the order entry system.
Errors found by organization. Example: Support group or operations.

Figure 25.2 shows a graph of time versus the number of defects found during test-
ing. The predicted error rate is an estimate of progress toward completing the test
effort. When the rate of correction becomes a bottleneck in the test process, addi-
tional development resources should be assigned. Figure 25.2 also shows the dif-
ference between the predicted and actual error rates relative to the total number of
projected errors.

Defect Meetings

Defect meetings are the best way to disseminate information among the testers,
analysts, development, and the business.

Daily meetings are conducted at the end of the day between the test team and
development team to discuss test execution and defects. This is when the defects are
formally categorized in terms of the defect type and severity.

Before the defect meetings with the development team, the test team should
have internal discussions with the test project manager on the defects reported.
This process ensures that all defects are accurate and authentic to the best knowl-
edge of the test team.

Defect Metrics

The analysis of the defects can be done on the basis of the severity, occurrence,
and category of the defects. As an example, defect density is a metric that gives the
ratio of defects in specific modules to the total defects in the application. Further
analysis and derivation of metrics can be done employing the various components
of the defect management.

B Defect age: Defect age is the time duration between the point of identification
of the defect to the point of closure of the defect. This would give a fair idea
regarding the defect set to be included for smoke test during regression.

B Defect density: Defect density is usually calculated per thousand source lines
of code (KSLOC) as shown in the following text. This can be helpful in that
a measure of defect density can be used to (1) predict the remaining defects
when compared to the expected defect density, (2) determine if the amount of
testing is sufficient, and (3) establish a database of standard defect densities.

© 2009 by Taylor & Francis Group, LLC

306 m Software Testing and Continuous Quality Improvement

Dd = D/KLSOC

where
D = the number of defects,
KSLOC = the number of noncommented lines of source code (numbered per
thousand), and
Dd = the actual defect density.

Plotting defect density versus module size typically produces a U-shape curve that
is concaved upward (see Figure 25.3). Plotting very small and very large modules
shows that they have a higher defect count than modules of intermediate size. The
increasing incidence of bugs for small module sizes holds across a wide variety of
systems and has been demonstrated by different studies.

A different way of viewing the same data is to plot lines of code per module
against total bugs. The curve looks roughly logarithmic and then flattens, corre-
sponding to the minimum in the defect density curve, after which it goes up as the
square of the number of the lines of code.

Quality Standards

Managing the cycle of finding and fixing defects is an integral activity in the qual-
ity control process. The purpose of the work that goes into the overall defect man-
agement is to compare the quality of the product to planned quality standards.
If the quality standards are not well established by the project manager and test

8
6
oy
k7
8
A g Observed Data
&
4
a
2
0 400 800

Module Size

Figure 25.3 Defect count and density versus module size.

© 2009 by Taylor & Francis Group, LLC

The Defect Management Process m 307

manager, then the cost of quality will reach a point of diminishing return. That
point is where the cost of finding and fixing more defects outweighs the financial
benefit of the project.

Enforcing quality standards means delivering a product that the customer will
accept. Beyond the acceptable level of quality is a point of diminishing returns at
which the cost of quality exceeds the financial benefit of the project.

© 2009 by Taylor & Francis Group, LLC

Chapter 26

Integrated Testing
and Development

Quality Control and Integrated Testing

This section addresses test execution—another aspect of the quality control pro-
cess. The integrated approach to testing supports the goals of quality control, sum-
marized here as keeping errors out of the development process and preventing errors
[from reaching the customer.

Traditionally, functional characteristics separated test organizations from devel-
opment organizations. The partition encouraged organizational silos that did not
share resources or knowledge across functional lines. The increasing expectations
for organizational efficiency and the growing focus on compliance with regulatory
standards are good reasons to consider merging the development and test method-
ologies and processes.

Integrated Testing

Integrating testing methodology and development methodology into a single meth-
odology is neither a new concept nor is the implementation particularly common.
Regardless of the reasons for change, no merger will be successful without a busi-
ness case and executive-level support.

309

© 2009 by Taylor & Francis Group, LLC

310 m Software Testing and Continuous Quality Improvement

One approach to an integrated test and development methodology is to incor-
porate the testing steps and tasks into the development process by adding or
modifying the development tasks. Usually, the person who is responsible for the
development methodology integrates testing processes. If no one is directly respon-
sible for the development methodology, then the test manager assumes responsibil-
ity for integrating the processes.

Another approach is to make the integration part of the quality assurance func-
tion. Executive management should not tell the quality assurance team which aspects
of the software testing standard should be adopted; how that testing methodology
should be integrated into the existing design methodology; and the amount of time
and effort needed to perform the task. Executive management should set the tone by
stating that the integrated approach will be the basis for testing in the organization.

Step 1: Organize the Test Team

Creating a combined methodology begins with organizing the team for the task. To
make a new methodology work, key people who understand testing and development
must be appointed to manage it. The group should consist of three to seven individu-
als who are respected by their peers. With fewer than three members, the interaction
and energy necessary to successfully introduce the testing methodology may not
occur. With more than seven members, management of the team becomes unwieldy.
An experienced chairperson works with the executive sponsor to sanction the team’s
mission. The project sponsor should ensure that the test management team:

B Understands testing concepts and the standard for software testing discussed
in this manual.

B Customizes and integrates the standard for software testing into the organi-
zation’s systems design and maintenance methodology.

B Encourages adherence to and support of the integrated test methodology, and
agrees to perform testing in the manner prescribed by the methodology.

Step 2: Identify the Tasks to Integrate

Section 3 describes different development and test methodologies that reflect the
relationship between the business technology, system architecture, and organiza-
tional structure. The same relationships must be evaluated to determine whether
or not to integrate the design methodology. When the team performs this step, the
members must arrive at a consensus on the general objectives of testing and how the
design methodology affects the test methodology. The design methodology may be
addressed by design standards, so the team may accept the design tasks as part of

© 2009 by Taylor & Francis Group, LLC

Integrated Testing and Development ®m 311

the integrated methodology, or the team may decide that the design methodology
and tasks remain outside the integrated methodology.

Step 3: Customize Test Steps and Tasks

The team should customize the steps and tasks covered in this text so that they are
consistent with the organization’s development and test methodologies. The team
can either perform the customization itself or assign it to others (e.g., to the group
in charge of design methodology).

Customization usually includes the following:

B Standardizing vocabulary—Vocabulary should be consistent throughout
the design methodology. If staff members understand and use the same
vocabulary, they can easily move from job to job within the organization.
Vocabulary customization may mean changing vocabulary in the testing
standard or integrating the testing vocabulary into the systems develop-
ment methodology.

B Changing the structure of presentation—The way the testing steps and tasks
have been described may differ from the way other parts of the design
methodology are presented. For example, this manual has separate sections
for forms and text descriptions of the software testing tools. If the systems
development methodology integrates them into single units, they may need
to be rearranged or reordered to make them consistent with the develop-
ment manual.

During test planning, the test team will determine which test standards, procedures,
tasks, worksheets, and checklists are applicable to the system being developed. The
team should customize the process for either individual application systems, or for
a particular development function.

The team can also choose to create a smaller version of the process for the pur-
pose of validating whether or not the process worked as expected.

Step 4: Select Integration Points

This step involves selecting where to integrate the test steps and tasks into the devel-
opment methodology. This step requires a thorough understanding of the devel-
opment methodology and tasks. The two key criteria for determining where to
integrate these tasks are the following:

B What data is needed—The test task can be inserted into the design methodol-
ogy only after the point at which the needed information has been produced.

© 2009 by Taylor & Francis Group, LLC

312 m Software Testing and Continuous Quality Improvement

B Where the test products are needed—The testing tasks must be completed
before the products produced by that task are needed in the systems develop-
ment methodology.

Applying these criteria will determine both the earliest and latest points at which
the tasks can be performed. The tasks should be inserted into the development
methodology at these points.

Step 5: Modify the Development Methodology

At this point, all of the information is that is needed to modify the systems develop-
ment methodology is available. This step requires someone who is familiar with the
design process; he or she inserts the test processes and steps into the development
methodology documentation.

Step 6: Test Methodology Training

This step involves training analysts, users, and programmers in use of the test meth-
odology. Once testing is integrated into the systems development methodology, peo-
ple must be trained and motivated to use the test methodology, a more difficult job.
Test management team members play an important role in convincing their peers
to accept and use the new methodology—first, by their example, and second, by
actively encouraging coworkers to adopt the methodology. An important part of this
step is creating and conducting testing seminars that should cover the following:

B Testing concepts and methods—This part of the training recaps the material in
Appendix F.

B 7est standards—Individuals responsible for testing must know the standards
against which they are measured. The standards should be taught first, so
team members know why they are performing certain tasks (e.g., test proce-
dures), and the procedures second. If they feel that the procedures are just one
way of testing, they may decide there are better ways. On the other hand, if
they know the purpose of performing the test procedures (e.g., meeting test
standards), they are more likely to take an interest in learning and following
the test procedures.

B Test methodology—The methodology incorporated into the systems develop-
ment methodology should be taught step by step and task by task. An ana-
lyst, user, or programmer should initially perform tasks under the direction
of an instructor. This helps ensure that these professionals fully understand
how the task should be performed and what results should be expected.

© 2009 by Taylor & Francis Group, LLC

Integrated Testing and Development ®m 313

Until the individuals responsible for testing have been trained and have demon-
strated proficiency in testing processes, management should allow for some testing
errors. In addition, until individuals have demonstrated mastery of the test proce-
dures, they should be closely supervised during the execution of those procedures.

The next part of this section presents a procedure for defect recording and anal-
ysis when the testing process is integrated into the development methodology. This
procedure requires categorizing defects and ensuring that they are appropriately
recorded throughout the development methodology.

Step 7: Incorporate Defect Recording

The quality control function is an integral part of the tester’s workbench. Defects
must be recorded and analyzed to determine how to improve the integrated pro-
cess. This process is the equivalent of problem reporting in operational application
systems. The test manager must be able to capture information about the problems
or defects that occur; without this information, it is difficult to improve testing,.

The most difficult part of defect recording is convincing development staff
members that this information will not be used against them. This information is
gathered strictly for the improvement of the test process and should never be used
for performance appraisals or any other individual evaluations.

The Integrated Team

Although the project and test managers are the people who focus on completing
the project within the constraints of the project budget and schedule, the outcome
of the execution phase has always been in the hands of the developers and testers.
The integrated team approach does not change that condition. The change that will
come, if the integration is done for the right reasons and with the best interest of
quality in mind, is the opportunity for developers to understand how testers think,
and for testers to become more mindful of the developers’ perspective.

In the course of pooling our technical knowledge, the greatest challenge will
remain unchanged—understanding the customer’s point of view.

© 2009 by Taylor & Francis Group, LLC

Chapter 27

Test Management
Constraints

Organizational Architecture

In the context of the Project Framework, the role of the project manager is to
recognize and adapt to the organizational architecture to accomplish the project
objectives. This section on the constraints of organizational architecture describes
the relationship between the quality organization’s structural composition and the
project manager’s responsibility for delivering project quality.

Describing all the permutations of organizational architecture is nearly impos-
sible. This section concentrates on accomplishing projects in two divergent organi-
zational architectures:

B Delivering project quality in conditions where process-driven quality meth-
odology and delivery processes are well established.
B Delivering project quality in conditions where no quality infrastructure exists.

Traits of a Well-Established Quality Organization

A well-established quality organization is recognizable by these traits:

315

© 2009 by Taylor & Francis Group, LLC

316 m Software Testing and Continuous Quality Improvement

CEO

Strategic Project
Officer

Project Management
Officer

Board
[
[|
CFO
[I
Chief Quality Chief Information
Officer Officer |
+— Quality Control Application
Development
L QC Organization [
Development
Organization
L lity A
Quality Assurance] Technical
Infrastructure
QA Organization [\\ Infrastructure

Figure 27.1

B Integration with business units (strategic and tactical).

Aligning quality, development, and project management.

B Measurable targeted improvement of delivery processes for goods and services.

B Decreasing customer issues with delivered goods and service as they transi-

tion through the product life cycle.

B Verifiable and consistent level of positive customer satisfaction across the

product and service portfolio.

Figure 27.1 shows an example of an organizational architecture that integrates the
quality organization and project management into the business enterprise. Note
how this organizational structure aligns the chief quality officer with the chief
information officer. The structure positions quality assurance and control groups to
deliver financial benefits to the enterprise. Although the cost of quality is measur-
able, the groups are rarely organized as a business unit.

Division of Responsibilities

The responsibility for maintaining project quality and for delivering a quality
product resides with the project manager. The specific quality management tasks,

© 2009 by Taylor & Francis Group, LLC

Test Management Constraints ® 317

however, are distributed (shared) between the project manager and the quality man-
agers who are assigned to manage the test preparation, execution, and reporting.
The quality-related project responsibilities include the following:

B Reporting the project status—communicating whether the test cycles are
tracking to the plan.

B Assessing the project status—analyzing the test results to predict whether the
test cycles are tracking to the plan.

B Communicating changes—project change management activities including
project scope, schedule, and cost, as well as quality.

B Defect tracking and review—validating that obligatory rework is logged,
assigned, completed, and validated.

B Ensuring that resources are engaged—rolling on and off the project accord-
ing to the benefit of the project.

B Continuous process improvement—capturing and applying the knowledge
gathered from analysis of the inputs and outputs of quality processes. The
analysis includes evaluating the efficient use of tools, understanding how test
techniques and processes might be enhanced, as well as appraising the parity
between technical training and test environments.

B Ensuring that the quality organization aligns the producer’s view with the
customer’s view.

Organizational Relationships

The project manager’s relationship with the quality organization either enhances or
reduces the probability of project success. An often-overlooked dynamic is how the
project manager interacts with the QA and QC teams.

Table 27.1 summarizes the positive and negative perceptions that affect the
project manager’s relationship with the quality organization.

Using the Project Framework Where
No Quality Infrastructure Exists

Project managers who encounter an organizational structure where no formal qual-
ity infrastructure exists usually find signs of ad hoc testing. Although ad hoc testing
(exploratory testing) is a productive approach when combined with formal testing,
ad hoc testing described here is done with either little, or no, documentation or
planning and is the sole testing approach.

The following are some of the organizational behaviors that characterize ad
hoc testing:

© 2009 by Taylor & Francis Group, LLC

318 m Software Testing and Continuous Quality Improvement

Table 27.1

Positive and Negative Perceptions

Positive Perceptions

Negative Perceptions

The project manager involves the
quality team in the project initiation
and work estimation at the earliest
possible time.

The project manager treats product
quality processes as if they are
threats to project schedule and cost
constraints.

The project manager negotiates with
the project sponsor for the best use
of quality resources.

The project manager does not
understand the role that the quality
team plays in supporting the project.

The project manager integrates the
quality metrics into the project
performance measurements.

The project management processes
are redundant and add unnecessary
complexity to the quality processes.

The project manager supports the
findings of the QC team with
decisive negotiation for the benefit
of a quality product.

The project manager makes decisions
that threaten the quality of the
product and blames the end result
on the quality groups.

B The releases of new functionality and bug fixes are allowed to “soak” in a

preproduction environment to determine if the modifications caused unin-
tended results in existing code.

The end users validate whether the product meets their needs when develop-
ers release versions of the product with new functionality, including bug fixes,
into the production environment.

The product support effort is equal to, or greater than, the development effort.
The same relationship exists between support costs and development costs if
they are tracked.

Product engineers are inundated with a backlog of user requests for bug fixes
and enhancements.

There is no consistent effort to measure the comparative quality of goods and
services across the product and service portfolio.

Ad Hoc Testing and the Project Framework

The key to harnessing ad hoc testing for project benefit is to exploit the Project
Framework’s emphasis on the traceability between requirements and the test effort.

In an earlier section, we established the link between the project scope and prod-
uct scope by saying that the product scope describes the characteristics of the product
(or service to be delivered); the project scope specifies the work that must be done to
deliver the product. In effect, the project manager uses the ad hoc testing activities
to align two views of quality: the producer’s view and the customer’s view.

© 2009 by Taylor & Francis Group, LLC

Test Management Constraints ® 319

Table 27.2 Traceability/Validation Matrix

Technical Verified
User Requirement Reference Requirement | Pass/Fail by Date

Customer Entry | 1.1 Customer | 1.1.2 Online
must be customer
valid screen

Using a Traceability/Validation Matrix

The project manager uses a simple matrix to track the progress of ad hoc testing and
estimate the level of product quality. The matrix combines requirement traceability
with functional validation, as shown in Table 27.2.

The matrix format organizes the business and technical (system) requirements
into functional areas for validation by the end user. When the end user determines
that a functional requirement meets expectations, he or she indicates acceptance in
the matrix. The matrix also shows funct